Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Cells ; 13(8)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38667330

RESUMEN

BACKGROUND: Gaucher disease (GD) is caused by glucocerebrosidase (GCase) enzyme deficiency, leading to glycosylceramide (Gb-1) and glucosylsphingosine (Lyso-Gb-1) accumulation. The pathological hallmark for GD is an accumulation of large macrophages called Gaucher cells (GCs) in the liver, spleen, and bone marrow, which are associated with chronic organ enlargement, bone manifestations, and inflammation. Tartrate-resistant acid phosphatase type 5 (TRAP5 protein, ACP5 gene) has long been a nonspecific biomarker of macrophage/GCs activation; however, the discovery of two isoforms of TRAP5 has expanded its significance. The discovery of TRAP5's two isoforms revealed that it is more than just a biomarker of macrophage activity. While TRAP5a is highly expressed in macrophages, TRAP5b is secreted by osteoclasts. Recently, we have shown that the elevation of TRAP5b in plasma is associated with osteoporosis in GD. However, the role of TRAP isoforms in GD and how the accumulation of Gb-1 and Lyso-Gb-1 affects TRAP expression is unknown. METHODS: 39 patients with GD were categorized into cohorts based on bone mineral density (BMD). TRAP5a and TRAP5b plasma levels were quantified by ELISA. ACP5 mRNA was estimated using RT-PCR. RESULTS: An increase in TRAP5b was associated with reduced BMD and correlated with Lyso-Gb-1 and immune activator chemokine ligand 18 (CCL18). In contrast, the elevation of TRAP5a correlated with chitotriosidase activity in GD. Lyso-Gb-1 and plasma seemed to influence the expression of ACP5 in macrophages. CONCLUSIONS: As an early indicator of BMD alteration, measurement of circulating TRAP5b is a valuable tool for assessing osteopenia-osteoporosis in GD, while TRAP5a serves as a biomarker of macrophage activation in GD. Understanding the distinct expression pattern of TRAP5 isoforms offers valuable insight into both bone disease and the broader implications for immune system activation in GD.


Asunto(s)
Enfermedad de Gaucher , Isoformas de Proteínas , Fosfatasa Ácida Tartratorresistente , Enfermedad de Gaucher/metabolismo , Enfermedad de Gaucher/genética , Humanos , Fosfatasa Ácida Tartratorresistente/metabolismo , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Femenino , Masculino , Persona de Mediana Edad , Adulto , Densidad Ósea , Macrófagos/metabolismo , Biomarcadores/metabolismo , Biomarcadores/sangre , Isoenzimas/metabolismo , Isoenzimas/genética
2.
Bioanalysis ; 15(23): 1421-1437, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37847061

RESUMEN

Background: A biomarker profile was evaluated longitudinally in patients with Fabry disease switched from enzyme-replacement therapy (ERT) to migalastat. Methods: 16 Gb3 isoforms and eight lyso-Gb3 analogues were analyzed in plasma and urine by LC-MS/MS at baseline and at three different time points in naive participants and participants switching from either agalsidase α or ß to migalastat. Results: 29 adult participants were recruited internationally (seven centers). The Mainz Severity Score Index and mean biomarker levels remained stable (p ≥ 0.05) over a minimum of 12 months compared with baseline following the treatment switch. Conclusion: In this cohort of patients with Fabry disease with amenable mutations, in the short term, a switch from ERT to migalastat did not have a marked effect on the average biomarker profile.


Asunto(s)
Enfermedad de Fabry , Adulto , Humanos , Enfermedad de Fabry/tratamiento farmacológico , Enfermedad de Fabry/genética , Cromatografía Liquida , Espectrometría de Masas en Tándem , 1-Desoxinojirimicina/uso terapéutico , Biomarcadores
3.
Cells ; 12(16)2023 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-37626912

RESUMEN

Fabry disease (FD) is a lysosomal disorder caused by α-galactosidase A deficiency, resulting in the accumulation of globotriaosylceramide (Gb-3) and its metabolite globotriaosylsphingosine (Lyso-Gb-3). Cardiovascular complications and hypertrophic cardiomyopathy (HCM) are the most frequent manifestations of FD. While an echocardiogram and cardiac MRI are clinical tools to assess cardiac involvement, hypertrophic pattern variations and fibrosis make it crucial to identify biomarkers to predict early cardiac outcomes. This study aims to investigate potential biomarkers associated with HCM in FD: transforming growth factor-ß1 (TGF-ß1), TGF-ß active form (a-TGF-ß), vascular endothelial growth factor (VEGF-A), and fibroblast growth factor (FGF2) in 45 patients with FD, categorized into cohorts based on the HCM severity. TGF-ß1, a-TGF-ß, FGF2, and VEGF-A were elevated in FD. While the association of TGF-ß1 with HCM was not gender-related, VEGF was elevated in males with FD and HCM. Female patients with abnormal electrocardiograms but without overt HCM also have elevated TGF-ß1. Lyso-Gb3 is correlated with TGF-ß1, VEGF-A, and a-TGF-ß1. Elevation of TGF-ß1 provides evidence of the chronic inflammatory state as a cause of myocardial fibrosis in FD patients; thus, it is a potential marker of early cardiac fibrosis detected even prior to hypertrophy. TGF-ß1 and VEGF biomarkers may be prognostic indicators of adverse cardiovascular events in FD.


Asunto(s)
Cardiomiopatías , Cardiomiopatía Hipertrófica , Enfermedad de Fabry , Masculino , Humanos , Femenino , Factor de Crecimiento Transformador beta1 , Factor A de Crecimiento Endotelial Vascular , Enfermedad de Fabry/complicaciones , Enfermedad de Fabry/diagnóstico , Factor 2 de Crecimiento de Fibroblastos , Factor de Crecimiento Transformador beta , Biomarcadores , Hipertrofia
4.
Genet Med ; 25(12): 100968, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37634127

RESUMEN

PURPOSE: Fabry disease (FD) is a rare lysosomal storage disorder caused by pathogenic variants in the GLA gene encoding α-galactosidase (α-Gal)-A. We evaluated long-term safety/efficacy of pegunigalsidase alfa, a novel PEGylated α-Gal-A enzyme replacement therapy (ERT) now approved for FD. METHODS: In a phase-1/2 dose-ranging study, 15 ERT-naive adults with FD completed 12 months of pegunigalsidase alfa and enrolled in this 60-month open-label extension of 1 mg/kg pegunigalsidase alfa infusions every 2 weeks. RESULTS: Fifteen patients enrolled (8 males; 7 females); 10 completed ≥48 months (60 months total treatment), and 2 completed 60 months (72 months total treatment). During treatment, most treatment-emergent adverse events were mild/moderate in severity and all infusion-related reactions were mild/moderate in severity. Four patients were transiently positive for anti-pegunigalsidase alfa IgG. Patients showed continuous reduction in plasma lyso-Gb3 concentrations with mean (standard error) reduction of 76.1 [25.1] ng/mL from baseline to month 24. At 60 months, the estimated glomerular filtration rate slope was comparable to that observed in patients treated with other ERTs. Cardiac function assessments revealed stability; no cardiac fibrosis was observed. CONCLUSION: In this first long-term assessment of pegunigalsidase alfa administration in patients with FD, we found favorable safety/efficacy. Our data suggest long-term continuous benefits of pegunigalsidase alfa treatment in adults with FD.


Asunto(s)
Enfermedad de Fabry , Adulto , Masculino , Femenino , Humanos , Enfermedad de Fabry/tratamiento farmacológico , Resultado del Tratamiento , Isoenzimas/efectos adversos , alfa-Galactosidasa/efectos adversos , alfa-Galactosidasa/genética , Terapia de Reemplazo Enzimático/efectos adversos , Proteínas Recombinantes/efectos adversos
5.
Mol Genet Metab ; 138(2): 106963, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36481125

RESUMEN

Venglustat inhibits the enzymatic conversion of ceramide to glucosylceramide, reducing available substrate for the synthesis of more complex glycosphingolipids. It offers a potential new approach to the treatment of patients with Fabry disease (α-Gal A deficiency), in whom progressive accumulation of such glycosphingolipids, including globotriaosylceramide (GL-3), in the lysosomes of a wide range of cell types often leads to vital organ complications in adulthood. An international, open-label, single-arm, Phase 2a uncontrolled 26-week clinical study (NCT02228460) and a 130-week extension study (NCT02489344) were conducted to assess the safety, pharmacodynamics, pharmacokinetics, and exploratory efficacy of 15 mg once daily oral venglustat in treatment-naïve adult male patients with classic Fabry disease. Of 11 patients (18-37 years old) who initially enrolled, nine completed the 26-week study and seven completed the extension study. A total of 169 treatment-emergent adverse events (TEAEs) were reported by nine patients, the majority being mild (73%) and unrelated to the study drug (70%). Nine serious TEAEs (serious adverse events) and 11 severe TEAEs, including a self-harm event, were reported. No deaths or treatment-related life-threatening adverse events were reported. Skin GL-3 scores in superficial skin capillary endothelium (SSCE), estimated by light microscopy, were unchanged from baseline at Week 26 in five patients, decreased in three patients, and increased in one patient. There was no significant change in GL-3 scores or significant shift in grouped GL-3 scores. Five of six patients had reductions from baseline in GL-3 score at the end of the extension study. At Weeks 26 and 156 the mean (standard deviation) changes from baseline in the fraction of the volume of SSCE cytoplasm occupied by GL-3 inclusions, measured by electron microscopy unbiased stereology, were - 0.06 (0.03) (p = 0.0010) and - 0.12 (0.04) (p = 0.0008), respectively. Venglustat treatment reduced markers in the synthetic and degradative pathway of major glycosphingolipids; proximal markers reduced rapidly and more distal markers (plasma GL-3 and globotriaosylsphingosine) reduced progressively. There were no biochemical or histological indications of progression of Fabry disease over 3 years of follow-up. These findings confirm target engagement and the pharmacodynamic effects of venglustat in adult males with classic Fabry disease. However, further clinical evaluation in larger studies is needed to determine efficacy and safety.


Asunto(s)
Enfermedad de Fabry , Humanos , Masculino , Adulto , Adolescente , Adulto Joven , Enfermedad de Fabry/patología , alfa-Galactosidasa/uso terapéutico , Glucosiltransferasas
6.
Int J Mol Sci ; 21(19)2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-33003611

RESUMEN

Fabry disease (FD) is an X-linked lysosomal disorder caused by mutations in GLA gene resulting in lack of or faulty α-galactosidase A (α-GalA) enzyme. Enzyme replacement therapy (ERT) with recombinant human α-GalA enzyme (agalsidase) is the standard treatment option for FD. Infusion-related reactions (IRRs), with symptoms ranging from rigors, to fever, pain, vomiting, angioedema and diarrhea, are often seen due to immune response against the exogenous enzyme. To elucidate the mechanisms causing the IRRs in FD, eight patients who developed IRRs were investigated. All, except one, tested negative for agalsidase-specific IgE and had normal tryptase levels. Circulating dendritic cells were drastically reduced during IRRs, suggesting possible sequestration to the sites of inflammation. An increase in NK cells and a decrease in T cells were also observed. Cytokines IL-4, IL-8 and TNF-α showed a significant increase, indicating nonspecific degranulation of mast cells. All IRRs were managed successfully using a combination of standard premedications and mast cell stabilizers without any interruption of therapy. Taken together, the results indicate crosstalk between immune cells resulting in IgE-independent mast-cell-specific allergic inflammation. Mast cell stabilizers could be used to control IRRs and for safe reintroduction of agalsidase in patients previously treated with ERT.


Asunto(s)
Enfermedad de Fabry/tratamiento farmacológico , Enfermedad de Fabry/inmunología , Inflamación/inmunología , Isoenzimas/inmunología , Proteínas Recombinantes/inmunología , alfa-Galactosidasa/inmunología , Inmunidad Adaptativa/efectos de los fármacos , Inmunidad Adaptativa/inmunología , Adolescente , Adulto , Niño , Terapia de Reemplazo Enzimático/efectos adversos , Enfermedad de Fabry/genética , Enfermedad de Fabry/patología , Humanos , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/inmunología , Inmunoglobulina E/inmunología , Inflamación/patología , Reacción en el Punto de Inyección/genética , Reacción en el Punto de Inyección/inmunología , Isoenzimas/administración & dosificación , Masculino , Mastocitos/efectos de los fármacos , Mastocitos/inmunología , Persona de Mediana Edad , Proteínas Recombinantes/administración & dosificación , Adulto Joven , alfa-Galactosidasa/administración & dosificación
7.
Biomolecules ; 10(6)2020 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-32486191

RESUMEN

Enzyme replacement therapy (ERT) with recombinant alpha-galactosidase A (rh-α-Gal A) is the standard treatment for Fabry disease (FD). ERT has shown a significant impact on patients; however, there is still morbidity and mortality in FD, resulting in progressive cardiac, renal, and cerebrovascular pathology. The main pathway for delivery of rh-α-Gal A to lysosome is cation-independent mannose-6-phosphate receptor (CI-M6PR) endocytosis, also known as insulin-like growth factor 2 receptor (IGF2R) endocytosis. This study aims to investigate the mechanisms of uptake of rh-α-Gal-A in different cell types, with the exploration of clathrin-dependent and caveolin assisted receptor-mediated endocytosis and the dynamics of autophagy-lysosomal functions. rh-α-Gal-A uptake was evaluated in primary fibroblasts, urine originated kidney epithelial cells, and peripheral blood mononuclear cells derived from Fabry patients and healthy controls, and in cell lines HEK293, HTP1, and HUVEC. Uptake of rh-α-Gal-A was more efficient in the cells with the lowest endogenous enzyme activity. Chloroquine and monensin significantly blocked the uptake of rh-α-Gal-A, indicating that the clathrin-mediated endocytosis is involved in recombinant enzyme delivery. Alternative caveolae-mediated endocytosis coexists with clathrin-mediated endocytosis. However, clathrin-dependent endocytosis is a dominant mechanism for enzyme uptake in all cell lines. These results show that the uptake of rh-α-Gal-A occurs rapidly and activates the autophagy-lysosomal pathway.


Asunto(s)
Autofagia , Enfermedad de Fabry/terapia , alfa-Galactosidasa/metabolismo , Línea Celular , Clatrina/metabolismo , Terapia de Reemplazo Enzimático , Enfermedad de Fabry/diagnóstico , Humanos , Lisosomas/metabolismo , Proteínas Recombinantes/metabolismo
8.
J Bone Miner Res ; 34(6): 996-1013, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31233632

RESUMEN

Gaucher disease (GD) is a rare, genetic lysosomal disorder leading to lipid accumulation and dysfunction in multiple organs. Involvement of the skeleton is one of the most prevalent aspects of GD and a major cause of pain, disability, and reduced quality of life. Uniform recommendations for contemporary evaluation and management are needed. To develop practical clinical recommendations, an international group of experienced physicians conducted a comprehensive review of 20 years' of the literature, defining terms according to pathophysiological understanding and pointing out best practice and unmet needs related to the skeletal features of this disorder. Abnormalities of bone modeling, reduced bone density, bone infarction, and plasma cell dyscrasias accompany the displacement of healthy adipocytes in adult marrow. Exposure to excess bioactive glycosphingolipids appears to affect hematopoiesis and the balance of osteoblast and osteoclast numbers and activity. Imbalance between bone formation and breakdown induces disordered trabecular and cortical bone modeling, cortical bone thinning, fragility fractures, and osteolytic lesions. Regular assessment of bone mineral density, marrow infiltration, the axial skeleton and searching for potential malignancy are recommended. MRI is valuable for monitoring skeletal involvement: It provides semiquantitative assessment of marrow infiltration and the degree of bone infarction. When MRI is not available, monitoring of painful acute bone crises and osteonecrosis by plain X-ray has limited value. In adult patients, we recommend DXA of the lumbar spine and left and right hips, with careful protocols designed to exclude focal disease; serial follow-up should be done using the same standardized instrument. Skeletal health may be improved by common measures, including adequate calcium and vitamin D and management of pain and orthopedic complications. Prompt initiation of specific therapy for GD is crucial to optimizing outcomes and preventing irreversible skeletal complications. Investing in safe, clinically useful, and better predictive methods for determining bone integrity and fracture risk remains a need. © 2019 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals Inc.


Asunto(s)
Huesos/fisiopatología , Enfermedad de Gaucher/fisiopatología , Pautas de la Práctica en Medicina , Enfermedades Óseas/complicaciones , Enfermedades Óseas/diagnóstico por imagen , Enfermedades Óseas/fisiopatología , Médula Ósea/patología , Médula Ósea/fisiopatología , Remodelación Ósea , Huesos/diagnóstico por imagen , Enfermedad de Gaucher/complicaciones , Enfermedad de Gaucher/diagnóstico , Enfermedad de Gaucher/terapia , Humanos
9.
J Inherit Metab Dis ; 42(3): 534-544, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30834538

RESUMEN

Pegunigalsidase alfa, a novel PEGylated, covalently crosslinked form of α-galactosidase A developed as enzyme replacement therapy (ERT) for Fabry disease (FD), was designed to increase plasma half-life and reduce immunogenicity, thereby enhancing efficacy compared with available products. Symptomatic adults with FD participated in this open-label, 3-month dose-ranging study, followed by a 9-month extension. Three cohorts were enrolled in a stepwise manner, each receiving increased doses of pegunigalsidase alfa: 0.2, 1.0, 2.0 mg/kg, via intravenous infusion every other week. Pharmacokinetic analysis occurred on Day 1 and Months 3, 6, and 12. Kidney biopsies at baseline and Month 6 assessed peritubular capillary globotriaosylceramide (Gb3) content. Renal function, cardiac parameters, and other clinical endpoints were assessed throughout. Treatment-emergent adverse events (AEs) and presence of immunoglobulin G (IgG) antidrug antibodies (ADAs) were assessed. Sixteen patients completed 1 year's treatment. Mean terminal plasma half-life (each cohort) ranged from 53 to 121 hours. All 11 male and 1 of 7 female patients presented with classic FD phenotype, in whom renal peritubular capillary Gb3 inclusions were reduced by 84%. Mean estimated glomerular filtration rate was 111 mL/min/1.73 m2 at baseline, remaining stable throughout treatment. Three patients developed treatment-induced IgG ADAs; following 1 year's treatment, all became ADA-negative. Nearly all treatment-emergent AEs were mild or moderate. One patient withdrew from the study following a serious related AE. Pegunigalsidase alfa may represent an advance in ERT for FD, based on its unique pharmacokinetics and apparent low immunogenicity.


Asunto(s)
Terapia de Reemplazo Enzimático , Enfermedad de Fabry/tratamiento farmacológico , Trihexosilceramidas/metabolismo , alfa-Galactosidasa/administración & dosificación , alfa-Galactosidasa/farmacocinética , Adolescente , Adulto , Femenino , Tasa de Filtración Glomerular , Corazón/fisiopatología , Humanos , Internacionalidad , Riñón/fisiopatología , Masculino , Persona de Mediana Edad , Resultado del Tratamiento , Adulto Joven
10.
PLoS One ; 14(1): e0210617, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30633777

RESUMEN

The major cellular clearance pathway for organelle and unwanted proteins is the autophagy-lysosome pathway (ALP). Lysosomes not only house proteolytic enzymes, but also traffic organelles, sense nutrients, and repair mitochondria. Mitophagy is initiated by damaged mitochondria, which is ultimately degraded by the ALP to compensate for ATP loss. While both systems are dynamic and respond to continuous cellular stressors, most studies are derived from animal models or cell based systems, which do not provide complete real time data about cellular processes involved in the progression of lysosomal storage diseases in patients. Gaucher and Fabry diseases are rare sphingolipid disorders due to the deficiency of the lysosomal enzymes; glucocerebrosidase and α-galactosidase A with resultant lysosomal dysfunction. Little is known about ALP pathology and mitochondrial function in patients with Gaucher and Fabry diseases, and the effects of enzyme replacement therapy (ERT). Studying blood mononuclear cells (PBMCs) from patients, we provide in vivo evidence, that regulation of ALP is defective. In PBMCs derived from Gaucher patients, we report a decreased number of autophagic vacuoles with increased cytoplasmic localization of LC3A/B, accompanied by lysosome accumulation. For both Gaucher and Fabry diseases, the level of the autophagy marker, Beclin1, was elevated and ubiquitin binding protein, SQSTM1/p62, was decreased. mTOR inhibition did not activate autophagy and led to ATP inhibition in PBMCs. Lysosomal abnormalities, independent of the type of the accumulated substrate suppress not only autophagy, but also mitochondrial function and mTOR signaling pathways. ERT partially restored ALP function, LC3-II accumulation and decreased LC3-I/LC3-II ratios. Levels of lysosomal (LAMP1), autophagy (LC3), and mitochondrial markers, (Tfam), normalized after ERT infusion. In conclusion, there is mTOR pathway dysfunction in sphingolipidoses, as observed in both PBMCs derived from patients with Gaucher and Fabry diseases, which leads to impaired autophagy and mitochondrial stress. ERT partially improves ALP function.


Asunto(s)
Autofagia/fisiología , Terapia de Reemplazo Enzimático/métodos , Enfermedad de Fabry/tratamiento farmacológico , Enfermedad de Gaucher/tratamiento farmacológico , Glucosilceramidasa/uso terapéutico , Mitofagia/fisiología , alfa-Galactosidasa/uso terapéutico , Adolescente , Adulto , Anciano , Animales , Niño , Enfermedad de Fabry/enzimología , Enfermedad de Fabry/fisiopatología , Femenino , Enfermedad de Gaucher/enzimología , Enfermedad de Gaucher/fisiopatología , Humanos , Leucocitos Mononucleares/metabolismo , Lisosomas/metabolismo , Masculino , Persona de Mediana Edad , Transducción de Señal , Adulto Joven
11.
Mol Genet Metab ; 123(4): 501-510, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29478818

RESUMEN

BACKGROUND: Gaucher disease is characterized by the activation of splenic and hepatic macrophages, accompanied by dramatically increased levels of angiotensin-converting enzyme (ACE). To evaluate the source of the elevated blood ACE, we performed complete ACE phenotyping using blood, spleen and liver samples from patients with Gaucher disease and controls. METHODS: ACE phenotyping included 1) immunohistochemical staining for ACE; 2) measuring ACE activity with two substrates (HHL and ZPHL); 3) calculating the ratio of the rates of substrate hydrolysis (ZPHL/HHL ratio); 4) assessing the conformational fingerprint of ACE by evaluating the pattern of binding of monoclonal antibodies to 16 different ACE epitopes. RESULTS: We show that in patients with Gaucher disease, the dramatically increased levels of ACE originate from activated splenic and/or hepatic macrophages (Gaucher cells), and that both its conformational fingerprint and kinetic characteristics (ZPHL/HHL ratio) differ from controls and from patients with sarcoid granulomas. Furthermore, normal spleen was found to produce high levels of endogenous ACE inhibitors and a novel, tightly-bound 10-30 kDa ACE effector which is deficient in Gaucher spleen. CONCLUSIONS: The conformation of ACE is tissue-specific. In Gaucher disease, ACE produced by activated splenic macrophages differs from that in hepatic macrophages, as well as from macrophages and dendritic cells in sarcoid granulomas. The observed differences are likely due to altered ACE glycosylation or sialylation in these diseased organs. The conformational differences in ACE may serve as a specific biomarker for Gaucher disease.


Asunto(s)
Células Dendríticas/enzimología , Enfermedad de Gaucher/enzimología , Enfermedad de Gaucher/patología , Granuloma/enzimología , Macrófagos/enzimología , Peptidil-Dipeptidasa A/metabolismo , Células Cultivadas , Humanos , Hígado/enzimología , Fenotipo , Bazo/enzimología
12.
Blood Cells Mol Dis ; 68: 81-85, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-27839980

RESUMEN

Gaucher disease (GD) is caused by mutations in the GBA gene encoding lysosomal enzyme, ß-glucocerebrosidase (GCase). GCase deficiency results in accumulation of its substrates in cells of macrophage lineage, affecting multiple organ systems. Enzyme replacement therapy (ERT) with recombinant human GCase is the standard of care to treat GD. In GD, it is well established that there are immune alterations, clinically presenting as lymphadenopathy, gammopathies, and predisposition to hematological cancers. We examined the effect of ERT on immune dysregulations in treatment-naïve GD patients longitudinally after the initiation of ERT. Immunophenotyping was performed in peripheral blood samples obtained before and after ERT. T and B lymphocyte subsets, NK, NKT and dendritic cells were evaluated. In all treatment naïve patients at baseline, transitional B cells, characterized by CD21low expression were markedly elevated. After establishment of stable-dose therapy, CD21low cells were significantly reduced and subsequent increase in CD21Hi B lymphocytes indicated improved B cell maturation. Class-switching and memory B cell defects which were noted prior to treatment were found to be normalized. An increase in dendritic cells also resulted after the treatment. Our data shows that GD affects across various immune cell types and ERT or its effects directly improve affected immunological parameters.


Asunto(s)
Linfocitos B/efectos de los fármacos , Células Dendríticas/efectos de los fármacos , Terapia de Reemplazo Enzimático , Enfermedad de Gaucher/tratamiento farmacológico , Glucosilceramidasa/uso terapéutico , Adulto , Linfocitos B/inmunología , Linfocitos B/patología , Células Dendríticas/inmunología , Células Dendríticas/patología , Terapia de Reemplazo Enzimático/métodos , Femenino , Enfermedad de Gaucher/inmunología , Enfermedad de Gaucher/patología , Humanos , Inmunofenotipificación , Masculino
13.
Blood Cells Mol Dis ; 68: 100-105, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-27839983

RESUMEN

Deficiency of the lysosomal enzyme, ß-glucocerebrosidase, and accumulation of its substrate in cells of the reticuloendothelial system affects multiple organ systems in patients with Gaucher disease (GD). Lipid laden macrophages turn into Gaucher cells (GC) which are the pathological characteristic of GD. GC focally accumulate in the liver, spleen and at extraosseous sites to form benign lesions called Gaucheromas. Gaucheromas pose diagnostic and therapeutic challenges. We studied the pathophysiology of extraosseous Gaucheroma formation in a cohort of patients with GD. Among 63 patients followed at a single center, 3 patients with genotypes L444P/L444P and N370S/N370S, were diagnosed with extraosseous Gaucheromas. Flow cytometry revealed a higher expression of CD16+/CCR4+ non-classical monocytes in blood of GD patients who have developed Gaucheromas. A biopsy showed infiltration of GC, which reactivity against CD163, CD68 and VEGF. The cell proliferative marker Ki67 and CCL2, a factor anti-tumor activity, were negative. Our study indicates that extraosseous Gaucheromas are comprised of cellular elements with characteristics of tumor-associated macrophages, the major players in cancer related inflammation. The occurrence of non-classical CD16+/CCR4+ monocytes reflect the underlying cause for the accumulation of the macrophages capable of migrating to distant sites outside the reticuloendotheial system, and giving rise to tumor-like Gaucheromas.


Asunto(s)
Carcinogénesis/patología , Enfermedad de Gaucher/complicaciones , Enfermedad de Gaucher/patología , Macrófagos/patología , Adulto , Anciano , Antígenos CD/análisis , Antígenos de Diferenciación Mielomonocítica/análisis , Carcinogénesis/genética , Estudios de Cohortes , Femenino , Enfermedad de Gaucher/genética , Genotipo , Humanos , Macrófagos/metabolismo , Masculino , Receptores CCR4/análisis , Receptores de Superficie Celular/análisis , Factor A de Crecimiento Endotelial Vascular/análisis , Adulto Joven
14.
Mol Genet Metab ; 122(3): 122-129, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28847676

RESUMEN

Gaucher disease (GD) is a rare hereditary disorder caused by a deficiency of the lysosomal enzyme ß-glucocerebrosidase. Diagnosis is challenging owing to a wide variability in clinical manifestations and severity of symptoms. Many patients may experience marked delays in obtaining a definitive diagnosis. The two surveys reported herein aimed to explore the patient journey to diagnosis of GD from the perspectives of Gaucher expert physicians and patients. Findings from the surveys revealed that many patients experienced diagnostic delays and misdiagnoses, with nearly 1 in 6 patients stating that they were not diagnosed with GD for 7years or more after first consulting a doctor. Physicians and patients both reported multiple referrals to different specialties before a diagnosis of GD was obtained, with primary care, haematology/haematology-oncology and paediatrics the main specialties to which patients first presented. Splenomegaly, thrombocytopenia, anaemia and bone pain were reported as the most common medical problems at first presentation in both surveys. These findings support a clear need for straightforward and easy-to-follow guidance designed to assist non-specialists to identify earlier patients who are at risk of GD.


Asunto(s)
Enfermedad de Gaucher/diagnóstico , Pacientes/psicología , Médicos/psicología , Niño , Diagnóstico Tardío , Humanos , Masculino , Medicina/estadística & datos numéricos , Factores de Riesgo , Encuestas y Cuestionarios
15.
Mol Ther ; 25(5): 1199-1208, 2017 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-28341561

RESUMEN

Duvoglustat HCl (AT2220, 1-deoxynojirimycin) is an investigational pharmacological chaperone for the treatment of acid α-glucosidase (GAA) deficiency, which leads to the lysosomal storage disorder Pompe disease, which is characterized by progressive accumulation of lysosomal glycogen primarily in heart and skeletal muscles. The current standard of care is enzyme replacement therapy with recombinant human GAA (alglucosidase alfa [AA], Genzyme). Based on preclinical data, oral co-administration of duvoglustat HCl with AA increases exposure of active levels in plasma and skeletal muscles, leading to greater substrate reduction in muscle. This phase 2a study consisted of an open-label, fixed-treatment sequence that evaluated the effect of single oral doses of 50 mg, 100 mg, 250 mg, or 600 mg duvoglustat HCl on the pharmacokinetics and tissue levels of intravenously infused AA (20 mg/kg) in Pompe patients. AA alone resulted in increases in total GAA activity and protein in plasma compared to baseline. Following co-administration with duvoglustat HCl, total GAA activity and protein in plasma were further increased 1.2- to 2.8-fold compared to AA alone in all 25 Pompe patients; importantly, muscle GAA activity was increased for all co-administration treatments from day 3 biopsy specimens. No duvoglustat-related adverse events or drug-related tolerability issues were identified.


Asunto(s)
1-Desoxinojirimicina/uso terapéutico , Enfermedad del Almacenamiento de Glucógeno Tipo II/tratamiento farmacológico , Lisosomas/enzimología , Músculo Esquelético/efectos de los fármacos , alfa-Glucosidasas/farmacocinética , Administración Oral , Adulto , Esquema de Medicación , Sinergismo Farmacológico , Quimioterapia Combinada , Terapia de Reemplazo Enzimático/métodos , Femenino , Enfermedad del Almacenamiento de Glucógeno Tipo II/enzimología , Enfermedad del Almacenamiento de Glucógeno Tipo II/patología , Humanos , Infusiones Intravenosas , Lisosomas/patología , Masculino , Persona de Mediana Edad , Músculo Esquelético/enzimología , Músculo Esquelético/patología , Seguridad del Paciente , Resultado del Tratamiento , alfa-Glucosidasas/sangre
16.
Hum Mol Genet ; 26(6): 1182-1192, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28158561

RESUMEN

Fabry disease is caused by deficient activity of α-galactosidase A and subsequent accumulation of glycosphingolipids (mainly globotriaosylceramide, Gb3), leading to multisystem organ dysfunction. Oxidative stress and nitric oxide synthase (NOS) uncoupling are thought to contribute to Fabry cardiovascular diseases. We hypothesized that decreased tetrahydrobiopterin (BH4) plays a role in the pathogenesis of Fabry disease. We found that BH4 was decreased in the heart and kidney but not in the liver and aorta of Fabry mice. BH4 was also decreased in the plasma of female Fabry patients, which was not corrected by enzyme replacement therapy (ERT). Gb3 levels were inversely correlated with BH4 levels in animal tissues and cultured patient cells. To investigate the role of BH4 deficiency in disease phenotypes, 12-month-old Fabry mice were treated with gene transfer-mediated ERT or substrate reduction therapy (SRT) for 6 months. In the Fabry mice receiving SRT but not ERT, BH4 deficiency was restored, concomitant with ameliorated cardiac and renal hypertrophy. Additionally, glutathione levels were decreased in Fabry mouse tissues in a sex-dependent manner. Renal BH4 levels were closely correlated with glutathione levels and inversely correlated with cardiac and kidney weight. In conclusion, this study showed that BH4 deficiency occurs in Fabry disease and may contribute to the pathogenesis of the disease through oxidative stress associated with a reduced antioxidant capacity of cells and NOS uncoupling. This study also suggested dissimilar efficacy of ERT and SRT in correcting pre-existing pathologies in Fabry disease.


Asunto(s)
Biopterinas/análogos & derivados , Terapia de Reemplazo Enzimático , Enfermedad de Fabry/genética , alfa-Galactosidasa/genética , Animales , Biopterinas/deficiencia , Biopterinas/genética , Biopterinas/metabolismo , Modelos Animales de Enfermedad , Enfermedad de Fabry/mortalidad , Enfermedad de Fabry/fisiopatología , Femenino , Glutatión/metabolismo , Glicoesfingolípidos/metabolismo , Humanos , Riñón/metabolismo , Riñón/patología , Ratones , Miocardio/metabolismo , Miocardio/patología , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa/metabolismo , Estrés Oxidativo/genética , alfa-Galactosidasa/biosíntesis , alfa-Galactosidasa/metabolismo
17.
J Med Genet ; 54(4): 288-296, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27834756

RESUMEN

BACKGROUND: Fabry disease is an X-linked lysosomal storage disorder caused by GLA mutations, resulting in α-galactosidase (α-Gal) deficiency and accumulation of lysosomal substrates. Migalastat, an oral pharmacological chaperone being developed as an alternative to intravenous enzyme replacement therapy (ERT), stabilises specific mutant (amenable) forms of α-Gal to facilitate normal lysosomal trafficking. METHODS: The main objective of the 18-month, randomised, active-controlled ATTRACT study was to assess the effects of migalastat on renal function in patients with Fabry disease previously treated with ERT. Effects on heart, disease substrate, patient-reported outcomes (PROs) and safety were also assessed. RESULTS: Fifty-seven adults (56% female) receiving ERT (88% had multiorgan disease) were randomised (1.5:1), based on a preliminary cell-based assay of responsiveness to migalastat, to receive 18 months open-label migalastat or remain on ERT. Four patients had non-amenable mutant forms of α-Gal based on the validated cell-based assay conducted after treatment initiation and were excluded from primary efficacy analyses only. Migalastat and ERT had similar effects on renal function. Left ventricular mass index decreased significantly with migalastat treatment (-6.6 g/m2 (-11.0 to -2.2)); there was no significant change with ERT. Predefined renal, cardiac or cerebrovascular events occurred in 29% and 44% of patients in the migalastat and ERT groups, respectively. Plasma globotriaosylsphingosine remained low and stable following the switch from ERT to migalastat. PROs were comparable between groups. Migalastat was generally safe and well tolerated. CONCLUSIONS: Migalastat offers promise as a first-in-class oral monotherapy alternative treatment to intravenous ERT for patients with Fabry disease and amenable mutations. TRIAL REGISTRATION NUMBER: NCT00925301; Pre-results.


Asunto(s)
1-Desoxinojirimicina/análogos & derivados , Enfermedad de Fabry/tratamiento farmacológico , Chaperonas Moleculares/administración & dosificación , alfa-Galactosidasa/genética , 1-Desoxinojirimicina/administración & dosificación , 1-Desoxinojirimicina/efectos adversos , Administración Oral , Adolescente , Adulto , Anciano , Terapia de Reemplazo Enzimático/efectos adversos , Enfermedad de Fabry/metabolismo , Enfermedad de Fabry/fisiopatología , Femenino , Humanos , Lisosomas/genética , Lisosomas/patología , Masculino , Persona de Mediana Edad , Chaperonas Moleculares/efectos adversos , Resultado del Tratamiento
18.
N Engl J Med ; 375(6): 545-55, 2016 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-27509102

RESUMEN

BACKGROUND: Fabry's disease, an X-linked disorder of lysosomal α-galactosidase deficiency, leads to substrate accumulation in multiple organs. Migalastat, an oral pharmacologic chaperone, stabilizes specific mutant forms of α-galactosidase, increasing enzyme trafficking to lysosomes. METHODS: The initial assay of mutant α-galactosidase forms that we used to categorize 67 patients with Fabry's disease for randomization to 6 months of double-blind migalastat or placebo (stage 1), followed by open-label migalastat from 6 to 12 months (stage 2) plus an additional year, had certain limitations. Before unblinding, a new, validated assay showed that 50 of the 67 participants had mutant α-galactosidase forms suitable for targeting by migalastat. The primary end point was the percentage of patients who had a response (≥50% reduction in the number of globotriaosylceramide inclusions per kidney interstitial capillary) at 6 months. We assessed safety along with disease substrates and renal, cardiovascular, and patient-reported outcomes. RESULTS: The primary end-point analysis, involving patients with mutant α-galactosidase forms that were suitable or not suitable for migalastat therapy, did not show a significant treatment effect: 13 of 32 patients (41%) who received migalastat and 9 of 32 patients (28%) who received placebo had a response at 6 months (P=0.30). Among patients with suitable mutant α-galactosidase who received migalastat for up to 24 months, the annualized changes from baseline in the estimated glomerular filtration rate (GFR) and measured GFR were -0.30±0.66 and -1.51±1.33 ml per minute per 1.73 m(2) of body-surface area, respectively. The left-ventricular-mass index decreased significantly from baseline (-7.7 g per square meter; 95% confidence interval [CI], -15.4 to -0.01), particularly when left ventricular hypertrophy was present (-18.6 g per square meter; 95% CI, -38.2 to 1.0). The severity of diarrhea, reflux, and indigestion decreased. CONCLUSIONS: Among all randomly assigned patients (with mutant α-galactosidase forms that were suitable or not suitable for migalastat therapy), the percentage of patients who had a response at 6 months did not differ significantly between the migalastat group and the placebo group. (Funded by Amicus Therapeutics; ClinicalTrials.gov numbers, NCT00925301 [study AT1001-011] and NCT01458119 [study AT1001-041].).


Asunto(s)
1-Desoxinojirimicina/análogos & derivados , Enfermedad de Fabry/tratamiento farmacológico , Riñón/química , Trihexosilceramidas/análisis , alfa-Galactosidasa/antagonistas & inhibidores , 1-Desoxinojirimicina/efectos adversos , 1-Desoxinojirimicina/uso terapéutico , Adolescente , Adulto , Anciano , Diarrea/tratamiento farmacológico , Diarrea/etiología , Método Doble Ciego , Enfermedad de Fabry/complicaciones , Femenino , Tasa de Filtración Glomerular , Ventrículos Cardíacos/diagnóstico por imagen , Humanos , Hipertrofia Ventricular Izquierda/diagnóstico por imagen , Hipertrofia Ventricular Izquierda/tratamiento farmacológico , Riñón/fisiopatología , Masculino , Persona de Mediana Edad , Mutación , Trihexosilceramidas/orina , Ultrasonografía , Adulto Joven , alfa-Galactosidasa/genética
19.
Mol Genet Metab ; 119(1-2): 115-23, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27473031

RESUMEN

BACKGROUND: Late-onset Pompe disease is characterized by progressive skeletal myopathy followed by respiratory muscle weakness, typically leading to loss of ambulation and respiratory failure. In this population, enzyme replacement therapy (ERT) with alglucosidase alfa has been shown to stabilize respiratory function and improve mobility and muscle strength. Muscle pathology and glycogen clearance from skeletal muscle in treatment-naïve adults after ERT have not been extensively examined. METHODS: This exploratory, open-label, multicenter study evaluated glycogen clearance in muscle tissue samples collected pre- and post- alglucosidase alfa treatment in treatment-naïve adults with late-onset Pompe disease. The primary endpoint was the quantitative reduction in percent tissue area occupied by glycogen in muscle biopsies from baseline to 6months. Secondary endpoints included qualitative histologic assessment of tissue glycogen distribution, secondary pathology changes, assessment of magnetic resonance images (MRIs) for intact muscle and fatty replacement, and functional assessments. RESULTS: Sixteen patients completed the study. After 6months of ERT, the percent tissue area occupied by glycogen in quadriceps and deltoid muscles decreased in 10 and 8 patients, respectively. No changes were detected on MRI from baseline to 6months. A majority of patients showed improvements on functional assessments after 6months of treatment. All treatment-related adverse events were mild or moderate. CONCLUSIONS: This exploratory study provides novel insights into the histopathologic effects of ERT in late-onset Pompe disease patients. Ultrastructural examination of muscle biopsies demonstrated reduced lysosomal glycogen after ERT. Findings are consistent with stabilization of disease by ERT in treatment-naïve patients with late-onset Pompe disease.


Asunto(s)
Terapia de Reemplazo Enzimático , Enfermedad del Almacenamiento de Glucógeno Tipo II/tratamiento farmacológico , Músculo Esquelético/efectos de los fármacos , alfa-Glucosidasas/administración & dosificación , Adulto , Edad de Inicio , Anciano , Biopsia , Femenino , Glucógeno/aislamiento & purificación , Glucógeno/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo II/diagnóstico por imagen , Enfermedad del Almacenamiento de Glucógeno Tipo II/fisiopatología , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatología , Modalidades de Fisioterapia , Resultado del Tratamiento , alfa-Glucosidasas/genética
20.
Drug Des Devel Ther ; 10: 1771-81, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27307708

RESUMEN

BACKGROUND: Following a drug manufacturing process change, safety/efficacy of agalsidase alfa were evaluated in enzyme replacement therapy (ERT)-naïve children with Fabry disease. METHODS: In an open-label, multicenter, Phase II study (HGT-REP-084; Shire), 14 children aged ≥7 years received 0.2 mg/kg agalsidase alfa every other week for 55 weeks. Primary endpoints: safety, changes in autonomic function (2-hour Holter monitoring). Secondary endpoints: estimated glomerular filtration rate, left ventricular mass index (LVMI), midwall fractional shortening, pharmacodynamic parameters, and patient-reported quality-of-life. RESULTS: Among five boys (median 10.2 [range 6.7, 14.4] years) and nine girls (14.8 [10.1, 15.9] years), eight patients experienced infusion-related adverse events (vomiting, n=4; nausea, n=3; dyspnea, n=3; chest discomfort, n=2; chills, n=2; dizziness, n=2; headache, n=2). One of these had several hypersensitivity episodes. However, no patient discontinued for safety reasons and no serious adverse events occurred. One boy developed immunoglobulin G (IgG) and neutralizing antidrug antibodies. Overall, no deterioration in cardiac function was observed in seven patients with low/abnormal SDNN (standard deviation of all filtered RR intervals; <100 ms) and no left ventricular hypertrophy: mean (SD) baseline SDNN, 81.6 (20.9) ms; mean (95% confidence interval [CI]) change from baseline to week 55, 17.4 (2.9, 31.9) ms. Changes in SDNN correlated with changes in LVMI (r=-0.975). No change occurred in secondary efficacy endpoints: mean (95% CI) change from baseline at week 55 in LVMI, 0.16 (-3.3, 3.7) g/m(2.7); midwall fractional shortening, -0.62% (-2.7%, 1.5%); estimated glomerular filtration rate, 0.15 (-11.4, 11.7) mL/min/1.73 m(2); urine protein, -1.8 (-6.0, 2.4) mg/dL; urine microalbumin, 0.6 (-0.5, 1.7) mg/dL; plasma globotriaosylceramide (Gb3), -5.71 (-10.8, -0.6) nmol/mL; urinary Gb3, -1,403.3 (-3,714.0, 907.4) nmol/g creatinine, or clinical quality-of-life outcomes. CONCLUSION: Fifty-five weeks' agalsidase alfa ERT at 0.2 mg/kg every other week was well tolerated. Disease progression may be slowed when ERT is started prior to major organ dysfunction. TRIAL REGISTRATION: https://ClinicalTrials.gov identifier NCT01363492.


Asunto(s)
Terapia de Reemplazo Enzimático , Enfermedad de Fabry/tratamiento farmacológico , alfa-Galactosidasa/uso terapéutico , Administración Intravenosa , Adolescente , Niño , Enfermedad de Fabry/diagnóstico , Femenino , Humanos , Isoenzimas/administración & dosificación , Isoenzimas/metabolismo , Isoenzimas/uso terapéutico , Masculino , Proteínas Recombinantes , alfa-Galactosidasa/administración & dosificación , alfa-Galactosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA