Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Trends Parasitol ; 37(2): 154-164, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33036936

RESUMEN

Protein phosphatase type 1 (PP1) forms a wide range of Ser/Thr-specific phosphatase holoenzymes which contain one catalytic subunit (PP1c), present in all eukaryotic cells, associated with variable subunits known as regulatory proteins. It has recently been shown that regulators take a leading role in the organization and the control of PP1 functions. Many studies have addressed the role of these regulators in diverse organisms, including humans, and investigated their link to diseases. In this review we summarize recent advances on the role of PP1c in Plasmodium, its interactome and regulators. As a proof of concept, peptides interfering with the regulator binding capacity of PP1c were shown to inhibit the growth of P. falciparum, suggesting their potential as drug precursors.


Asunto(s)
Malaria/parasitología , Plasmodium/enzimología , Proteína Fosfatasa 1/metabolismo , Humanos , Péptidos/metabolismo , Unión Proteica
2.
Sci Rep ; 9(1): 8120, 2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-31148576

RESUMEN

Pseudokinases play key roles in many biological processes but they are poorly understood compared to active kinases. Eight putative pseudokinases have been predicted in Plasmodium species. We selected the unique pseudokinase belonging to tyrosine kinase like (TKL) family for detailed structural and functional analysis in P. falciparum and P. berghei. The primary structure of PfpTKL lacks residues critical for kinase activity, supporting its annotation as a pseudokinase. The recombinant pTKL pseudokinase domain was able to bind ATP, but lacked catalytic activity as predicted. The sterile alpha motif (SAM) and RVxF motifs of PfpTKL were found to interact with the P. falciparum proteins serine repeat antigen 5 (SERA5) and protein phosphatase type 1 (PP1) respectively, suggesting that pTKL has a scaffolding role. Furthermore, we found that PP1c activity in a heterologous model was modulated in an RVxF-dependent manner. During the trophozoite stages, PbpTKL was exported to infected erythrocytes where it formed complexes with proteins involved in cytoskeletal organization or host cell maturation and homeostasis. Finally, genetic analysis demonstrated that viable strains obtained by genomic deletion or knocking down PbpTKL did not affect the course of parasite intra-erythrocytic development or gametocyte emergence, indicating functional redundancy during these parasite stages.


Asunto(s)
Antígenos de Protozoos/metabolismo , Eritrocitos/parasitología , Plasmodium/enzimología , Proteína Fosfatasa 1/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Adenosina Trifosfato/metabolismo , Secuencias de Aminoácidos , Animales , Citoesqueleto/metabolismo , Eritrocitos/citología , Eritrocitos/metabolismo , Eliminación de Gen , Humanos , Hidrólisis , Ratones , Estructura Molecular , Filogenia , Pliegue de Proteína , Proteínas Recombinantes/metabolismo , Transcripción Genética , Transgenes , Técnicas del Sistema de Dos Híbridos , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA