Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(18): e2202104119, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35486697

RESUMEN

The occurrence of intercellular channels formed by pannexin1 has been challenged for more than a decade. Here, we provide an electrophysiological characterization of exogenous human pannexin1 (hPanx1) cell­cell channels expressed in HeLa cells knocked out for connexin45. The observed hPanx1 cell­cell channels show two phenotypes: O-state and S-state. The former displayed low transjunctional voltage (Vj) sensitivity and single-channel conductance of ∼175 pS, with a substate of ∼35 pS; the latter showed a peculiar dynamic asymmetry in Vj dependence and single-channel conductance identical to the substate conductance of the O-state. S-state hPanx1 cell­cell channels were also identified between TC620 cells, a human oligodendroglioma cell line that endogenously expresses hPanx1. In these cells, dye and electrical coupling increased with temperature and were strongly reduced after hPanx1 expression was knocked down by small interfering RNA or inhibited with Panx1 mimetic inhibitory peptide. Moreover, cell­cell coupling was augmented when hPanx1 levels were increased with a doxycycline-inducible expression system. Application of octanol, a connexin gap junction (GJ) channel inhibitor, was not sufficient to block electrical coupling between HeLa KO Cx45-hPanx1 or TC620 cell pairs. In silico studies suggest that several arginine residues inside the channel pore may be neutralized by hydrophobic interactions, allowing the passage of DAPI, consistent with dye coupling observed between TC620 cells. These findings demonstrate that endogenously expressed hPanx1 forms intercellular cell­cell channels and their unique properties resemble those described in innexin-based GJ channels. Since Panx1 is ubiquitously expressed, finding conditions to recognize Panx1 cell­cell channels in different cell types might require special attention.


Asunto(s)
Conexinas , Proteínas del Tejido Nervioso , Animales , Conexinas/metabolismo , Humanos , Canales Iónicos , Mamíferos/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34301850

RESUMEN

Pannexin1 (Panx1) channels are ubiquitously expressed in vertebrate cells and are widely accepted as adenosine triphosphate (ATP)-releasing membrane channels. Activation of Panx1 has been associated with phosphorylation in a specific tyrosine residue or cleavage of its C-terminal domains. In the present work, we identified a residue (S394) as a putative phosphorylation site by Ca2+/calmodulin-dependent kinase II (CaMKII). In HeLa cells transfected with rat Panx1 (rPanx1), membrane stretch (MS)-induced activation-measured by changes in DAPI uptake rate-was drastically reduced by either knockdown of Piezo1 or pharmacological inhibition of calmodulin or CaMKII. By site-directed mutagenesis we generated rPanx1S394A-EGFP (enhanced green fluorescent protein), which lost its sensitivity to MS, and rPanx1S394D-EGFP, mimicking phosphorylation, which shows high DAPI uptake rate without MS stimulation or cleavage of the C terminus. Using whole-cell patch-clamp and outside-out excised patch configurations, we found that rPanx1-EGFP and rPanx1S394D-EGFP channels showed current at all voltages between ±100 mV, similar single channel currents with outward rectification, and unitary conductance (∼30 to 70 pS). However, using cell-attached configuration we found that rPanx1S394D-EGFP channels show increased spontaneous unitary events independent of MS stimulation. In silico studies revealed that phosphorylation of S394 caused conformational changes in the selectivity filter and increased the average volume of lateral tunnels, allowing ATP to be released via these conduits and DAPI uptake directly from the channel mouth to the cytoplasmic space. These results could explain one possible mechanism for activation of rPanx1 upon increase in cytoplasmic Ca2+ signal elicited by diverse physiological conditions in which the C-terminal domain is not cleaved.


Asunto(s)
Señalización del Calcio , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Conexinas/química , Conexinas/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Calcio/metabolismo , Calmodulina/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Conexinas/genética , Citoplasma/metabolismo , Proteínas Fluorescentes Verdes/genética , Células HeLa , Humanos , Indoles/farmacocinética , Canales Iónicos/genética , Canales Iónicos/metabolismo , Simulación de Dinámica Molecular , Proteínas del Tejido Nervioso/genética , Técnicas de Placa-Clamp , Fosforilación , Serina/genética , Serina/metabolismo
3.
Chemistry ; 26(34): 7609-7621, 2020 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-32259327

RESUMEN

The most common denominator of many of the neurodegenerative diseases is badly folded protein accumulation, which results in the formation of insoluble protein deposits located in different parts of the organism, causing cell death and tissue degeneration. Dendritic systems have turned out to be a promising new therapeutic approach for the treatment of these diseases due to their ability to modulate the folding of these proteins. With this perspective, and focused on type 2 diabetes (T2D), characterized by the presence of deposits containing the amyloidogenic islet amyloid polypeptide (IAPP), we demonstrate how different topologies of cationic carbosilane dendrimers inhibit the formation of insoluble protein deposits in pancreatic islets isolated from transgenic Tg-hIAPP mice. Also, the results obtained by the modification of dendritic carbosilane wedges with the chemical chaperone 4-phenylbutyric acid (4-PBA) at the focal point confirmed their potential as anti-amyloid agents with a concentration efficiency in their therapeutic action five orders of magnitude lower than that observed for free 4-PBA. Computational studies, which determined the main interaction between IAPP and dendrimers at the atomic level, support the experimental work.


Asunto(s)
Amiloidosis/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/química , Fenilbutiratos/química , Silanos/química , Animales , Humanos , Polipéptido Amiloide de los Islotes Pancreáticos/química , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Ratones , Ratones Transgénicos
4.
Microb Cell Fact ; 16(1): 138, 2017 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-28784139

RESUMEN

BACKGROUND: Antifreeze proteins (AFPs) production is a survival strategy of psychrophiles in ice. These proteins have potential in frozen food industry avoiding the damage in the structure of animal or vegetal foods. Moreover, there is not much information regarding the interaction of Antarctic bacterial AFPs with ice, and new determinations are needed to understand the behaviour of these proteins at the water/ice interface. RESULTS: Different Antarctic places were screened for antifreeze activity and microorganisms were selected for the presence of thermal hysteresis in their crude extracts. Isolates GU1.7.1, GU3.1.1, and AFP5.1 showed higher thermal hysteresis and were characterized using a polyphasic approach. Studies using cucumber and zucchini samples showed cellular protection when samples were treated with partially purified AFPs or a commercial AFP as was determined using toluidine blue O and neutral red staining. Additionally, genome analysis of these isolates revealed the presence of genes that encode for putative AFPs. Deduced amino acids sequences from GU3.1.1 (gu3A and gu3B) and AFP5.1 (afp5A) showed high similarity to reported AFPs which crystal structures are solved, allowing then generating homology models. Modelled proteins showed a triangular prism form similar to ß-helix AFPs with a linear distribution of threonine residues at one side of the prism that could correspond to the putative ice binding side. The statistically best models were used to build a protein-water system. Molecular dynamics simulations were then performed to compare the antifreezing behaviour of these AFPs at the ice/water interface. Docking and molecular dynamics simulations revealed that gu3B could have the most efficient antifreezing behavior, but gu3A could have a higher affinity for ice. CONCLUSIONS: AFPs from Antarctic microorganisms GU1.7.1, GU3.1.1 and AFP5.1 protect cellular structures of frozen food showing a potential for frozen food industry. Modeled proteins possess a ß-helix structure, and molecular docking analysis revealed the AFP gu3B could be the most efficient AFPs in order to avoid the formation of ice crystals, even when gu3A has a higher affinity for ice. By determining the interaction of AFPs at the ice/water interface, it will be possible to understand the process of adaptation of psychrophilic bacteria to Antarctic ice.


Asunto(s)
Proteínas Anticongelantes/metabolismo , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Secuencia de Aminoácidos , Regiones Antárticas , Proteínas Anticongelantes/química , Proteínas Anticongelantes/genética , Bacterias/aislamiento & purificación , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Cucurbita/metabolismo , Cucurbitaceae/metabolismo , ADN Bacteriano/química , ADN Bacteriano/aislamiento & purificación , ADN Bacteriano/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Terciaria de Proteína , Alineación de Secuencia , Análisis de Secuencia de ADN , Secuenciación Completa del Genoma
5.
J Nanobiotechnology ; 15(1): 1, 2017 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-28049488

RESUMEN

BACKGROUND: Nanotechnology is a science that involves imaging, measurement, modeling and a manipulation of matter at the nanometric scale. One application of this technology is drug delivery systems based on nanoparticles obtained from natural or synthetic sources. An example of these systems is synthetized from poly(3-hydroxybutyrate-co-3-hydroxyvalerate), which is a biodegradable, biocompatible and a low production cost polymer. The aim of this work was to investigate the uptake mechanism of PHBV nanoparticles in two different epithelial cell lines (HeLa and SKOV-3). RESULTS: As a first step, we characterized size, shape and surface charge of nanoparticles using dynamic light scattering and transmission electron microscopy. Intracellular incorporation was evaluated through flow cytometry and fluorescence microscopy using intracellular markers. We concluded that cellular uptake mechanism is carried out in a time, concentration and energy dependent way. Our results showed that nanoparticle uptake displays a cell-specific pattern, since we have observed different colocalization in two different cell lines. In HeLa (Cervical cancer cells) this process may occur via classical endocytosis pathway and some internalization via caveolin-dependent was also observed, whereas in SKOV-3 (Ovarian cancer cells) these patterns were not observed. Rearrangement of actin filaments showed differential nanoparticle internalization patterns for HeLa and SKOV-3. Additionally, final fate of nanoparticles was also determined, showing that in both cell lines, nanoparticles ended up in lysosomes but at different times, where they are finally degraded, thereby releasing their contents. CONCLUSIONS: Our results, provide novel insight about PHBV nanoparticles internalization suggesting that for develop a proper drug delivery system is critical understand the uptake mechanism.


Asunto(s)
Portadores de Fármacos/metabolismo , Sistemas de Liberación de Medicamentos , Nanopartículas/metabolismo , Neoplasias/tratamiento farmacológico , Poliésteres/metabolismo , Transporte Biológico , Línea Celular Tumoral , Endocitosis , Células HeLa , Humanos , Nanopartículas/ultraestructura
6.
J Mol Graph Model ; 72: 201-208, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28110184

RESUMEN

Dendrimers functionalized with folic acid (FA) are drug delivery systems that can selectively target cancer cells with folate receptors (FR-α) overexpression. Incorporation of polyethylene glycol (PEG) can enhance dendrimers solubility and pharmacokinetics, but ligand-receptor binding must not be affected. In this work we characterized, at atomic level, the binding functionality of conventional site-specific dendrimers conjugated with FA with PEG 750 or PEG 3350 as a linker. After Molecular Dynamics simulation, we observed that both PEG's did not interfere over ligand-receptor binding functionality. Although binding kinetics could be notably affected, the folate fragment from both dendrimers remained exposed to the solvent before approaching selectively to FR-α. PEG 3350 provided better solubility and protection from enzymatic degradation to the dendrimer than PEG 750. Also, FA-PEG3350 dendrimer showed a slightly better interaction with FR-α than FA-PEG750 dendrimer. Therefore, theoretical evidence supports that both dendrimers are suitable as drug delivery systems for cancer therapies.


Asunto(s)
Dendrímeros/química , Receptor 1 de Folato/química , Receptor 1 de Folato/metabolismo , Ácido Fólico/química , Polietilenglicoles/química , Humanos , Enlace de Hidrógeno , Modelos Moleculares , Solventes/química
7.
Arch Biochem Biophys ; 606: 64-72, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27424154

RESUMEN

The exopolyphosphatase of Escherichia coli processively and completely hydrolyses long polyphosphate chains to ortho-phosphate. Genetic surveys, based on the analysis of single ppx(-) or ppk(-) mutants and on the double mutant, demonstrate a relationship between these genes and the survival capacity. The exopolyphosphatase belongs to the ASKHA protein superfamily, hence, its active site is well known; however, the knowledge of the way in which this enzyme binds polyP remains incomplete. Here we present different computational approaches, site-direct mutagenesis and kinetic data to understand the relationship between structure and function of exopolyphosphatase. We propose H(378) as a fundamental gatekeeper for the recognition of long chain polyphosphate.


Asunto(s)
Ácido Anhídrido Hidrolasas/química , Proteínas Bacterianas/química , Escherichia coli/metabolismo , Sitios de Unión , Dominio Catalítico , Hidrógeno/química , Cinética , Conformación Molecular , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Mutación , Polifosfatos/química , Unión Proteica , Electricidad Estática , Termodinámica
8.
Food Chem ; 168: 464-70, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25172736

RESUMEN

Polyvinylpolypyrrolidone (PVPP) is a fining agent, widely used in winemaking and brewing, whose mode of action in removing phenolic compounds has not been fully characterised. The aim of this study was to evaluate the experimental and theoretical binding affinity of PVPP towards six phenolic compounds representing different types of phenolic species. The interaction between PVPP and phenolics was evaluated in model solutions, where hydroxyl groups, hydrophobic bonding and steric hindrance were characterised. The results of the study indicated that PVPP exhibits high affinity for quercetin and catechin, moderate affinity for epicatechin, gallic acid and lower affinity for 4-methylcatechol and caffeic acid. The affinity has a direct correlation with the hydroxylation degree of each compound. The results show that the affinity of PVPP towards phenols is related with frontier orbitals. This work demonstrates a direct correlation between the experimental affinity and the interaction energy calculations obtained through computational chemistry methods.


Asunto(s)
Alimentos , Modelos Teóricos , Fenoles/química , Povidona/análogos & derivados , Adsorción , Catequina/química , Catequina/aislamiento & purificación , Catecoles/química , Catecoles/aislamiento & purificación , Alimentos/normas , Ácido Gálico/química , Ácido Gálico/aislamiento & purificación , Estructura Molecular , Fenoles/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Povidona/química , Quercetina/química , Quercetina/aislamiento & purificación , Soluciones
9.
PLoS Pathog ; 10(9): e1004376, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25232742

RESUMEN

Mycobacterium tuberculosis employs various virulence strategies to subvert host immune responses in order to persist and cause disease. Interaction of M. tuberculosis with mannose receptor on macrophages via surface-exposed lipoarabinomannan (LAM) is believed to be critical for cell entry, inhibition of phagosome-lysosome fusion, and intracellular survival, but in vivo evidence is lacking. LprG, a cell envelope lipoprotein that is essential for virulence of M. tuberculosis, has been shown to bind to the acyl groups of lipoglycans but the role of LprG in LAM biosynthesis and localization remains unknown. Using an M. tuberculosis lprG mutant, we show that LprG is essential for normal surface expression of LAM and virulence of M. tuberculosis attributed to LAM. The lprG mutant had a normal quantity of LAM in the cell envelope, but its surface was altered and showed reduced expression of surface-exposed LAM. Functionally, the lprG mutant was defective for macrophage entry and inhibition of phagosome-lysosome fusion, was attenuated in macrophages, and was killed in the mouse lung with the onset of adaptive immunity. This study identifies the role of LprG in surface-exposed LAM expression and provides in vivo evidence for the essential role surface LAM plays in M. tuberculosis virulence. Findings have translational implications for therapy and vaccine development.


Asunto(s)
Proteínas Bacterianas/metabolismo , Pared Celular/inmunología , Lipopolisacáridos/metabolismo , Lipoproteínas/metabolismo , Mycobacterium tuberculosis/inmunología , Tuberculosis/inmunología , Virulencia/inmunología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Pared Celular/metabolismo , Immunoblotting , Lipoproteínas/genética , Lipoproteínas/inmunología , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/microbiología , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Mutación/genética , Mycobacterium tuberculosis/metabolismo , Fagocitosis/fisiología , Tuberculosis/metabolismo , Tuberculosis/microbiología
10.
Biomaterials ; 34(16): 4098-4108, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23465827

RESUMEN

This report is an integrated study to include the molecular simulation, physicochemical characterization and biological analysis of a paclitaxel-loaded PHBV nanoparticle that demonstrates uptake, release and cytotoxicity in cancer cell lines. Taking this nanoparticle one step closer to its use in a clinical setting, we demonstrate that it causes significant cell death in primary cultures of stage IIIc serous ovarian cancer cells isolated from six patients. Molecular simulations revealed a high affinity of paclitaxel for the water-polymer interface, thus the drug is delivered only when the polymer near it is degraded. The Fourier transform infrared spectroscopy suggests the formation of a short-lived crystalline phase, also observed in the CG simulations, and transmission electron microscopy revealed branched structures on the surface of particles, which disappeared after 4 days. Biological analyses indicated that these particles have a 48-h window of toxicity protection, allowing for the endocytosis of the particle by the cells; this finding was corroborated by confocal microscopy and flow cytometry. The low cost to synthesize PHBV using microorganisms and the potential chemical modifications of the polymer make it attractive for inexpensive, large-scale pharmaceutical production.


Asunto(s)
Neoplasias Endometriales/tratamiento farmacológico , Nanopartículas/toxicidad , Neoplasias Ováricas/tratamiento farmacológico , Paclitaxel/uso terapéutico , Poliésteres/toxicidad , Muerte Celular/efectos de los fármacos , Neoplasias Endometriales/patología , Femenino , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Microscopía Fluorescente , Nanopartículas/ultraestructura , Neoplasias Ováricas/patología , Oxazinas/metabolismo , Paclitaxel/farmacología , Tamaño de la Partícula , Espectroscopía Infrarroja por Transformada de Fourier , Electricidad Estática , Factores de Tiempo , Células Tumorales Cultivadas , Agua/química
11.
J Agric Food Chem ; 59(13): 7310-6, 2011 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-21591781

RESUMEN

3-Alkyl-2-methoxypyrazines (MPs) are an important food constituent and have been associated with detrimental herbaceous flavors in red wines by consumers and the wine industry. The Vitis vinifera genes O-methyltransferase 1 and 2 (VvOMT1 and VvOMT2) have been isolated in the grapevine cultivar Carmenere. These genes encode S-adenosyl-l-methionine (SAM)-dependent O-methyltransferases, which have the ability to methylate 3-alkyl-2-hydroxypyrazines (HPs)-the putative final step in MPs production. Atomic studies were performed in order to explain the differences in these VvOMT activities through their structural/functional relationship in MPs biosynthesis. Differences in enthalpy energy observed between the proteins may be due to changes of equivalent residues in the active sites of VvOMT1 (F319, L322) and VvOMT2 (L319, V322). However, docking simulations and QM/MM analyses described how residues H272 and M182 could explain the main functional differentiation observed between VvOMT1 and VvOMT2 through steric impediment, which limits the formation of the transition state in enzymes encoded by VvOMT2. Therefore, this finding could explain the decreasing catalytic efficiency observed for VvOMT2.


Asunto(s)
Metiltransferasas/metabolismo , Pirazinas/metabolismo , Vitis/enzimología , Secuencia de Aminoácidos , Metiltransferasas/química , Metiltransferasas/genética , Modelos Moleculares , Datos de Secuencia Molecular , Relación Estructura-Actividad , Termodinámica , Vitis/genética , Vino
12.
J Virol ; 83(12): 6135-48, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19357162

RESUMEN

Rotaviruses (RVs) are nonenveloped, 11-segmented, double-stranded RNA viruses that are major pathogens associated with acute gastroenteritis. Group A, B, and C RVs have been isolated from humans; however, intergroup gene reassortment does not occur for reasons that remain unclear. This restriction might reflect the failure of the viral RNA-dependent RNA polymerase (RdRp; VP1) to recognize and replicate the RNA of a different group. To address this possibility, we contrasted the sequences, structures, and functions of RdRps belonging to RV groups A, B, and C (A-VP1, B-VP1, and C-VP1, respectively). We found that conserved amino acid residues are located within the hollow center of VP1 near the active site, whereas variable, group-specific residues are mostly surface exposed. By creating a three-dimensional homology model of C-VP1 with the A-VP1 crystallographic data, we provide evidence that these RV RdRps are nearly identical in their tertiary folds and that they have the same RNA template recognition mechanism that differs from that of B-VP1. Consistent with the structural data, recombinant A-VP1 and C-VP1 are capable of replicating one another's RNA templates in vitro. Nonetheless, the activity of both RdRps is strictly dependent upon the presence of cognate RV core shell protein A-VP2 or C-VP2, respectively. Together, the results of this study provide unprecedented insight into the structure and function of RV RdRps and support the notion that VP1 interactions may influence the emergence of reassortant viral strains.


Asunto(s)
Reordenamiento Génico , ARN Polimerasa Dependiente del ARN/genética , Rotavirus/genética , Proteínas del Núcleo Viral/genética , Secuencia de Aminoácidos , Dominio Catalítico , Secuencia Conservada , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Estructura Terciaria de Proteína , ARN Viral/genética , Alineación de Secuencia
13.
J Phys Chem B ; 112(33): 10194-201, 2008 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-18665626

RESUMEN

The interaction of progesterone with beta-cyclodextrin (beta-CD) was studied by differential pulse polarography. The aim of the present work was to study the effect of beta-CD on the electrochemical behavior of progesterone in aqueous solution and also to analyze the molecular interactions involved in formation of the inclusion complex. The complex with stoichiometry of 1:1 was thermodynamically characterized. In addition, steered molecular dynamics (SMD) was used to investigate the energetic properties of formation of the inclusion complex along four different pathways (reaction coordinates), considering two possible orientations. From multiple trajectories along these pathways, the potentials of mean force for formation of the beta-CD progesterone inclusion complex were calculated. The energy analysis was in good agreement with the experimental results. In the beta-CD progesterone inclusion complex, a large portion of the steroid skeleton is included in the beta-CD cavity. The lowest energy was found when the D-ring of the guest molecule is located near the secondary hydroxyls of the beta-CD cavity. In the most probable orientation, one intermolecular hydrogen bond is formed between the O of the C-20 keto group of the progesterone and a secondary hydroxyl of the beta-CD.


Asunto(s)
Electroquímica/métodos , Progesterona/química , beta-Ciclodextrinas/química , Química Física/métodos , Simulación por Computador , Difusión , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Cinética , Modelos Químicos , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Temperatura , Termodinámica
14.
Bioorg Med Chem ; 16(9): 5103-8, 2008 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-18359230

RESUMEN

The structural requirements of pyrrolo[2,3-d]pyrimidine nucleoside (PPN) analogues as adenosine kinase (AK) inhibitors were in silico studied by using CoMSIA method. All models were trained with 32 compounds, after which they were evaluated for predictive ability with additional 5 compounds. Quantitative information on structure-activity trends is provided for further rational development and direction of selective synthesis. The best CoMSIA model included hydrophobic, H-bond donor and H-bond acceptor fields and had a good predictive quality according to internal validation criteria. In addition, this model predicted adequately the compounds contained in the test set. The analysis of the model gives a comprehensive qualitative and quantitative description of the molecular features at C4 and C5 positions of the pyrrolo[2,3-d]pyrimidine scaffold and C5-position of the beta-d-ribofuranose of PPN analogues, relevant for a high AK inhibitory activity.


Asunto(s)
Adenosina Quinasa/antagonistas & inhibidores , Simulación por Computador , Modelos Químicos , Nucleósidos/farmacología , Pirimidinas/farmacología , Pirroles/farmacología , Adenosina Quinasa/química , Bases de Datos Factuales , Inhibidores Enzimáticos , Modelos Moleculares , Estructura Molecular , Nucleósidos/química , Pirimidinas/química , Pirroles/química , Relación Estructura-Actividad Cuantitativa , Reproducibilidad de los Resultados , Estereoisomerismo
15.
Protein J ; 26(2): 135-41, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17195942

RESUMEN

Saccharomyces cerevisiae phosphoenolpyruvate (PEP) carboxykinase catalyzes the reversible formation of oxaloacetate and adenosine triphosphate from PEP, adenosine diphosphate and carbon dioxide, and uses Mn(2+) as the activating metal ion. Comparison with the crystalline structure of homologous Escherichia coli PEP carboxykinase [Tari et al. (1997) Nature Struct. Biol. 4, 990-994] shows that Lys(213) is one of the ligands to Mn(2+) at the enzyme active site. Coordination of Mn(2+) to a lysyl residue is not common and suggests a low pK (a) value for the epsilon-NH(2) group of Lys(213). In this work, we evaluate the role of neighboring Phe(216) in contributing to provide a low polarity microenvironment suitable to keep the epsilon-NH(2) of Lys(213) in the unprotonated form. Mutation Phe216Tyr shows that the introduction of a hydroxyl group in the lateral chain of the residue produces a substantial loss in the enzyme affinity for Mn(2+), suggesting an increase of the pK (a) of Lys(213). In agreement with this interpretation, theoretical calculations indicate an alkaline shift of 2.8 pH units in the pK (a) of the epsilon-amino group of Lys(213) upon Phe216Tyr mutation.


Asunto(s)
Manganeso/metabolismo , Fenilalanina/metabolismo , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Sustitución de Aminoácidos , Concentración de Iones de Hidrógeno , Cinética , Manganeso/química , Fenilalanina/química , Fenilalanina/genética , Fosfoenolpiruvato Carboxiquinasa (ATP)/química , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , Unión Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
16.
Biochimie ; 88(6): 663-72, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16469427

RESUMEN

Saccharomyces cerevisiae phosphoenolpyruvate (PEP) carboxykinase catalyzes the reversible formation of oxaloacetate and adenosine triphosphate from PEP, adenosine diphosphate and carbon dioxide, and uses Mn(2+) as the activating metal ion. Comparison with the crystalline structure of homologous Escherichia coli PEP carboxykinase [Tari et al. Nature Struct. Biol. 4 (1997) 990-994] shows that Lys(213) is one of the ligands to Mn(2+) at the enzyme active site. Coordination of Mn(2+) to a lysyl residue is infrequent and suggests a low pK(a) value for the epsilon-NH(2) group of Lys(213). In this work, we evaluate the role of neighboring Phe(416) in contributing to provide a low polarity microenvironment suitable to keep the epsilon-NH(2) of Lys(213) in the unprotonated form. Mutation Phe416Tyr shows that the introduction of a hydroxyl group in the lateral chain of the residue produces a substantial loss in the enzyme affinity for Mn(2+), suggesting an increase of the pK(a) of Lys(213). A study of the effect of pH on K(m) for Mn(2+) indicate that the affinity of recombinant wild type enzyme for the metal ion is dependent on deprotonation of a group with pK(a) of 7.1+/-0.2, compatible with the low pK(a) expected for Lys(213). This pK(a) value increases at least 1.5 pH units upon Phe416Tyr mutation, in agreement with the expected effect of an increase in the polarity of Lys(213) microenvironment. Theoretical calculations of the pK(a) of Lys(213) indicate a value of 6.5+/-0.9, and it increases to 8.2+/-1.6 upon Phe416Tyr mutation. Additionally, mutation Phe416Tyr causes a loss of 1.3 kcal mol(-1) in the affinity of the enzyme for PEP, an effect perhaps related to the close proximity of Phe(416) to Arg(70), a residue previously shown to be important for PEP binding.


Asunto(s)
Mutagénesis Sitio-Dirigida , Fosfoenolpiruvato Carboxiquinasa (ATP)/química , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , Saccharomyces cerevisiae/enzimología , Dicroismo Circular , Concentración de Iones de Hidrógeno , Cinética , Lisina , Modelos Moleculares , Fenilalanina/química , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Mutación Puntual , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Espectrometría de Fluorescencia , Tirosina/química
17.
J Biol Chem ; 279(11): 10624-33, 2004 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-14699117

RESUMEN

Octamers formed by the nonstructural protein NSP2 of rotavirus are proposed to function as molecular motors in the packaging of the segmented double-stranded RNA genome. The octamers have RNA binding, helix unwinding, and Mg(2+)-dependent NTPase activities and play a crucial role in assembly of viral replication factories (viroplasms). Comparison of x-ray structures has revealed significant structural homology between NSP2 and the histidine triad (HIT) family of nucleotidyl hydrolases, which in turn has suggested the location of the active site for NTP hydrolysis in NSP2. Consistent with the structural predictions, we show here using site-specific mutagenesis and ATP docking simulations that the active site for NTP hydrolysis is localized to residues within a 25-A-deep cleft between the C- and N-terminal domains of the NSP2 monomer. Although lacking the precise signature HIT motif (HØHØHØØ where Ø is a hydrophobic residue), our analyses demonstrate that histidines (His(221) and His(225)) represent critical residues of the active site. Similar to events occurring during nucleotide hydrolysis by HIT proteins, NTP hydrolysis by NSP2 was found to produce a short lived phosphorylated intermediate. Evaluation of the biological importance of the NTPase activity of NSP2 by transient expression in mammalian cells showed that such activity has no impact on the ability of NSP2 to induce the hyperphosphorylation of NSP5 or to interact with NSP5 to form viroplasm-like structures. Hence the NTPase activity of NSP2 probably has a role subsequent to the formation of viroplasms, consistent with its suspected involvement in RNA packaging and/or replication.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Portadoras/química , Histidina/química , Proteínas/química , ARN Viral , Rotavirus/genética , Adenosina Trifosfato/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Escherichia coli/metabolismo , Vectores Genéticos , Factores de Intercambio de Guanina Nucleótido , Hidrólisis , Cinética , Magnesio/química , Microscopía Fluorescente , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Nucleósido-Trifosfatasa/química , Fosforilación , Unión Proteica , Conformación Proteica , ARN/química , Homología de Secuencia de Aminoácido , Factores de Tiempo , Proteínas Virales/química
18.
J Protein Chem ; 21(6): 393-400, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12492149

RESUMEN

Anaerobiospirillum succiniciproducens phosphoenolpyruvate (PEP) carboxykinase catalyzes the reversible formation of oxaloacetate and adenosine triphosphate from PEP, adenosine diphosphate, and carbon dioxide, and uses Mn2+ as the activating metal ion. The enzyme is a monomer and presents 68% identity with Escherichia coli PEP carboxykinase. Comparison with the crystalline structure of homologous E. coli PEP carboxykinase [Tari, L. W., Matte, A., Goldie, H., and Delbaere, L. T. J. (1997). Nature Struct. Biol. 4, 990-994] suggests that His225, Asp262, Asp263, and Thr249 are located in the active site of the protein, interacting with manganese ions. In this work, these residues were individually changed to Gln (His225) or Asn. The mutated enzymes present 3-6 orders of magnitude lower values of Vmax/Km, indicating high catalytic relevance for these residues. The His225Gln mutant showed increased Km values for Mn2+ and PEP as compared with wild-type enzyme, suggesting a role of His225 in Mn2+ and PEP binding. From 1.5-1.6 Kcal/mol lower affinity for the 3'(2')-O-(N-methylantraniloyl) derivative of adenosine diphosphate was observed for the His225Gln and Asp263Asn mutant A. succiniciproducens PEP carboxykinases, implying a role of His225 and Asp263 in nucleotide binding.


Asunto(s)
Fosfoenolpiruvato Carboxiquinasa (ATP)/química , Proteobacteria/enzimología , Sitios de Unión , Dicroismo Circular , Cinética , Mutagénesis Sitio-Dirigida , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , Fosfoenolpiruvato Carboxiquinasa (ATP)/aislamiento & purificación , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
19.
Eur J Biochem ; 269(20): 4960-8, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12383254

RESUMEN

Escherichia coli phosphoenolpyruvate (PEP) carboxykinase catalyzes the decarboxylation of oxaloacetate and transfer of the gamma-phosphoryl group of ATP to yield PEP, ADP, and CO2. The interaction of the enzyme with the substrates originates important domain movements in the protein. In this work, the interaction of several substrates and ligands with E. coli PEP carboxykinase has been studied in the phosphopyridoxyl (P-pyridoxyl)-enzyme adduct. The derivatized enzyme retained the substrate-binding characteristics of the native protein, allowing the determination of several protein-ligand dissociation constants, as well as the role of Mg2+ and Mn2+ in substrate binding. The binding affinity of PEP to the enzyme-Mn2+ complex was -8.9 kcal.mol-1, which is 3.2 kcal.mol-1 more favorable than in the complex with Mg2+. For the substrate nucleotide-metal complexes, similar binding affinities (-6.0 to -6.2 kcal.mol-1) were found for either metal ion. The fluorescence decay of the P-pyridoxyl group fitted to two lifetimes of 5.15 ns (34%) and 1.2 ns. These lifetimes were markedly altered in the derivatized enzyme-PEP-Mn complexes, and smaller changes were obtained in the presence of other substrates. Molecular models of the P-pyridoxyl-E. coli PEP carboxykinase showed different degrees of solvent-exposed surfaces for the P-pyridoxyl group in the open (substrate-free) and closed (substrate-bound) forms, which are consistent with acrylamide quenching experiments, and suggest that the fluorescence changes reflect the domain movements of the protein in solution.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Fosfoenolpiruvato Carboxiquinasa (ATP)/química , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Piridoxina/análogos & derivados , Serina/análogos & derivados , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Dióxido de Carbono/metabolismo , Ligandos , Lisina/química , Magnesio/química , Magnesio/metabolismo , Manganeso/química , Manganeso/metabolismo , Modelos Moleculares , Conformación Proteica , Piridoxina/química , Bases de Schiff , Serina/química , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA