Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Environ Toxicol Chem ; 42(10): 2105-2118, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37377343

RESUMEN

Studies investigating microplastics, pharmaceuticals, and pesticides as contaminants of emerging concern (CECs) in surface water sources in Kenya are reviewed. Contaminants of emerging concern are chemicals that have recently been discovered that may pose a threat to the environment, aquatic life, and human life. Microplastics in surface waters range from 1.56 to as high as 4520 particles/m3 , with high concentrations recorded in coastal waters. The dominant microplastics are fibers, fragments, and films, with foams, granules, and pellets making up only a small percentage. The main source of pharmaceuticals in water sources is not wastewater-treatment plants but rather raw untreated sewage because high concentrations are found near informal settlements with poor sewage connectivity. Antibiotics are detected in the range of the limit of quantification to 320 µg/L, with sulfamethoxazole, trimethoprim, and ciprofloxacin being the most abundant antibiotics. The high frequency of detection is attributed to the general misuse of antibiotics in the country. A health risk assessment indicated that only ciprofloxacin and acetaminophen posed noncarcinogenic health risks in the Ndarugo River and Mombasa periurban creeks, respectively. Similarly, the detection of antiretroviral drugs, mainly lamivudine, nevirapine, and zidovudine, is associated with human immunodeficiency virus prevalence in Kenya. In the Lake Naivasha, Nairobi River, and Lake Victoria basins, frequently detected organochloride pesticides (OCPs) are methoxychlor, alachlor, endrin, dieldrin, endosulfan, endosulfan sulfate, α-hexachlorocyclohexane (α-HCH), γ-HCH, and dichlorodiphenyltrichloroethane (DDT), some of which occur above permissible concentrations. The presence of DDT in some sites translates to illegal use or historical application. The majority of individual OCPs posed no noncarcinogenic health risk, except dieldrin and aldrin which had a hazard quotient >1 in two sites. Therefore, more surveying and regular monitoring in different regions in Kenya concerning CECs is essential to determine the spatial variability and effective measures to be taken to reduce pollution. Environ Toxicol Chem 2023;42:2105-2118. © 2023 SETAC.

2.
J Ethnopharmacol ; 303: 115895, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36513263

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Plants have been used in various parts of the world to treat various diseases. The genus Zanthoxylum L. (Rutaceae) is the second largest genus of this family and comprises approximately 225-549 species distributed in the tropical and temperate regions of the world. Plants of this genus are trees and shrubs with various applications in folklore medicine for food, medicine, construction, and other uses. AIM OF THE REVIEW: The goal of this review is to give an updated data on the ethnobotanical applications, phytochemistry, and pharmacology of the Zanthoxylum species to investigate their medicinal potential and identify research gaps for future research studies. MATERIALS AND METHODS: Data was obtained through a systematic search of published literature and online databases such as Google Scholar, Web of Science, PubMed, Science Direct, and Sci-Finder. The botanical names were confirmed using the World Flora Online and chemical structures were drawn using the ChemBio Draw Ultra Version 14.0 Software. RESULTS: The Zanthoxylum species have a wide use in different parts of the continents as a remedy for various diseases such as digestive diseases, gastrointestinal disorders, venereal diseases, respiratory diseases, rheumatism, bacterial diseases, viral, and other diseases. Various parts of the plant comprising fruits, seeds, twigs, leaves, oils, and stems are administered singly or in the form of decoction, infusion, powder, paste, poultice, juice, or mixed with other medicinal plants to cure the disease. More than 400 secondary metabolites have been isolated and characterized in this genus with various biological activities, which comprise alkaloids, flavonoids, coumarins, lignans, alcohols, fatty acids, amides, sesquiterpenes, monoterpenes, and hydrocarbons. The crude extracts, fractions, and chemical compounds isolated from the genus have demonstrated a wide range of biological activities both in vivo and in vitro, including; anti-cancer, antimicrobial, anti-sickling, hepatoprotective, antipyretic, antitumor, and other pharmacological activities. CONCLUSION: This genus has demonstrated an array of phytoconstituents with therapeutic potential. The ethnobotanical uses of this genus have been confirmed in modern pharmacological research. This genus is a potential source for modern drug discovery and health care products. Further and extensive research is therefore required on the safety approval and therapeutic application of the species of this genus as well as clinical trials and pharmacokinetic studies.


Asunto(s)
Rutaceae , Zanthoxylum , Etnofarmacología , Fitoterapia , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Fitoquímicos/química , Etnobotánica , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química
3.
J Ethnopharmacol ; 284: 114781, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34715298

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Genus Fagaropsis belonging to the Rutaceae family, is widely distributed in Africa. The various parts of the species in this genus are used in traditional herbal medicine in different parts of the continent for the treatment of malaria, intestinal disorders, cancer, respiratory diseases, and other ailments. AIM OF THE STUDY: This study provides a comprehensive and updated review on the ethnobotanical uses, phytochemistry, and pharmacology of Fagaropsis species and highlights possible research gaps for further research opportunities, which will be important in the development of new therapeutic drugs. MATERIALS AND METHODS: The data was retrieved using ethnobotanical books, published articles, electronic sources, and scientific databases such as Google Scholar, Plants of the World, The Plant List, Scopus, Wiley, Web of Science, PubMed, Science direct, and Sci-Finder. Various key search words Fagaropsis, pharmacological activities, phytochemistry, and ethnobotanical uses were used in the detailed study survey. RESULTS: Fagaropsis species are used traditionally to treat a wide range of infections such as respiratory diseases, cancer, malaria, intestinal diseases, and ethnoveterinary. Phytochemical investigations indicated 18 phytoconstituents that have been isolated as the main compounds in this genus; triterpenoids (limonoids, norhopane, and norneohopane derivatives), alkaloids, and essential oils. Few in vitro and in vivo pharmacological activities have been analyzed in this genus. They indicated that the extracts and pure compounds contained anti-inflammatory, antiplasmodial, anti-cancer, anti-bacterial, anti-fungal, and insecticidal activities. The phytochemical compounds that may be responsible for these activities are flavonoids, terpenoids, and alkaloids. CONCLUSION: The ethnobotanical values, phytochemistry, and pharmacology discussed in this review paper showed that Fagaropsis species contain different compounds possessing a wide range of biological activities, and they have high medicinal value that is significant in treating different types of diseases. Phytochemical analyses have been performed on two species (F. angolensis and F. glabra) in the literature. More scientific research analyses are still required to explore this genus. In addition, the majority of the currently available bioactivity-related analyses were applied to crude extracts. Thus, further research studies are important to reveal the links between ethnobotanical uses and bioactivity in the future.


Asunto(s)
Medicinas Tradicionales Africanas , Fitoquímicos , Fitoterapia , Rutaceae/química , Animales , Etnofarmacología , Humanos , Plantas Medicinales
4.
J Environ Manage ; 297: 113410, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34346396

RESUMEN

This study evaluates water quality, concentrations and health risks of heavy metals (HMs) in eight major lakes in Kenya namely Naivasha, Elementaita, Nakuru, Baringo, Bogoria, Turkana, Victoria and Magadi. Water quality was assessed using water quality index (WQI) and pollution evaluation index (PEI), while human health risk associated with ingestion and dermal contact of HMs was assessed using hazard quotients (HQ) and hazard index (HI). Principal component analysis (PCA) and hierarchical cluster analysis (HCA) were used to deduce the probable sources of the HMs. The average concentration of aluminium (Al), molybdenum (Mo), manganese (Mn), nickel (Ni), arsenic (As), zinc (Zn), selenium (Se), lead (Pb), chromium (Cr), mercury (Hg), cobalt (Co) and cadmium (Cd) in the eight lakes was 824.6, 66.1, 58.9, 16.2, 8.40, 7.84, 6.91, 4.65, 2.66, 0.86, 0.78 and 0.46, respectively, all in µg/L. Al, Mn, As, and Mo were relatively high in Rift Valley lakes and exceeded the maximum permissible levels for drinking water. Notably, high HM concentrations were recorded at the entry points of rivers and areas with high human activities. Lake Magadi had the highest average WQI of 158.8 followed by lake Elementaita (128.4), Bogoria (79.5), Nakuru (73.3), Turkana (57.6), Victoria (52.3), Baringo (42.6) and Naivasha (25.5). Lake Magadi also had the highest average PEI of 40.0 followed by Elementaita (30.1), Bogoria (16.2), Nakuru (15.7), Victoria (10.8), Baringo (9.57), Turkana (9.53) and Naivasha (5.12). Based on WQI, Lake Naivasha water was excellent for drinking, Lake Victoria, Turkana, Baringo, Nakuru, and Bogoria had good water, but water from Lake Elementaita and Magadi was of poor quality. PEI classified the lakes as minimally polluted except Lake Magadi. Multivariate analysis concluded that Pb, Cr, Ni and Se had anthropogenic sources, mainly agricultural and urban runoff, but other HMs had natural influence. Although the HMs did not pose any health risks through dermal contact, HQingestion was >1 for adults and children consuming water from Lake Elementaita, Nakuru, Bogoria and Magadi due to non-carcinogenic risks associated with As, Zn and Mo. These results are important for formulating the necessary remediation policies to improve water quality in the eight lakes.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Adulto , Niño , China , Monitoreo del Ambiente , Humanos , Kenia , Lagos , Metales Pesados/análisis , Análisis Multivariante , Medición de Riesgo , Contaminantes Químicos del Agua/análisis , Calidad del Agua
5.
Environ Sci Pollut Res Int ; 28(46): 66012-66025, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34327642

RESUMEN

Contamination of nine heavy metals (HMs) Zn, Pb, Cu, Cd, As, Co, Cr, Mo, and Ni in agricultural, urban, and wetland soils from Western and Rift Valley parts of Kenya was assessed using improved weighted index (IWI) and pollution loading index (PLI). Non-carcinogenic risks posed by the HMs were assessed using hazard quotients (HQ) and hazard index (HI), while carcinogenic risks were assessed using cancer risks (CR) and total cancer risks (TCR). The average concentration of Zn, Cr, Ni, Pb, Co, Cu, As, Mo, and Cd was 94.7 mg/kg, 43.6 mg/kg, 22.3 mg/kg, 21.0 mg/kg, 19.8 mg/kg, 18.0 mg/kg, 16.3 mg/kg, 1.83 mg/kg, and 1.16 mg/kg, respectively. IWI ranged from 0.57 to 6.04 and categorized 6.82% of the study sites as not polluted, 27.3% as slightly polluted, 43.2% as moderately polluted, and 22.7% as seriously polluted. PLI ranged from 0.38 to 3.95 and classified 15.9% of the sites as not polluted, 61.4% as slightly polluted, 20.5% as moderately polluted, and only 2.3% as seriously polluted. Wetlands retained more HMs from both urban and agricultural runoff and were therefore the most polluted. The heavy metals did not pose any risks via inhalation and dermal contact, but HQingestion for As for children was >1 in 2.3% of the sites studied. CR via ingestion and TCR for As were above the allowable limits for children and adults indicating high risks of cancer. Intensive agriculture and urbanization should be closely monitored to prevent further HM pollution.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Adulto , Agricultura , Niño , China , Monitoreo del Ambiente , Humanos , Metales Pesados/análisis , Medición de Riesgo , Suelo , Contaminantes del Suelo/análisis , Humedales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA