Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
Front Oncol ; 9: 1380, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32038992

RESUMEN

In recent years, immunotherapies have been clinically investigated in AML and other myeloid malignancies. While most of these are focused on stimulating the adaptive immune system (including T cell checkpoint inhibitors), several key approaches targeting the innate immune system have been identified. Macrophages are a key cell type in the innate immune response with CD47 being identified as a dominant macrophage checkpoint. CD47 is a "do not eat me" signal, overexpressed in myeloid malignancies that leads to tumor evasion of phagocytosis by macrophages. Blockade of CD47 leads to engulfment of leukemic cells and therapeutic elimination. Pre-clinical data has demonstrated robust anti-cancer activity in multiple hematologic malignancies including AML and myelodysplastic syndrome (MDS). In addition, clinical studies have been underway with CD47 targeting agents in both AML and MDS as monotherapy and in combination. This review will describe the role of CD47 in myeloid malignancies and pre-clinical data supporting CD47 targeting. In addition, initial clinical data of CD47 targeting in AML/MDS will be reviewed, and including the first-in-class anti-CD47 antibody magrolimab.

2.
Nat Commun ; 9(1): 3194, 2018 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-30097573

RESUMEN

Macrophage-mediated programmed cell removal (PrCR) is a process essential for the clearance of unwanted (damaged, dysfunctional, aged, or harmful) cells. The detection and recognition of appropriate target cells by macrophages is a critical step for successful PrCR, but its molecular mechanisms have not been delineated. Here using the models of tissue turnover, cancer immunosurveillance, and hematopoietic stem cells, we show that unwanted cells such as aging neutrophils and living cancer cells are susceptible to "labeling" by secreted calreticulin (CRT) from macrophages, enabling their clearance through PrCR. Importantly, we identified asialoglycans on the target cells to which CRT binds to regulate PrCR, and the availability of such CRT-binding sites on cancer cells correlated with the prognosis of patients in various malignancies. Our study reveals a general mechanism of target cell recognition by macrophages, which is the key for the removal of unwanted cells by PrCR in physiological and pathophysiological processes.


Asunto(s)
Calreticulina/metabolismo , Homeostasis , Neoplasias/metabolismo , Fagocitosis , Adulto , Anciano , Anciano de 80 o más Años , Animales , Sitios de Unión , Línea Celular Tumoral , Membrana Celular/metabolismo , Supervivencia Celular , Senescencia Celular , Femenino , Hematopoyesis , Humanos , Ligandos , Macrófagos/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Neoplasias/patología , Neutrófilos/metabolismo , Polisacáridos/metabolismo
3.
Nat Commun ; 8: 14802, 2017 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-28378740

RESUMEN

CD47 is a cell surface molecule that inhibits phagocytosis of cells that express it by binding to its receptor, SIRPα, on macrophages and other immune cells. CD47 is expressed at different levels by neoplastic and normal cells. Here, to reveal mechanisms by which different neoplastic cells generate this dominant 'don't eat me' signal, we analyse the CD47 regulatory genomic landscape. We identify two distinct super-enhancers (SEs) associated with CD47 in certain cancer cell types. We show that a set of active constituent enhancers, located within the two CD47 SEs, regulate CD47 expression in different cancer cell types and that disruption of CD47 SEs reduces CD47 gene expression. Finally we report that the TNF-NFKB1 signalling pathway directly regulates CD47 by interacting with a constituent enhancer located within a CD47-associated SE specific to breast cancer. These results suggest that cancers can evolve SE to drive CD47 overexpression to escape immune surveillance.


Asunto(s)
Neoplasias de la Mama/metabolismo , Antígeno CD47/fisiología , Elementos de Facilitación Genéticos , Mediadores de Inflamación/metabolismo , Inflamación/metabolismo , Transducción de Señal , Regulación hacia Arriba , Animales , Neoplasias de la Mama/patología , Antígeno CD47/genética , Regulación hacia Abajo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Subunidad p50 de NF-kappa B/metabolismo , Fagocitosis , Unión Proteica , Factor de Necrosis Tumoral alfa/metabolismo
4.
Proc Natl Acad Sci U S A ; 112(7): 2145-50, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25646432

RESUMEN

Macrophage-mediated programmed cell removal (PrCR) is an important mechanism of eliminating diseased and damaged cells before programmed cell death. The induction of PrCR by eat-me signals on tumor cells is countered by don't-eat-me signals such as CD47, which binds macrophage signal-regulatory protein α to inhibit phagocytosis. Blockade of CD47 on tumor cells leads to phagocytosis by macrophages. Here we demonstrate that the activation of Toll-like receptor (TLR) signaling pathways in macrophages synergizes with blocking CD47 on tumor cells to enhance PrCR. Bruton's tyrosine kinase (Btk) mediates TLR signaling in macrophages. Calreticulin, previously shown to be an eat-me signal on cancer cells, is activated in macrophages for secretion and cell-surface exposure by TLR and Btk to target cancer cells for phagocytosis, even if the cancer cells themselves do not express calreticulin.


Asunto(s)
Calreticulina/fisiología , Macrófagos/inmunología , Neoplasias/patología , Proteínas Tirosina Quinasas/metabolismo , Receptores Toll-Like/fisiología , Agammaglobulinemia Tirosina Quinasa , Humanos , Neoplasias/enzimología , Neoplasias/metabolismo
5.
Proc Natl Acad Sci U S A ; 106(29): 11995-2000, 2009 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-19587240

RESUMEN

Although the polysialyltransferase ST8Sia IV is expressed in both primary and secondary human lymphoid organs, its product, polysialic acid (polySia), has been largely overlooked by immunologists. In contrast, polySia expression and function in the nervous system has been well characterized. In this context, polySia modulates cellular adhesion, migration, cytokine response, and contact-dependent differentiation. Provocatively, these same processes are vital components of immune development and function. We previously established that mouse multipotent hematopoietic progenitors use ST8Sia IV to express polySia on their cell surfaces. Here, we demonstrate that, relative to wild-type controls, ST8Sia IV(-/-) mice have a 30% reduction in total thymocytes and a concomitant deficiency in the earliest thymocyte precursors. T-cell progenitors originate in the bone marrow and are mobilized to the blood at regular intervals by unknown signals. We performed in vivo reconstitution experiments in which ST8Sia IV(-/-) progenitors competed with wild-type cells to repopulate depleted or deficient immune subsets. Progenitors lacking polySi exhibited a specific defect in T-cell development because of an inability to access the thymus. This phenotype probably reflects a decreased capacity of the ST8Sia IV(-/-) progenitors to escape from the bone marrow niche. Collectively, these results provide evidence that polySia is involved in hematopoietic development.


Asunto(s)
Ácidos Siálicos/metabolismo , Células Madre/citología , Linfocitos T/citología , Timo/crecimiento & desarrollo , Animales , Bioensayo , Linaje de la Célula , Movimiento Celular , Tamaño de la Célula , Subgrupos Linfocitarios/citología , Ratones , Sialiltransferasas/deficiencia , Sialiltransferasas/metabolismo , Nicho de Células Madre/citología , Nicho de Células Madre/enzimología , Células Madre/enzimología , Linfocitos T/enzimología , Timo/citología , Timo/enzimología , Factores de Tiempo
6.
J Immunol ; 181(10): 6850-8, 2008 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-18981104

RESUMEN

Polysialic acid (polySia) is a large glycan with restricted expression, typically found attached to the protein scaffold neural cell adhesion molecule (NCAM). PolySia is best known for its proposed role in modulating neuronal development. Its presence and potential functions outside the nervous systems are essentially unexplored. Herein we show the expression of polySia on hematopoietic progenitor cells, and demonstrate a role for this glycan in immune response using both acute inflammatory and tumor models. Specifically, we found that human NK cells modulate expression of NCAM and the degree of polymerization of its polySia glycans according to activation state. This contrasts with the mouse, where polySia and NCAM expression are restricted to multipotent hematopoietic progenitors and cells developing along a myeloid lineage. Sialyltransferase 8Sia IV(-/-) mice, which lacked polySia expression in the immune compartment, demonstrated an increased contact hypersensitivity response and decreased control of tumor growth as compared with wild-type animals. This is the first demonstration of polySia expression and regulation on myeloid cells, and the results in animal models suggest a role for polySia in immune regulation.


Asunto(s)
Células Madre Hematopoyéticas/inmunología , Células Asesinas Naturales/inmunología , Ácidos Siálicos/inmunología , Animales , Diferenciación Celular/inmunología , Dermatitis por Contacto/inmunología , Citometría de Flujo , Células Madre Hematopoyéticas/citología , Humanos , Immunoblotting , Inmunoprecipitación , Ratones , Células Madre Multipotentes/citología , Células Madre Multipotentes/inmunología , Neoplasias Experimentales/inmunología , Moléculas de Adhesión de Célula Nerviosa/inmunología , Moléculas de Adhesión de Célula Nerviosa/metabolismo
7.
Front Biosci ; 13: 21-50, 2008 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-17981526

RESUMEN

Both adult neural stem cells and embryonic stem cells have shown the capacity to differentiation into multiple cell types of the adult nervous system. They will therefore serve as valuable systems for basic investigations of cell fate choice mechanisms, as well as play important future roles in applications ranging from regenerative medicine to drug screening. However, there are significant challenges remaining, including the identification of signaling factors that specify cell fate in the stem cell niche, the analysis of intracellular targets and mechanisms of these extracellular signals, and the development of ex vivo culture systems that can exert efficient control over cell function. This review will discuss progress in the identification of signaling mechanisms and culture systems that regulate neural differentiation, neuronal differentiation, and neuronal subtype specification.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Madre Embrionarias/citología , Neuronas/metabolismo , Células Madre/citología , Animales , Diferenciación Celular , Trasplante de Células , Hipocampo/citología , Humanos , Modelos Biológicos , Neuronas Motoras/metabolismo , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA