Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Neuroinflammation ; 20(1): 273, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37990235

RESUMEN

Traumatic spinal cord injury can cause immediate physical damage to the spinal cord and result in severe neurological deficits. The primary, mechanical tissue damage triggers a variety of secondary damage mechanisms at the injury site which significantly contribute to a larger lesion size and increased functional damage. Inflammatory mechanisms which directly involve both microglia (MG) and monocyte-derived macrophages (MDM) play important roles in the post-injury processes, including inflammation and debris clearing. In the current study, we investigated changes in the structure and function of MG/MDM in the injured spinal cord of adult female mice, 7 days after a thoracic contusion SCI. With the use of chip mapping scanning electron microscopy, which allows to image large samples at the nanoscale, we performed an ultrastructural comparison of MG/MDM located near the lesion vs adjacent regions to provide novel insights into the mechanisms at play post-injury. We found that MG/MDM located near the lesion had more mitochondria overall, including mitochondria with and without morphological alterations, and had a higher proportion of altered mitochondria. MG/MDM near the lesion also showed an increased number of phagosomes, including phagosomes containing myelin and partiallydigested materials. MG/MDM near the injury interacted differently with the spinal cord parenchyma, as shown by their reduced number of direct contacts with synaptic elements, axon terminals and dendritic spines. In this study, we characterized the ultrastructural changes of MG/MDM in response to spinal cord tissue damage in mice, uncovering changes in phagocytic activity, mitochondrial ultrastructure, and inter-cellular interactions within the spinal cord parenchyma.


Asunto(s)
Microglía , Traumatismos de la Médula Espinal , Ratones , Femenino , Animales , Microglía/patología , Macrófagos/patología , Traumatismos de la Médula Espinal/patología , Fagocitos/patología , Médula Espinal/patología
2.
J Neuroinflammation ; 17(1): 264, 2020 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-32891154

RESUMEN

BACKGROUND: Maternal nutrition is critical for proper fetal development. While increased nutrient intake is essential during pregnancy, an excessive consumption of certain nutrients, like fat, can lead to long-lasting detrimental consequences on the offspring. Animal work investigating the consequences of maternal high-fat diet (mHFD) revealed in the offspring a maternal immune activation (MIA) phenotype associated with increased inflammatory signals. This inflammation was proposed as one of the mechanisms causing neuronal circuit dysfunction, notably in the hippocampus, by altering the brain-resident macrophages-microglia. However, the understanding of mechanisms linking inflammation and microglial activities to pathological brain development remains limited. We hypothesized that mHFD-induced inflammation could prime microglia by altering their specific gene expression signature, population density, and/or functions. METHODS: We used an integrative approach combining molecular (i.e., multiplex-ELISA, rt-qPCR) and cellular (i.e., histochemistry, electron microscopy) techniques to investigate the effects of mHFD (saturated and unsaturated fats) vs control diet on inflammatory priming, as well as microglial transcriptomic signature, density, distribution, morphology, and ultrastructure in mice. These analyses were performed on the mothers and/or their adolescent offspring at postnatal day 30. RESULTS: Our study revealed that mHFD results in MIA defined by increased circulating levels of interleukin (IL)-6 in the mothers. This phenotype was associated with an exacerbated inflammatory response to peripheral lipopolysaccharide in mHFD-exposed offspring of both sexes. Microglial morphology was also altered, and there were increased microglial interactions with astrocytes in the hippocampus CA1 of mHFD-exposed male offspring, as well as decreased microglia-associated extracellular space pockets in the same region of mHFD-exposed offspring of the two sexes. A decreased mRNA expression of the inflammatory-regulating cytokine Tgfb1 and microglial receptors Tmem119, Trem2, and Cx3cr1 was additionally measured in the hippocampus of mHFD-exposed offspring, especially in males. CONCLUSIONS: Here, we described how dietary habits during pregnancy and nurturing, particularly the consumption of an enriched fat diet, can influence peripheral immune priming in the offspring. We also found that microglia are affected in terms of gene expression signature, morphology, and interactions with the hippocampal parenchyma, in a partially sexually dimorphic manner, which may contribute to the adverse neurodevelopmental outcomes on the offspring.


Asunto(s)
Dieta Alta en Grasa , Hipocampo/patología , Inflamación/patología , Fenómenos Fisiologicos Nutricionales Maternos/fisiología , Microglía/patología , Efectos Tardíos de la Exposición Prenatal/metabolismo , Adolescente , Animales , Receptor 1 de Quimiocinas CX3C/metabolismo , Forma de la Célula/fisiología , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Inflamación/metabolismo , Interleucina-6/sangre , Lipopolisacáridos/farmacología , Masculino , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Microglía/efectos de los fármacos , Microglía/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Embarazo , Receptores Inmunológicos/metabolismo , Factores Sexuales , Factor de Crecimiento Transformador beta1/metabolismo
3.
J Vis Exp ; (152)2019 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-31710033

RESUMEN

This is a protocol for the dual visualization of microglia and infiltrating macrophages in mouse brain tissue. TMEM119 (which labels microglia selectively), when combined with IBA1 (which provides an exceptional visualization of their morphology), allows investigation of changes in density, distribution, and morphology. Quantifying these parameters is important in providing insights into the roles exerted by microglia, the resident macrophages of the brain. Under normal physiological conditions, microglia are regularly distributed in a mosaic-like pattern and present a small soma with ramified processes. Nevertheless, as a response to environmental factors (i.e., trauma, infection, disease, or injury), microglial density, distribution, and morphology are altered in various manners, depending on the insult. Additionally, the described double-staining method allows visualization of infiltrating macrophages in the brain based on their expression of IBA1 and without colocalization with TMEM119. This approach thus allows discrimination between microglia and infiltrating macrophages, which is required to provide functional insights into their distinct involvement in brain homeostasis across various contexts of health and disease. This protocol integrates the latest findings in neuroimmunology that pertain to the identification of selective markers. It also serves as a useful tool for both experienced neuroimmunologists and researchers seeking to integrate neuroimmunology into projects.


Asunto(s)
Encéfalo/fisiología , Técnica del Anticuerpo Fluorescente/métodos , Macrófagos/fisiología , Microglía/fisiología , Células Mieloides/fisiología , Coloración y Etiquetado/métodos , Animales , Encéfalo/citología , Encéfalo/metabolismo , Homeostasis , Macrófagos/citología , Macrófagos/metabolismo , Ratones , Microglía/citología , Microglía/metabolismo , Células Mieloides/citología , Células Mieloides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA