Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Tipo de estudio
Intervalo de año de publicación
1.
Am J Physiol Gastrointest Liver Physiol ; 318(2): G322-G335, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31905022

RESUMEN

Bile acid receptors regulate the metabolic and immune functions of circulating enterohepatic bile acids. This process is disrupted by administration of parenteral nutrition (PN), which may induce progressive hepatic injury for unclear reasons, especially in the newborn, leading to PN-associated liver disease. To explore the role of bile acid signaling on neonatal hepatic function, we initially observed that Takeda G protein receptor 5 (TGR5)-specific bile acids were negatively correlated with worsening clinical disease markers in the plasma of human newborns with prolonged PN exposure. To test our resulting hypothesis that TGR5 regulates critical liver functions to PN exposure, we used TGR5 receptor deficient mice (TGR5-/-). We observed PN significantly increased liver weight, cholestasis, and serum hepatic stress enzymes in TGR5-/- mice compared with controls. Mechanistically, PN reduced bile acid synthesis genes in TGR5-/-. Serum bile acid composition revealed that PN increased unconjugated primary bile acids and secondary bile acids in TGR5-/- mice, while increasing conjugated primary bile acid levels in TGR5-competent mice. Simultaneously, PN elevated hepatic IL-6 expression and infiltrating macrophages in TGR5-/- mice. However, the gut microbiota of TGR5-/- mice compared with WT mice following PN administration displayed highly elevated levels of Bacteroides and Parabacteroides, and possibly responsible for the elevated levels of secondary bile acids in TGR5-/- animals. Intestinal bile acid transporters expression was unchanged. Collectively, this suggests TGR5 signaling specifically regulates fundamental aspects of liver bile acid homeostasis during exposure to PN. Loss of TGR5 is associated with biochemical evidence of cholestasis in both humans and mice on PN.NEW & NOTEWORTHY Parenteral nutrition is associated with deleterious metabolic outcomes in patients with prolonged exposure. Here, we demonstrate that accelerated cholestasis and parental nutrition-associated liver disease (PNALD) may be associated with deficiency of Takeda G protein receptor 5 (TGR5) signaling. The microbiome is responsible for production of secondary bile acids that signal through TGR5. Therefore, collectively, these data support the hypothesis that a lack of established microbiome in early life or under prolonged parenteral nutrition may underpin disease development and PNALD.


Asunto(s)
Hepatopatías/etiología , Hepatopatías/fisiopatología , Nutrición Parenteral/efectos adversos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/fisiología , Animales , Ácidos y Sales Biliares/metabolismo , Colestasis , Femenino , Microbioma Gastrointestinal , Regulación de la Expresión Génica/fisiología , Humanos , Recién Nacido , Interleucina-6/metabolismo , Pruebas de Función Hepática , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Tamaño de los Órganos , Transducción de Señal/genética
2.
Am J Physiol Lung Cell Mol Physiol ; 318(2): L407-L418, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31644311

RESUMEN

During the newborn period, intestinal commensal bacteria influence pulmonary mucosal immunology via the gut-lung axis. Epidemiological studies have linked perinatal antibiotic exposure in human newborns to an increased risk for bronchopulmonary dysplasia, but whether this effect is mediated by the gut-lung axis is unknown. To explore antibiotic disruption of the newborn gut-lung axis, we studied how perinatal maternal antibiotic exposure influenced lung injury in a hyperoxia-based mouse model of bronchopulmonary dysplasia. We report that disruption of intestinal commensal colonization during the perinatal period promotes a more severe bronchopulmonary dysplasia phenotype characterized by increased mortality and pulmonary fibrosis. Mechanistically, metagenomic shifts were associated with decreased IL-22 expression in bronchoalveolar lavage and were independent of hyperoxia-induced inflammasome activation. Collectively, these results demonstrate a previously unrecognized influence of the gut-lung axis during the development of neonatal lung injury, which could be leveraged to ameliorate the most severe and persistent pulmonary complication of preterm birth.


Asunto(s)
Antibacterianos/efectos adversos , Displasia Broncopulmonar/complicaciones , Lesión Pulmonar/inducido químicamente , Exposición Materna , Efectos Tardíos de la Exposición Prenatal/patología , Resistencia de las Vías Respiratorias/efectos de los fármacos , Animales , Animales Recién Nacidos , Líquido del Lavado Bronquioalveolar , Displasia Broncopulmonar/fisiopatología , Citocinas/metabolismo , Femenino , Granulocitos/metabolismo , Hiperoxia/complicaciones , Hiperoxia/fisiopatología , Inflamasomas/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Pulmón/patología , Lesión Pulmonar/microbiología , Lesión Pulmonar/fisiopatología , Ratones Endogámicos C57BL , Oxígeno/metabolismo , Fenotipo , Embarazo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Fibrosis Pulmonar/complicaciones , Fibrosis Pulmonar/microbiología , Análisis de Supervivencia , Remodelación Vascular/efectos de los fármacos
3.
Obesity (Silver Spring) ; 27(5): 803-812, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30933435

RESUMEN

OBJECTIVE: The current study investigated whether bile diversion (BD) improves metabolic phenotype under farnesoid X receptor (FXR) deficiency. METHODS: BD was performed in high-fat diet (HFD)-fed FXR knockout (FXRko) and wild-type (WT) animals. Metabolic phenotypes, circulating enteroendocrine hormones, total bile acids (BAs) and BA composition, and cecal gut microbiota were analyzed. RESULTS: FXR-deficient mice were resistant to HFD-induced obesity; however, FXR-deficient mice also developed hyperglycemia and exhibited increased liver weight, liver steatosis, and circulating triglycerides. BD increased circulating total BAs and taurine-b-muricholic acid, which were in line with normalized hyperglycemia and improved glucose tolerance in HFD-fed WT mice. FXR deficiency also increased total BAs and taurine-b-muricholic acid, but these animals remained hyperglycemic. While BD improved metabolic phenotype in HFD-fed FXRko mice, these improvements were not as effective as in WT mice. BD increased liver expression of fibroblast growth factor 21 and peroxisome proliferator-activated receptor γ coactivator-1ß and elevated circulating glucagon-like peptide-1 levels in WT mice but not in FXRko mice. FXR deficiency altered gut microbiota composition with a specific increase in phylum Proteobacteria that may act as a possible microbial signature of some diseases. These cellular and molecular changes in FXRko mice may contribute to resistance toward improved metabolism. CONCLUSIONS: FXR signaling plays a pivotal role in improved metabolic phenotype following BD surgery.


Asunto(s)
Bilis/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Animales , Ratones , Ratones Endogámicos C57BL , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA