Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
mBio ; 11(2)2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32209684

RESUMEN

Legionella pneumophila governs its interactions with host cells by secreting >300 different "effector" proteins. Some of these effectors contain eukaryotic domains such as the RCC1 (regulator of chromosome condensation 1) repeats promoting the activation of the small GTPase Ran. In this report, we reveal a conserved pattern of L. pneumophila RCC1 repeat genes, which are distributed in two main clusters of strains. Accordingly, strain Philadelphia-1 contains two RCC1 genes implicated in bacterial virulence, legG1 (Legionella eukaryotic gene 1), and ppgA, while strain Paris contains only one, pieG The RCC1 repeat effectors localize to different cellular compartments and bind distinct components of the Ran GTPase cycle, including Ran modulators and the small GTPase itself, and yet they all promote the activation of Ran. The pieG gene spans the corresponding open reading frames of legG1 and a separate adjacent upstream gene, lpg1975legG1 and lpg1975 are fused upon addition of a single nucleotide to encode a protein that adopts the binding specificity of PieG. Thus, a point mutation in pieG splits the gene, altering the effector target. These results indicate that divergent evolution of RCC1 repeat effectors defines the Ran GTPase cycle targets and that modulation of different components of the cycle might fine-tune Ran activation during Legionella infection.IMPORTANCELegionella pneumophila is a ubiquitous environmental bacterium which, upon inhalation, causes a life-threatening pneumonia termed Legionnaires' disease. The opportunistic pathogen grows in amoebae and macrophages by employing a "type IV" secretion system, which secretes more than 300 different "effector" proteins into the host cell, where they subvert pivotal processes. The function of many of these effector proteins is unknown, and their evolution has not been studied. L. pneumophila RCC1 repeat effectors target the small GTPase Ran, a molecular switch implicated in different cellular processes such as nucleocytoplasmic transport and microtubule cytoskeleton dynamics. We provide evidence that one or more RCC1 repeat genes are distributed in two main clusters of L. pneumophila strains and have divergently evolved to target different components of the Ran GTPase activation cycle at different subcellular sites. Thus, L. pneumophila employs a sophisticated strategy to subvert host cell Ran GTPase during infection.


Asunto(s)
Proteínas Bacterianas/genética , Evolución Molecular , Interacciones Huésped-Patógeno , Legionella pneumophila/genética , Proteína de Unión al GTP ran/genética , Células A549 , Animales , Dictyostelium/microbiología , Células HEK293 , Humanos , Legionella pneumophila/patogenicidad , Macrófagos/microbiología , Ratones , Células RAW 264.7 , Proteína de Unión al GTP ran/metabolismo
2.
Cell Microbiol ; 20(9): e12852, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29691989

RESUMEN

The intracellular pathogen Legionella pneumophila influences numerous eukaryotic cellular processes through the Dot/Icm-dependent translocation of more than 300 effector proteins into the host cell. Although many translocated effectors localise to the Legionella replicative vacuole, other effectors can affect remote intracellular sites. Following infection, a subset of effector proteins localises to the nucleus where they subvert host cell transcriptional responses to infection. Here, we identified Lpw27461 (Lpp2587), Lpg2519 as a new nuclear-localised effector that we have termed SnpL. Upon ectopic expression or during L. pneumophila infection, SnpL showed strong nuclear localisation by immunofluorescence microscopy but was excluded from nucleoli. Using immunoprecipitation and mass spectrometry, we determined the host-binding partner of SnpL as the eukaryotic transcription elongation factor, Suppressor of Ty5 (SUPT5H)/Spt5. SUPT5H is an evolutionarily conserved component of the DRB sensitivity-inducing factor complex that regulates RNA Polymerase II dependent mRNA processing and transcription elongation. Protein interaction studies showed that SnpL bound to the central Kyprides, Ouzounis, Woese motif region of SUPT5H. Ectopic expression of SnpL led to massive upregulation of host gene expression and macrophage cell death. The activity of SnpL further highlights the ability of L. pneumophila to control fundamental eukaryotic processes such as transcription that, in the case of SnpL, leads to global upregulation of host gene expression.


Asunto(s)
Interacciones Huésped-Patógeno , Legionella pneumophila/patogenicidad , Proteínas de Transporte de Membrana/metabolismo , Proteínas Nucleares/metabolismo , ARN Polimerasa II/metabolismo , Factores de Elongación Transcripcional/metabolismo , Factores de Virulencia/metabolismo , Animales , Muerte Celular , Línea Celular , Núcleo Celular/química , Humanos , Inmunoprecipitación , Macrófagos/microbiología , Macrófagos/fisiología , Espectrometría de Masas , Microscopía Fluorescente , Unión Proteica , Transporte de Proteínas
3.
Genome Biol ; 15(11): 505, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25370836

RESUMEN

BACKGROUND: The genus Legionella comprises over 60 species. However, L. pneumophila and L. longbeachae alone cause over 95% of Legionnaires' disease. To identify the genetic bases underlying the different capacities to cause disease we sequenced and compared the genomes of L. micdadei, L. hackeliae and L. fallonii (LLAP10), which are all rarely isolated from humans. RESULTS: We show that these Legionella species possess different virulence capacities in amoeba and macrophages, correlating with their occurrence in humans. Our comparative analysis of 11 Legionella genomes belonging to five species reveals highly heterogeneous genome content with over 60% representing species-specific genes; these comprise a complete prophage in L. micdadei, the first ever identified in a Legionella genome. Mobile elements are abundant in Legionella genomes; many encode type IV secretion systems for conjugative transfer, pointing to their importance for adaptation of the genus. The Dot/Icm secretion system is conserved, although the core set of substrates is small, as only 24 out of over 300 described Dot/Icm effector genes are present in all Legionella species. We also identified new eukaryotic motifs including thaumatin, synaptobrevin or clathrin/coatomer adaptine like domains. CONCLUSIONS: Legionella genomes are highly dynamic due to a large mobilome mainly comprising type IV secretion systems, while a minority of core substrates is shared among the diverse species. Eukaryotic like proteins and motifs remain a hallmark of the genus Legionella. Key factors such as proteins involved in oxygen binding, iron storage, host membrane transport and certain Dot/Icm substrates are specific features of disease-related strains.


Asunto(s)
Genoma Bacteriano , Secuencias Repetitivas Esparcidas/genética , Legionella pneumophila/genética , Enfermedad de los Legionarios/genética , Amoeba/microbiología , Secuencia de Bases , Línea Celular , Brotes de Enfermedades , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Legionella pneumophila/patogenicidad , Enfermedad de los Legionarios/microbiología , Macrófagos/microbiología , Anotación de Secuencia Molecular , Especificidad de la Especie
4.
Curr Top Microbiol Immunol ; 376: 1-34, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23949285

RESUMEN

Legionella pneumophila is a Gram-negative bacterium and the causative agent of Legionnaires' disease. It replicates within amoeba and infects accidentally human macrophages. Several similarities are seen in the L. pneumophila-infection cycle in both hosts, suggesting that the tools necessary for macrophage infection may have evolved during co-evolution of L. pneumophila and amoeba. The establishment of the Legionella-containing vacuole (LCV) within the host cytoplasm requires the remodeling of the LCV surface and the hijacking of vesicles and organelles. Then L. pneumophila replicates in a safe intracellular niche in amoeba and macrophages. In this review we will summarize the existing knowledge of the L. pneumophila infection cycle in both hosts at the molecular level and compare the factors involved within amoeba and macrophages. This knowledge will be discussed in the light of recent findings from the Acanthamoeba castellanii genome analyses suggesting the existence of a primitive immune-like system in amoeba.


Asunto(s)
Amoeba/microbiología , Enfermedad de los Legionarios/inmunología , Macrófagos/microbiología , Endocitosis , Humanos , Legionella pneumophila/patogenicidad , Macrófagos/inmunología , Fagocitosis , Vacuolas/microbiología
5.
Int J Med Microbiol ; 300(7): 470-81, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20537944

RESUMEN

Legionella pneumophila, the causative agent of Legionnaires' disease, is known to be an intracellular pathogen of multiple species of protozoa and is assumed to have co-evolved with these organisms for millions of years. Genome sequencing of L. pneumophila strains has revealed an abundance of eukaryotic-like proteins (ELPs). Here, we study the evolution of these ELPs, in order to investigate their origin. Thirty-four new ELPs were identified, based on a higher similarity to eukaryotic proteins than to bacterial ones. Phylogenetic analyses demonstrated that both lateral gene transfer from eukaryotic hosts and bacterial genes that became eukaryotic-like by gradual adaptation to the intracellular milieu or gene fragment acquisition, contributed to the existing repertoire of ELPs, which comprise over 3% of the putative proteome of L. pneumophila strains. A PCR survey of 72 L. pneumophila strains showed that most ELPs were conserved in nearly all of these strains, indicating that they are likely to play important roles in this species. Genes of different evolutionary origin have distinct patterns of selection, as reflected by their ratio of a synonymous vs. synonymous mutations. One ELP is common to several strains of Legionella, but outside this genus has homologs only in Acanthamoeba polyphaga mimivirus, indicating that gene exchange involving eukaryotic viruses and intracellular bacterial pathogens may also contribute to the evolution of virulence in either or both of these groups of organisms. Information on selection patterns and eukaryotic-like status was combined as a novel approach to predict type IV secretion system effectors of Legionella, which represent promising targets for future study.


Asunto(s)
Proteínas Bacterianas/genética , Evolución Molecular , Legionella pneumophila/genética , Adaptación Biológica , Análisis por Conglomerados , Transferencia de Gen Horizontal , Mimiviridae/genética , Filogenia , Homología de Secuencia de Aminoácido , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA