Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Methods Mol Biol ; 2807: 163-171, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38743228

RESUMEN

Mammalian cells have developed and optimized defense mechanisms to prevent or hamper viral infection. The early transcriptional silencing of incoming viral DNAs is one such antiviral strategy and seems to be of fundamental importance, since most cell types silence unintegrated retroviral DNAs. In this chapter, a method for chromatin immunoprecipitation of unintegrated DNA is described. This technique allows investigators to examine histone and co-factor interactions with unintegrated viral DNAs as well as to analyze histone modifications in general or in a kinetic fashion at various time points during viral infection.


Asunto(s)
Inmunoprecipitación de Cromatina , Genoma Viral , Histonas , Retroviridae , Histonas/metabolismo , Humanos , Inmunoprecipitación de Cromatina/métodos , Retroviridae/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Proteínas Virales/inmunología , Animales , ADN Viral/genética , Anticuerpos/inmunología
2.
Nature ; 623(7987): 643-651, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37938774

RESUMEN

In eukaryotes, repetitive DNA sequences are transcriptionally silenced through histone H3 lysine 9 trimethylation (H3K9me3). Loss of silencing of the repeat elements leads to genome instability and human diseases, including cancer and ageing1-3. Although the role of H3K9me3 in the establishment and maintenance of heterochromatin silencing has been extensively studied4-6, the pattern and mechanism that underlie the partitioning of parental H3K9me3 at replicating DNA strands are unknown. Here we report that H3K9me3 is preferentially transferred onto the leading strands of replication forks, which occurs predominantly at long interspersed nuclear element (LINE) retrotransposons (also known as LINE-1s or L1s) that are theoretically transcribed in the head-on direction with replication fork movement. Mechanistically, the human silencing hub (HUSH) complex interacts with the leading-strand DNA polymerase Pol ε and contributes to the asymmetric segregation of H3K9me3. Cells deficient in Pol ε subunits (POLE3 and POLE4) or the HUSH complex (MPP8 and TASOR) show compromised H3K9me3 asymmetry and increased LINE expression. Similar results were obtained in cells expressing a MPP8 mutant defective in H3K9me3 binding and in TASOR mutants with reduced interactions with Pol ε. These results reveal an unexpected mechanism whereby the HUSH complex functions with Pol ε to promote asymmetric H3K9me3 distribution at head-on LINEs to suppress their expression in S phase.


Asunto(s)
Silenciador del Gen , Histonas , Elementos de Nucleótido Esparcido Largo , Lisina , Fase S , Humanos , Replicación del ADN , Histonas/química , Histonas/metabolismo , Elementos de Nucleótido Esparcido Largo/genética , Lisina/metabolismo , Metilación
3.
Nat Cancer ; 4(11): 1561-1574, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37783804

RESUMEN

Transmissible cancers are infectious parasitic clones that metastasize to new hosts, living past the death of the founder animal in which the cancer initiated. We investigated the evolutionary history of a cancer lineage that has spread though the soft-shell clam (Mya arenaria) population by assembling a chromosome-scale soft-shell clam reference genome and characterizing somatic mutations in transmissible cancer. We observe high mutation density, widespread copy-number gain, structural rearrangement, loss of heterozygosity, variable telomere lengths, mitochondrial genome expansion and transposable element activity, all indicative of an unstable cancer genome. We also discover a previously unreported mutational signature associated with overexpression of an error-prone polymerase and use this to estimate the lineage to be >200 years old. Our study reveals the ability for an invertebrate cancer lineage to survive for centuries while its genome continues to structurally mutate, likely contributing to the evolution of this lineage as a parasitic cancer.


Asunto(s)
Mya , Neoplasias , Animales , Mya/genética , Inestabilidad Genómica/genética
4.
Nat Genet ; 54(12): 1946-1958, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36456880

RESUMEN

Specialized connective tissues, including bone and adipose tissues, control various physiological activities, including mineral and energy homeostasis. However, the identity of stem cells maintaining these tissues throughout adulthood remains elusive. By conducting genetic lineage tracing and cell depletion experiments in newly generated knock-in Cre/CreERT2 lines, we show here that rare Prrx1-expressing cells act as stem cells for bone, white adipose tissue and dermis in adult mice, which are indispensable for the homeostasis and repair of these tissues. Single-cell profiling reveals the cycling and multipotent nature of Prrx1-expressing cells and the stemness of these cells is further validated by transplantation assays. Moreover, we identify the cell surface markers for Prrx1-expressing stem cells and show that the activities of these stem cells are regulated by Wnt signaling. These findings expand our knowledge of connective tissue homeostasis/regeneration and may help improve stem-cell-based therapies.


Asunto(s)
Tejido Adiposo Blanco , Células Madre , Ratones , Animales
5.
Cell Host Microbe ; 30(10): 1354-1362.e6, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36029764

RESUMEN

The SARS-CoV-2 3CL protease (3CLpro) is an attractive therapeutic target, as it is essential to the virus and highly conserved among coronaviruses. However, our current understanding of its tolerance to mutations is limited. Here, we develop a yeast-based deep mutational scanning approach to systematically profile the activity of all possible single mutants of the 3CLpro and validate a subset of our results within authentic viruses. We reveal that the 3CLpro is highly malleable and is capable of tolerating mutations throughout the protein. Yet, we also identify specific residues that appear immutable, suggesting that these may be targets for future 3CLpro inhibitors. Finally, we utilize our screening as a basis to identify E166V as a resistance-conferring mutation against the clinically used 3CLpro inhibitor, nirmatrelvir. Collectively, the functional map presented herein may serve as a guide to better understand the biological properties of the 3CLpro and for drug development against coronaviruses.


Asunto(s)
COVID-19 , SARS-CoV-2 , Antivirales/farmacología , Antivirales/uso terapéutico , Proteasas 3C de Coronavirus , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Humanos , Péptido Hidrolasas/genética , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/uso terapéutico , SARS-CoV-2/genética
6.
J Virol ; 96(16): e0052622, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35913217

RESUMEN

The zinc finger antiviral protein (ZAP) is an interferon-stimulated gene (ISG) with potent intrinsic antiviral activity. ZAP inhibits the replication of retroviruses, including murine leukemia virus (MLV) and HIV-1, as well as alphaviruses, filoviruses, and hepatitis B virus, and also the retrotransposition of LINE-1 and Alu retroelements. ZAP operates posttranscriptionally to reduce the levels of viral transcripts available for translation in the cytoplasm, although additional functions might be involved. Recent studies have shown that ZAP preferentially binds viral mRNAs containing clusters of CpG dinucleotides via its four CCCH-type zinc fingers. ZAP lacks enzymatic activity and utilizes other cellular proteins to suppress viral replication. Tripartite motif 25 (TRIM25) and the nuclease KHNYN have been identified as ZAP cofactors. In this study, we identify Riplet, a protein known to play a central role in the activation of the retinoic acid-inducible gene I (RIG-I), as a novel ZAP cofactor. Overexpression of Riplet acts to strongly augment ZAP's antiviral activity. Riplet is an E3 ubiquitin ligase containing three domains, an N-terminal RING finger domain, a central coiled-coil domain, and a C-terminal P/SPRY domain. We show that Riplet interacts with ZAP via its P/SPRY domain and that the ubiquitin ligase activity of Riplet is not required to stimulate ZAP-mediated virus inhibition. Moreover, we show that Riplet interacts with TRIM25, suggesting that both Riplet and TRIM25 may operate as a complex to augment ZAP activity. IMPORTANCE The ZAP is a potent restriction factor inhibiting replication of many RNA viruses by binding directly to viral RNAs and targeting them for degradation. We here identify RIPLET as a cofactor that stimulates ZAP activity. The finding connects ZAP to other innate immunity pathways and suggests oligomerization as a common theme in sensing pathogenic RNAs.


Asunto(s)
Infecciones por VIH/inmunología , VIH-1 , Ubiquitina-Proteína Ligasas/metabolismo , Animales , VIH-1/genética , VIH-1/metabolismo , Ubiquitinación , Replicación Viral , Dedos de Zinc
7.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35074917

RESUMEN

Early events of the retroviral life cycle are the targets of many host restriction factors that have evolved to prevent establishment of infection. Incoming retroviral DNAs are transcriptionally silenced before integration in most cell types, and efficient viral gene expression occurs only after formation of the provirus. The molecular machinery for silencing unintegrated retroviral DNAs of HIV-1 remains poorly characterized. Here, we identified the histone chaperones CHAF1A and CHAF1B as essential factors for silencing of unintegrated HIV-1 DNAs. Using RNAi-mediated knockdown (KD) of multiple histone chaperones, we found that KD of CHAF1A or CHAF1B resulted in a pronounced increase in expression of incoming viral DNAs. The function of these two proteins in silencing was independent of their interaction partner RBBP4. Viral DNA levels accumulated to significantly higher levels in CHAF1A KD cells over controls, suggesting enhanced stabilization of actively transcribed DNAs. Chromatin immunoprecipitation assays revealed no major changes in histone loading onto viral DNAs in the absence of CHAF1A, but levels of the H3K9 trimethylation silencing mark were reduced. KD of the H3K9me3-binding protein HP1γ accelerated the expression of unintegrated HIV-1 DNAs. While CHAF1A was critical for silencing HIV-1 DNAs, it showed no role in silencing of unintegrated retroviral DNAs of mouse leukemia virus. Our study identifies CHAF1A and CHAF1B as factors involved specifically in silencing of HIV-1 DNAs early in infection. The results suggest that these factors act by noncanonical pathways, distinct from their histone loading activities, to mediate silencing of newly synthesized HIV-1 DNAs.


Asunto(s)
Factor 1 de Ensamblaje de la Cromatina/metabolismo , ADN Viral , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , VIH-1/fisiología , Provirus/genética , Integración Viral , Regulación Viral de la Expresión Génica , Silenciador del Gen , VIH-1/genética , Histonas/metabolismo , Interacciones Huésped-Patógeno , Humanos , Transcripción Genética , Proteína 28 que Contiene Motivos Tripartito/metabolismo
8.
Viruses ; 13(11)2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34835055

RESUMEN

Retroviral infection delivers an RNA genome into the cytoplasm that serves as the template for the synthesis of a linear double-stranded DNA copy by the viral reverse transcriptase. Within the nucleus this linear DNA gives rise to extrachromosomal circular forms, and in a key step of the life cycle is inserted into the host genome to form the integrated provirus. The unintegrated DNA forms, like those of DNAs entering cells by other means, are rapidly loaded with nucleosomes and heavily silenced by epigenetic histone modifications. This review summarizes our present understanding of the silencing machinery for the DNAs of the mouse leukemia viruses and human immunodeficiency virus type 1. We consider the potential impact of the silencing on virus replication, on the sensing of the virus by the innate immune system, and on the formation of latent proviruses. We also speculate on the changeover to high expression from the integrated proviruses in permissive cell types, and briefly consider the silencing of proviruses even after integration in embryonic stem cells and other developmentally primitive cell types.


Asunto(s)
ADN Viral/genética , Silenciador del Gen , Retroviridae/genética , Animales , VIH-1/genética , VIH-1/fisiología , Código de Histonas , Humanos , Virus de la Leucemia Murina/genética , Virus de la Leucemia Murina/fisiología , Provirus/genética , Provirus/fisiología , Retroviridae/fisiología , Transcripción Genética , Integración Viral , Replicación Viral
9.
J Virol ; 95(19): e0061521, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34287037

RESUMEN

The transition from an immature to a fully infectious mature retrovirus particle is associated with molecular switches that trigger dramatic conformational changes in the structure of the Gag proteins. A dominant maturation switch that stabilizes the immature capsid (CA) lattice is located downstream of the CA protein in many retroviral Gags. The HIV-1 Gag protein contains a stretch of 5 amino acid residues termed the "clasp motif," important for the organization of the hexameric subunits that provide stability to the overall immature HIV-1 shell. Sequence alignment of the CA C-terminal domains (CTDs) of HIV-1 and Mason-Pfizer monkey virus (M-PMV) highlighted a spacer-like domain in M-PMV that may provide a comparable function. The importance of the sequences spanning the CA-nucleocapsid (NC) cleavage has been demonstrated by mutagenesis, but the specific requirements for the clasp motif in several steps of M-PMV particle assembly and maturation have not been determined in detail. In the present study, we report an examination of the role of the clasp motif in the M-PMV life cycle. We generated a series of M-PMV Gag mutants and assayed for assembly of the recombinant proteins in vitro and for the assembly, maturation, release, genomic RNA packaging, and infectivity of the mutant viruses in vivo. The mutants revealed major defects in virion assembly and release in HEK 293T and HeLa cells and even larger defects in infectivity. Our data identify the clasp motif as a fundamental contributor to CA-CTD interactions necessary for efficient retroviral infection. IMPORTANCE The C-terminal domain of the capsid protein of many retroviruses has been shown to be critical for virion assembly and maturation, but the functions of this region of M-PMV are uncertain. We show that a short "clasp" motif in the capsid domain of the M-PMV Gag protein plays a key role in M-PMV virion assembly, genome packaging, and infectivity.


Asunto(s)
Proteínas de la Cápside/metabolismo , Productos del Gen gag/química , Productos del Gen gag/metabolismo , Virus del Mono Mason-Pfizer/fisiología , Virión/metabolismo , Ensamble de Virus , Secuencias de Aminoácidos , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Microscopía por Crioelectrón , Productos del Gen gag/genética , Genoma Viral , Células HEK293 , Células HeLa , Humanos , Virus del Mono Mason-Pfizer/genética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Dominios Proteicos , ARN Viral/genética , ARN Viral/metabolismo , Empaquetamiento del Genoma Viral
10.
J Virol ; 95(15): e0049521, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34011543

RESUMEN

During retrovirus infection, a histone-free DNA copy of the viral RNA genome is synthesized and rapidly loaded with nucleosomes de novo upon nuclear entry. The potential role of viral accessory proteins in histone loading onto retroviral DNAs has not been extensively investigated. The p12 protein of Moloney murine leukemia virus (MMLV) is a virion protein that is critical for tethering the incoming viral DNA to host chromatin in the early stages of infection. Infection by virions containing a mutant p12 (PM14) defective in chromatin tethering results in the formation of viral DNAs that do not accumulate in the nucleus. In this report, we show that viral DNAs of these mutants are not loaded with histones. Moreover, the DNA genomes delivered by mutant p12 show prolonged association with viral structural proteins nucleocapsid (NC) and capsid (CA). The histone-poor viral DNA genomes do not become associated with the host RNA polymerase II machinery. These findings provide insights into fundamental aspects of retroviral biology, indicating that tethering to host chromatin by p12 and retention in the nucleus are required to allow loading of histones onto the viral DNA. IMPORTANCE Incoming retroviral DNAs are rapidly loaded with nucleosomal histones upon entry into the nucleus and before integration into the host genome. The entry of murine leukemia virus DNA into the nucleus occurs only upon dissolution of the nuclear membrane in mitosis, and retention in the nucleus requires the action of a viral protein, p12, which tethers the DNA to host chromatin. Data presented here show that the tethering activity of p12 is required for the loading of histones onto the viral DNA. p12 mutants lacking tethering activity fail to acquire histones, retain capsid and nucleocapsid proteins, and are poorly transcribed. The work defines a new requirement for a viral protein to allow chromatinization of viral DNA.


Asunto(s)
Proteínas de la Cápside/metabolismo , Productos del Gen gag/genética , Histonas/metabolismo , Virus de la Leucemia Murina de Moloney/crecimiento & desarrollo , Virus de la Leucemia Murina de Moloney/metabolismo , Cápside/metabolismo , Línea Celular Tumoral , Cromatina/metabolismo , ADN Viral/metabolismo , Genoma Viral/genética , Células HEK293 , Células HeLa , Humanos , Virus de la Leucemia Murina de Moloney/genética , Ensamble de Virus/genética
11.
Viruses ; 12(8)2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32823517

RESUMEN

Almost half of the human genome is made up of transposable elements (TEs), and about 8% consists of endogenous retroviruses (ERVs). ERVs are remnants of ancient exogenous retrovirus infections of the germ line. Most TEs are inactive and not detrimental to the host. They are tightly regulated to ensure genomic stability of the host and avoid deregulation of nearby gene loci. Histone-based posttranslational modifications such as H3K9 trimethylation are one of the main silencing mechanisms. Trim28 is one of the identified master regulators of silencing, which recruits most prominently the H3K9 methyltransferase Setdb1, among other factors. Sumoylation and ATP-dependent chromatin remodeling factors seem to contribute to proper localization of Trim28 to ERV sequences and promote Trim28 interaction with Setdb1. Additionally, DNA methylation as well as RNA-mediated targeting of TEs such as piRNA-based silencing play important roles in ERV regulation. Despite the involvement of ERV overexpression in several cancer types, autoimmune diseases, and viral pathologies, ERVs are now also appreciated for their potential positive role in evolution. ERVs can provide new regulatory gene elements or novel binding sites for transcription factors, and ERV gene products can even be repurposed for the benefit of the host.


Asunto(s)
Retrovirus Endógenos/genética , Regulación de la Expresión Génica , Silenciador del Gen , Interacciones Microbiota-Huesped/genética , Transcripción Genética , Animales , Ensamble y Desensamble de Cromatina , Metilación de ADN , Humanos , Ratones , Infecciones por Retroviridae
12.
Proc Natl Acad Sci U S A ; 117(31): 18701-18710, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32690679

RESUMEN

Yin Yang 1 (YY1) is a DNA-binding transcription factor that either activates or represses gene expression. YY1 has previously been implicated in the transcriptional silencing of many retroviruses by binding to DNA sequences in the U3 region of the viral long terminal repeat (LTR). We here show that YY1 overexpression leads to profound activation, rather than repression, of human T lymphotropic virus type 1 (HTLV-1) expression, while YY1 down-regulation reduces HTLV-1 expression. The YY1 responsive element mapped not to YY1 DNA-binding sites in the HTLV-1 LTR but to the R region. The HTLV-1 R sequence alone is sufficient to provide YY1 responsiveness to a nonresponsive promoter, but only in the sense orientation and only when included as part of the mRNA. YY1 binds to the R region of HTLV-1 RNA in vitro and in vivo, leading to increased transcription initiation and elongation. The findings indicate that YY1 is a potent transactivator of HTLV-1 gene expression acting via binding viral RNA, rather than DNA.


Asunto(s)
Regulación Viral de la Expresión Génica/genética , Virus Linfotrópico T Tipo 1 Humano , ARN/metabolismo , Secuencias Repetidas Terminales/genética , Factor de Transcripción YY1 , Células HEK293 , Virus Linfotrópico T Tipo 1 Humano/genética , Virus Linfotrópico T Tipo 1 Humano/metabolismo , Humanos , Células Jurkat , Unión Proteica/genética , ARN/genética , Activación Transcripcional/genética , Factor de Transcripción YY1/genética , Factor de Transcripción YY1/metabolismo
13.
Virol J ; 17(1): 22, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-32039735

RESUMEN

Transfection, the process of introducing purified nucleic acids into cells, and viral transduction, viral-mediated nucleic acid transfer, are two commonly utilized techniques for gene delivery in the research setting. Transfection allows purified nucleic acid to be introduced into target cells through chemical-based techniques, nonchemical methods or particle-based methods, while viral transduction employs genomes or vectors based on adenoviruses, retroviruses (e.g. lentiviruses), adeno-associated viruses, or hybrid viruses. Transfected DNAs are often tested for potential effects on subsequent transduction, but it is not clear whether transfection itself rather than the particular nucleic acid being introduced might impact subsequent viral transfection. We observed a significant association between successfully transfected mobilized peripheral blood CD34+ human stem and progenitor cells (HSPCs) and permissiveness to subsequent lentiviral transduction, which was not evident in other cells such as 293 T cells and Jurkat cells. This association, apparently specific to CD34+ human stem and progenitor cells (HSPCs), is critical to both research and clinical applications as these cells are a frequent target of transfection and viral transduction owing to the durable nature of these cells in living systems. This finding may also present a significant opportunity to enhance the success of viral transduction for clinical applications.


Asunto(s)
Células Madre Hematopoyéticas/virología , Lentivirus/genética , Lentivirus/fisiología , Transducción Genética , Transfección , Antígenos CD34 , Vectores Genéticos , Células HEK293 , Humanos , Células Jurkat
14.
mBio ; 10(6)2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31796536

RESUMEN

Conjugation of small ubiquitin-like modifiers (SUMOs) to substrate proteins is a posttranslational protein modification that affects a diverse range of physiological processes. Global inhibition of SUMO conjugation in mice results in embryonic lethality, reflecting the importance of the SUMO pathways for embryonic development. Here, we demonstrated that SUMO1 overexpression was not well tolerated in murine embryonic carcinoma and embryonic stem (ES) cells and that only a few clones were recovered after transduction with vectors delivering SUMO1 expression constructs. Differentiated NIH/3T3 cells overexpress SUMO1 without deleterious effects and maintain high levels of both conjugated and free forms of SUMO1. The few embryonic cells surviving after forced overexpression retained all their SUMO1 in the form of a few high-molecular-weight conjugates and maintained undetectable levels of free SUMO1. The absence of free SUMO in embryonic cells was seen specifically upon overexpression of SUMO1, but not SUMO2. Moreover, blocking SUMO1 conjugation to endogenous substrates by C-terminal mutations of SUMO1 or by overexpression of a SUMO1 substrate "sponge" or by overexpression of the deSUMOylating enzyme SUMO-specific peptidase 1 (SENP1) dramatically restored free SUMO1 overexpression. The data suggest that overexpression of SUMO1 protein leading to an excess accumulation of critical SUMO1-conjugated substrates is not tolerated in embryonic cells. Surviving embryonic cells exhibit SUMO1 conjugation to allowed substrates but a complete absence of free SUMO1.IMPORTANCE Embryonic stem (ES) cells exhibit unusual transcriptional, proteomic, and signal response profiles, reflecting their unusual needs for rapid differentiation and replication. The work reported here demonstrated that mouse embryonic cell lines did not tolerate the overexpression of SUMO1, the small ubiquitin-like modifier protein that is covalently attached to many substrates to alter their intracellular localization and functionality. Forced SUMO1 overexpression is toxic to ES cells, and surviving cell populations adapt by dramatically reducing the levels of free SUMO1. Such a response is not seen in differentiated cells or with SUMO2 or with nonconjugatable SUMO1 mutants or in the presence of a SUMO1 "sponge" substrate that accepts the modification. The findings suggest that excess SUMO1 modification of specific substrates is not tolerated by embryonic cells and highlight a distinctive need for these cells to control the levels of SUMO1 available for conjugation.


Asunto(s)
Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica/genética , Proteína SUMO-1/metabolismo , Animales , Línea Celular , Cisteína Endopeptidasas/genética , Endopeptidasas/genética , Células HEK293 , Humanos , Ratones , Mutación , Células 3T3 NIH , Procesamiento Proteico-Postraduccional/genética , Proteómica/métodos , Sumoilación/genética , Ubiquitinas/metabolismo
15.
Proc Natl Acad Sci U S A ; 116(47): 23735-23742, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31685613

RESUMEN

Upon delivery into the nucleus of the host cell, linear double-stranded retroviral DNAs are either integrated into the host genome to form the provirus or act as a target of the DNA damage response and become circularized. Little is known about the chromatinization status of the unintegrated retroviral DNAs of the human immunodeficiency virus type 1 (HIV-1). In this study, we used chromatin immunoprecipitation to investigate the nature of unintegrated HIV-1 DNAs and discovered that core histones, the histone variant H3.3, and H1 linker histones are all deposited onto extrachromosomal HIV-1 DNA. We performed a time-course analysis and determined that the loading of core and linker histones occurred early after virus application. H3.3 and H1 linker histones were also found to be loaded onto unintegrated DNAs of the Moloney murine leukemia virus. The unintegrated retroviral DNAs are potently silenced, and we provide evidence that the suppression of extrachromosomal HIV-1 DNA is histone-related. Unintegrated DNAs were marked by posttranslational histone modifications characteristic of transcriptionally inactive genes: high levels of H3K9 trimethylation and low levels of H3 acetylation. These findings reveal insights into the nature of unintegrated retroviral DNAs.


Asunto(s)
ADN Viral/genética , Silenciador del Gen , VIH-1/genética , Histonas/metabolismo , Transcripción Genética , Metilación de ADN , Células HeLa , Humanos
16.
Elife ; 82019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31686650

RESUMEN

Transmissible cancers, in which cancer cells themselves act as an infectious agent, have been identified in Tasmanian devils, dogs, and four bivalves. We investigated a disseminated neoplasia affecting geographically distant populations of two species of mussels (Mytilus chilensis in South America and M. edulis in Europe). Sequencing alleles from four loci (two nuclear and two mitochondrial) provided evidence of transmissible cancer in both species. Phylogenetic analysis of cancer-associated alleles and analysis of diagnostic SNPs showed that cancers in both species likely arose in a third species of mussel (M. trossulus), but these cancer cells are independent from the previously identified transmissible cancer in M. trossulus from Canada. Unexpectedly, cancers from M. chilensis and M. edulis are nearly identical, showing that the same cancer lineage affects both. Thus, a single transmissible cancer lineage has crossed into two new host species and has been transferred across the Atlantic and Pacific Oceans and between the Northern and Southern hemispheres.


Asunto(s)
Organismos Acuáticos , Mytilus , Neoplasias/veterinaria , Alelos , Animales , Europa (Continente)/epidemiología , Neoplasias/epidemiología , Neoplasias/patología , Filogenia , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , América del Sur/epidemiología
17.
Nature ; 564(7735): 278-282, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30487602

RESUMEN

The entry of foreign DNA into many mammalian cell types triggers the innate immune system, a complex set of responses to prevent infection by pathogens. One aspect of the response is the potent epigenetic silencing of incoming viral DNAs1, including the extrachromosomal DNAs that are formed immediately after infection by retroviruses. These unintegrated viral DNAs are very poorly transcribed in all cells, even in permissive cells, in contrast to the robust expression that is observed after viral integration2-5. The factors that are responsible for this low expression have not yet been identified. Here we performed a genome-wide CRISPR-Cas9 screen for genes that are required for silencing an integrase-deficient MLV-GFP reporter virus to explore the mechanisms responsible for repression of unintegrated viral DNAs in human cells. Our screen identified the DNA-binding protein NP220, the three proteins (MPP8, TASOR and PPHLN1) that comprise the HUSH complex-which silences proviruses in heterochromatin6 and retrotransposons7,8-the histone methyltransferase SETDB1, and other host factors that are required for silencing. Further tests by chromatin immunoprecipitation showed that NP220 is the key protein that recruits the HUSH complex, SETDB1 and the histone deacetylases HDAC1 and HDAC4 to silence the unintegrated retroviral DNA. Knockout of NP220 accelerates the replication of retroviruses. These experiments identify the molecular machinery that silences extrachromosomal retroviral DNA.


Asunto(s)
ADN Viral/genética , Proteínas de Unión al ADN/metabolismo , Silenciador del Gen , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Retroviridae/genética , Antígenos de Neoplasias/metabolismo , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Inmunoprecipitación de Cromatina , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Histona Desacetilasa 1/metabolismo , Histona Desacetilasas/metabolismo , N-Metiltransferasa de Histona-Lisina , Humanos , Fosfoproteínas/metabolismo , Proteína Metiltransferasas/metabolismo , Provirus/genética , Proteínas de Unión al ARN , Proteínas Represoras/metabolismo , Factores de Transcripción , Integración Viral
18.
Proc Natl Acad Sci U S A ; 115(18): E4227-E4235, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29669918

RESUMEN

The LTR retrotransposon Steamer is a selfish endogenous element in the soft-shell clam genome that was first detected because of its dramatic amplification in bivalve transmissible neoplasia afflicting the species. We amplified and sequenced related retrotransposons from the genomic DNA of many other bivalve species, finding evidence of horizontal transfer of retrotransposons from the genome of one species to another. First, the phylogenetic tree of the Steamer-like elements from 19 bivalve species is markedly discordant with host phylogeny, suggesting frequent cross-species transfer throughout bivalve evolution. Second, sequences nearly identical to Steamer were identified in the genomes of Atlantic razor clams and Baltic clams, indicating recent transfer. Finally, a search of the National Center for Biotechnology Information sequence database revealed that Steamer-like elements are present in the genomes of completely unrelated organisms, including zebrafish, sea urchin, acorn worms, and coral. Phylogenetic incongruity, a patchy distribution, and a higher similarity than would be expected by vertical inheritance all provide evidence for multiple long-distance cross-phyla horizontal transfer events. These data suggest that over both short- and long-term evolutionary timescales, Steamer-like retrotransposons, much like retroviruses, can move between organisms and integrate new copies into new host genomes.


Asunto(s)
Bivalvos/genética , Transferencia de Gen Horizontal , Genoma , Retroelementos , Animales
19.
Virology ; 516: 165-175, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29407374

RESUMEN

Moloney Murine Leukemia Virus (M-MLV) proviral DNA is transcriptionally silenced in embryonic cells by a large repressor complex tethered to the provirus by two sequence-specific DNA binding proteins, ZFP809 and YY1. A central component of the complex is Trim28, a scaffold protein that regulates many target genes involved in cell cycle progression, DNA damage responses, and viral gene expression. The silencing activity of Trim28, and its interactions with corepressors are often regulated by post-translational modifications such as sumoylation and phosphorylation. We defined the interaction domains of Trim28 and YY1, and investigated the role of sumoylation and phosphorylation of Trim28 in mediating M-MLV silencing. The RBCC domain of Trim28 was sufficient for interaction with YY1, and acidic region 1 and zinc fingers of YY1 were necessary and sufficient for its interaction with Trim28. Additionally, we found that residue K779 was critical for Trim28-mediated silencing of M-MLV in embryonic cells.


Asunto(s)
Virus de la Leucemia Murina de Moloney/fisiología , Provirus/genética , Infecciones por Retroviridae/veterinaria , Enfermedades de los Roedores/metabolismo , Proteína 28 que Contiene Motivos Tripartito/metabolismo , Factor de Transcripción YY1/metabolismo , Secuencias de Aminoácidos , Animales , Silenciador del Gen , Ratones , Virus de la Leucemia Murina de Moloney/genética , Unión Proteica , Dominios Proteicos , Provirus/metabolismo , Infecciones por Retroviridae/genética , Infecciones por Retroviridae/metabolismo , Infecciones por Retroviridae/virología , Enfermedades de los Roedores/genética , Enfermedades de los Roedores/virología , Proteína 28 que Contiene Motivos Tripartito/química , Proteína 28 que Contiene Motivos Tripartito/genética , Factor de Transcripción YY1/química , Factor de Transcripción YY1/genética
20.
Retrovirology ; 14(1): 34, 2017 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-28569216

RESUMEN

BACKGROUND: Retroviral vectors are derived from wild-type retroviruses, can be used to study retrovirus-host interactions and are effective tools in gene and cell therapy. However, numerous cell types are resistant or less permissive to retrovirus infection due to the presence of active defense mechanisms, or the absence of important cellular host co-factors. In contrast to multipotent stem cells, pluripotent stem cells (PSC) have potential to differentiate into all three germ layers. Much remains to be elucidated in the field of anti-viral immunity in stem cells, especially in PSC. RESULTS: In this study, we report that transduction with HIV-1-based, lentiviral vectors (LV) is impaired in murine PSC. Analyses of early retroviral events in induced pluripotent stem cells (iPSC) revealed that the restriction is independent of envelope choice and does not affect reverse transcription, but perturbs nuclear entry and proviral integration. Proteasomal inhibition by MG132 could not circumvent the restriction. However, prevention of cyclophilin A (CypA) binding to the HIV-1 capsid via use of either a CypA inhibitor (cyclosporine A) or CypA-independent capsid mutants improved transduction. In addition, application of higher vector doses also increased transduction. Our data revealed a CypA mediated restriction in iPSC, which was acquired during reprogramming, associated with pluripotency and relieved upon subsequent differentiation. CONCLUSIONS: We showed that murine PSC and iPSC are less susceptible to LV. The block observed in iPSC was CypA-dependent and resulted in reduced nuclear entry of viral DNA and proviral integration. Our study helps to improve transduction of murine pluripotent cells with HIV-1-based vectors and contributes to our understanding of retrovirus-host interactions in PSC.


Asunto(s)
Vectores Genéticos , Células Madre Pluripotentes Inducidas/inmunología , Células Madre Pluripotentes Inducidas/virología , Lentivirus/genética , Animales , Proteínas de la Cápside/genética , Proteínas Portadoras/genética , Línea Celular , Ciclofilina A/metabolismo , Ciclosporina/farmacología , Inhibidores de Cisteína Proteinasa/farmacología , VIH-1/genética , Interacciones Huésped-Patógeno , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Lentivirus/fisiología , Leupeptinas/farmacología , Ratones , Transcripción Reversa/efectos de los fármacos , Transducción Genética , Integración Viral/efectos de los fármacos , Internalización del Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA