Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros











Intervalo de año de publicación
1.
STAR Protoc ; 5(1): 102913, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38393950

RESUMEN

Leakage of mitochondrial or nuclear DNA into the cytosol can occur following viral infections, radiation damage, and some cancers. Here, we present an optimized protocol for isolating and quantifying cytosolic DNA from mammalian cells. We describe steps for collecting cytosolic fractions from cells, extracting DNA using columns, and quantifying extracted DNA using qPCR. This straightforward protocol can be completed in as little as 5 hours, and allows for the identification of the source of DNA. For complete details on the use and execution of this protocol, please refer to Jahun et al.1.


Asunto(s)
ADN , Mitocondrias , Animales , Citosol , Mamíferos/genética
2.
Cell Rep ; 38(7): 110393, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35143756

RESUMEN

B cells are important in immunity to both severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and vaccination, but B cell receptor (BCR) repertoire development in these contexts has not been compared. We analyze serial samples from 171 SARS-CoV-2-infected individuals and 63 vaccine recipients and find the global BCR repertoire differs between them. Following infection, immunoglobulin (Ig)G1/3 and IgA1 BCRs increase, somatic hypermutation (SHM) decreases, and, in severe disease, IgM and IgA clones are expanded. In contrast, after vaccination, the proportion of IgD/M BCRs increase, SHM is unchanged, and expansion of IgG clones is prominent. VH1-24, which targets the N-terminal domain (NTD) and contributes to neutralization, is expanded post infection except in the most severe disease. Infection generates a broad distribution of SARS-CoV-2-specific clones predicted to target the spike protein, while a more focused response after vaccination mainly targets the spike's receptor-binding domain. Thus, the nature of SARS-CoV-2 exposure differentially affects BCR repertoire development, potentially informing vaccine strategies.


Asunto(s)
COVID-19/inmunología , Receptores de Antígenos de Linfocitos B/inmunología , Vacunación , Linfocitos B/inmunología , Vacuna BNT162/inmunología , COVID-19/prevención & control , Evolución Clonal , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/inmunología , Isotipos de Inmunoglobulinas/genética , Isotipos de Inmunoglobulinas/inmunología , Región Variable de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/inmunología , Cinética , Receptores de Antígenos de Linfocitos B/genética , SARS-CoV-2/inmunología , Índice de Severidad de la Enfermedad , Hipermutación Somática de Inmunoglobulina/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología
3.
J Virol ; 95(20): e0113421, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34346771

RESUMEN

Murine norovirus (MNV) infection results in a late translation shutoff that is proposed to contribute to the attenuated and delayed innate immune response observed both in vitro and in vivo. Recently, we further demonstrated the activation of the α subunit of eukaryotic initiation factor 2 (eIF2α) kinase GCN2 during MNV infection, which has been previously linked to immunomodulation and resistance to inflammatory signaling during metabolic stress. While viral infection is usually associated with activation of double-stranded RNA (dsRNA) binding pattern recognition receptor PKR, we hypothesized that the establishment of a metabolic stress in infected cells is a proviral event, exploited by MNV to promote replication through weakening the activation of the innate immune response. In this study, we used multi-omics approaches to characterize cellular responses during MNV replication. We demonstrate the activation of pathways related to the integrated stress response, a known driver of anti-inflammatory phenotypes in macrophages. In particular, MNV infection causes an amino acid imbalance that is associated with GCN2 and ATF2 signaling. Importantly, this reprogramming lacks the features of a typical innate immune response, with the ATF/CHOP target GDF15 contributing to the lack of antiviral responses. We propose that MNV-induced metabolic stress supports the establishment of host tolerance to viral replication and propagation. IMPORTANCE During viral infection, host defenses are typically characterized by the secretion of proinflammatory autocrine and paracrine cytokines, potentiation of the interferon (IFN) response, and induction of the antiviral response via activation of JAK and Stat signaling. To avoid these and propagate, viruses have evolved strategies to evade or counteract host sensing. In this study, we demonstrate that murine norovirus controls the antiviral response by activating a metabolic stress response that activates the amino acid response and impairs inflammatory signaling. This highlights novel tools in the viral countermeasures arsenal and demonstrates the importance of the currently poorly understood metabolic reprogramming occurring during viral infections.


Asunto(s)
Infecciones por Caliciviridae/inmunología , Macrófagos/virología , Factor de Transcripción Activador 2/metabolismo , Animales , Antivirales , Infecciones por Caliciviridae/metabolismo , Línea Celular , Factor 2 Eucariótico de Iniciación/metabolismo , Inmunidad Innata/inmunología , Inflamación/inmunología , Interferones , Macrófagos/inmunología , Ratones , Norovirus/patogenicidad , Proteínas Serina-Treonina Quinasas/metabolismo , Células RAW 264.7 , ARN Bicatenario/genética , Transducción de Señal/inmunología , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/genética
4.
Immunity ; 54(6): 1257-1275.e8, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34051148

RESUMEN

The kinetics of the immune changes in COVID-19 across severity groups have not been rigorously assessed. Using immunophenotyping, RNA sequencing, and serum cytokine analysis, we analyzed serial samples from 207 SARS-CoV2-infected individuals with a range of disease severities over 12 weeks from symptom onset. An early robust bystander CD8+ T cell immune response, without systemic inflammation, characterized asymptomatic or mild disease. Hospitalized individuals had delayed bystander responses and systemic inflammation that was already evident near symptom onset, indicating that immunopathology may be inevitable in some individuals. Viral load did not correlate with this early pathological response but did correlate with subsequent disease severity. Immune recovery is complex, with profound persistent cellular abnormalities in severe disease correlating with altered inflammatory responses, with signatures associated with increased oxidative phosphorylation replacing those driven by cytokines tumor necrosis factor (TNF) and interleukin (IL)-6. These late immunometabolic and immune defects may have clinical implications.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , COVID-19/inmunología , COVID-19/virología , Interacciones Huésped-Patógeno/inmunología , Activación de Linfocitos/inmunología , SARS-CoV-2/inmunología , Biomarcadores , Linfocitos T CD8-positivos/metabolismo , COVID-19/diagnóstico , COVID-19/genética , Citocinas/metabolismo , Susceptibilidad a Enfermedades , Perfilación de la Expresión Génica , Humanos , Mediadores de Inflamación/metabolismo , Estudios Longitudinales , Activación de Linfocitos/genética , Fosforilación Oxidativa , Fenotipo , Pronóstico , Especies Reactivas de Oxígeno/metabolismo , Índice de Severidad de la Enfermedad , Transcriptoma
5.
Nature ; 592(7853): 277-282, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33545711

RESUMEN

The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical for virus infection through the engagement of the human ACE2 protein1 and is a major antibody target. Here we show that chronic infection with SARS-CoV-2 leads to viral evolution and reduced sensitivity to neutralizing antibodies in an immunosuppressed individual treated with convalescent plasma, by generating whole-genome ultra-deep sequences for 23 time points that span 101 days and using in vitro techniques to characterize the mutations revealed by sequencing. There was little change in the overall structure of the viral population after two courses of remdesivir during the first 57 days. However, after convalescent plasma therapy, we observed large, dynamic shifts in the viral population, with the emergence of a dominant viral strain that contained a substitution (D796H) in the S2 subunit and a deletion (ΔH69/ΔV70) in the S1 N-terminal domain of the spike protein. As passively transferred serum antibodies diminished, viruses with the escape genotype were reduced in frequency, before returning during a final, unsuccessful course of convalescent plasma treatment. In vitro, the spike double mutant bearing both ΔH69/ΔV70 and D796H conferred modestly decreased sensitivity to convalescent plasma, while maintaining infectivity levels that were similar to the wild-type virus.The spike substitution mutant D796H appeared to be the main contributor to the decreased susceptibility to neutralizing antibodies, but this mutation resulted in an infectivity defect. The spike deletion mutant ΔH69/ΔV70 had a twofold higher level of infectivity than wild-type SARS-CoV-2, possibly compensating for the reduced infectivity of the D796H mutation. These data reveal strong selection on SARS-CoV-2 during convalescent plasma therapy, which is associated with the emergence of viral variants that show evidence of reduced susceptibility to neutralizing antibodies in immunosuppressed individuals.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19/terapia , COVID-19/virología , Evolución Molecular , Mutagénesis/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Adenosina Monofosfato/uso terapéutico , Anciano , Alanina/análogos & derivados , Alanina/farmacología , Alanina/uso terapéutico , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Enfermedad Crónica , Genoma Viral/efectos de los fármacos , Genoma Viral/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Evasión Inmune/efectos de los fármacos , Evasión Inmune/genética , Evasión Inmune/inmunología , Tolerancia Inmunológica/efectos de los fármacos , Tolerancia Inmunológica/inmunología , Inmunización Pasiva , Terapia de Inmunosupresión , Masculino , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/inmunología , Mutación , Filogenia , SARS-CoV-2/inmunología , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Factores de Tiempo , Carga Viral/efectos de los fármacos , Esparcimiento de Virus , Sueroterapia para COVID-19
6.
Nat Commun ; 11(1): 6385, 2020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-33318491

RESUMEN

The response to the coronavirus disease 2019 (COVID-19) pandemic has been hampered by lack of an effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antiviral therapy. Here we report the use of remdesivir in a patient with COVID-19 and the prototypic genetic antibody deficiency X-linked agammaglobulinaemia (XLA). Despite evidence of complement activation and a robust T cell response, the patient developed persistent SARS-CoV-2 pneumonitis, without progressing to multi-organ involvement. This unusual clinical course is consistent with a contribution of antibodies to both viral clearance and progression to severe disease. In the absence of these confounders, we take an experimental medicine approach to examine the in vivo utility of remdesivir. Over two independent courses of treatment, we observe a temporally correlated clinical and virological response, leading to clinical resolution and viral clearance, with no evidence of acquired drug resistance. We therefore provide evidence for the antiviral efficacy of remdesivir in vivo, and its potential benefit in selected patients.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Inmunidad Humoral/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Adenosina Monofosfato/uso terapéutico , Adulto , Alanina/uso terapéutico , Antivirales/uso terapéutico , COVID-19/virología , Fiebre/prevención & control , Humanos , Inmunidad Humoral/inmunología , Recuento de Linfocitos , Masculino , SARS-CoV-2/inmunología , SARS-CoV-2/fisiología , Resultado del Tratamiento
7.
Elife ; 92020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32558644

RESUMEN

Previously, we showed that 3% (31/1032)of asymptomatic healthcare workers (HCWs) from a large teaching hospital in Cambridge, UK, tested positive for SARS-CoV-2 in April 2020. About 15% (26/169) HCWs with symptoms of coronavirus disease 2019 (COVID-19) also tested positive for SARS-CoV-2 (Rivett et al., 2020). Here, we show that the proportion of both asymptomatic and symptomatic HCWs testing positive for SARS-CoV-2 rapidly declined to near-zero between 25th April and 24th May 2020, corresponding to a decline in patient admissions with COVID-19 during the ongoing UK 'lockdown'. These data demonstrate how infection prevention and control measures including staff testing may help prevent hospitals from becoming independent 'hubs' of SARS-CoV-2 transmission, and illustrate how, with appropriate precautions, organizations in other sectors may be able to resume on-site work safely.


Asunto(s)
Técnicas de Laboratorio Clínico/estadística & datos numéricos , Infecciones por Coronavirus/transmisión , Personal de Salud , Tamizaje Masivo/estadística & datos numéricos , Enfermedades Profesionales/prevención & control , Pandemias , Neumonía Viral/transmisión , Adulto , Enfermedades Asintomáticas , Betacoronavirus/genética , Betacoronavirus/aislamiento & purificación , COVID-19 , Prueba de COVID-19 , Infecciones Comunitarias Adquiridas/transmisión , Trazado de Contacto , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/prevención & control , Transmisión de Enfermedad Infecciosa/prevención & control , Inglaterra/epidemiología , Composición Familiar , Femenino , Unidades Hospitalarias , Hospitales de Enseñanza/organización & administración , Hospitales de Enseñanza/estadística & datos numéricos , Hospitales Universitarios/organización & administración , Hospitales Universitarios/estadística & datos numéricos , Humanos , Control de Infecciones , Transmisión de Enfermedad Infecciosa de Paciente a Profesional/estadística & datos numéricos , Masculino , Tamizaje Masivo/organización & administración , Persona de Mediana Edad , Nasofaringe/virología , Enfermedades Profesionales/epidemiología , Pandemias/prevención & control , Admisión del Paciente/estadística & datos numéricos , Neumonía Viral/diagnóstico , Neumonía Viral/epidemiología , Neumonía Viral/prevención & control , Prevalencia , Evaluación de Programas y Proyectos de Salud , Reacción en Cadena en Tiempo Real de la Polimerasa , SARS-CoV-2 , Evaluación de Síntomas
8.
mBio ; 10(5)2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31575769

RESUMEN

Human norovirus (HuNoV) is the main cause of gastroenteritis worldwide, yet no therapeutics are currently available. Here, we utilize a human norovirus replicon in human gastric tumor (HGT) cells to identify host factors involved in promoting or inhibiting HuNoV replication. We observed that an interferon (IFN)-cured population of replicon-harboring HGT cells (HGT-Cured) was enhanced in their ability to replicate transfected HuNoV RNA compared to parental HGT cells, suggesting that differential gene expression in HGT-Cured cells created an environment favoring norovirus replication. Microarrays were used to identify genes differentially regulated in HGT-NV and HGT-Cured compared to parental cells. We found that IFN lambda receptor (IFNLR1) expression was highly reduced in HGT-NV and HGT-Cured cells. While all three cell lines responded to exogenous IFN-ß by inducing interferon-stimulated genes, HGT-NV and HGT-Cured cells failed to respond to exogenous IFN-λ. Methylation-sensitive PCR showed that an increased methylation of the IFNLR1 promoter and inhibition of DNA methyltransferase activity partially reactivated IFNLR1 expression in HGT-NV and HGT-Cured cells, indicating that host adaptation occurred via epigenetic reprogramming. Moreover, IFNLR1 ectopic expression rescued response to IFN-λ and restricted HuNoV replication in HGT-NV cells. We conclude that type III IFN is important in inhibiting HuNoV replication in vitro and that the loss of IFNLR1 enhances replication of HuNoV. This study unravels for the first time epigenetic reprogramming of the interferon lambda receptor as a new mechanism of cellular adaptation during long-term RNA virus replication and shows that an endogenous level of interferon lambda signaling is able to control human norovirus replication.IMPORTANCE Noroviruses are one of the most widespread causes of gastroenteritis, yet no suitable therapeutics are available for their control. Moreover, to date, knowledge of the precise cellular processes that control the replication of the human norovirus remains ill defined. Recent work has highlighted the importance of type III interferon (IFN) responses in the restriction of viruses that infect the intestine. Here, we analyzed the adaptive changes required to support long-term replication of noroviruses in cell culture and found that the receptor for type III IFN is decreased in its expression. We confirmed that this decreased expression was driven by epigenetic modifications and that cells lacking the type III IFN receptor are more permissive for norovirus replication. This work provides new insights into key host-virus interactions required for the control of noroviruses and opens potential novel avenues for their therapeutic control.


Asunto(s)
Epigénesis Genética , Norovirus/fisiología , Receptores de Interferón/metabolismo , Replicación Viral , Línea Celular , Línea Celular Tumoral , Regulación hacia Abajo , Humanos , Interferones/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Interferón/genética , Análisis de Matrices Tisulares , Interferón lambda
9.
J Virol ; 90(14): 6489-6501, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27147742

RESUMEN

UNLABELLED: In response to stress such as virus infection, cells can stall translation by storing mRNAs away in cellular compartments called stress granules (SGs). This defense mechanism favors cell survival by limiting the use of energy and nutrients until the stress is resolved. In some cases it may also block viral propagation as viruses are dependent on the host cell resources to produce viral proteins. Human norovirus is a member of the Caliciviridae family responsible for gastroenteritis outbreaks worldwide. Previous studies on caliciviruses have identified mechanisms by which they can usurp the host translational machinery, using the viral protein genome-linked VPg, or regulate host protein synthesis through the mitogen-activated protein kinase (MAPK) pathway. Here, we examined the effect of feline calicivirus (FCV) infection on SG accumulation. We show that FCV infection impairs the assembly of SGs despite an increased phosphorylation of eukaryotic initiation factor eIF2α, a hallmark of stress pathway activation. Furthermore, SGs did not accumulate in FCV-infected cells that were stressed with arsenite or hydrogen peroxide. FCV infection resulted in the cleavage of the SG-nucleating protein Ras-GTPase activating SH3 domain-binding protein (G3BP1), which is mediated by the viral 3C-like proteinase NS6(Pro) Using mutational analysis, we identified the FCV-induced cleavage site within G3BP1, which differs from the poliovirus 3C proteinase cleavage site previously identified. Finally, we showed that NS6(Pro)-mediated G3BP1 cleavage impairs SG assembly. In contrast, murine norovirus (MNV) infection did not impact arsenite-induced SG assembly or G3BP1 integrity, suggesting that related caliciviruses have distinct effects on the stress response pathway. IMPORTANCE: Human noroviruses are a major cause of viral gastroenteritis, and it is important to understand how they interact with the infected host cell. Feline calicivirus (FCV) and murine norovirus (MNV) are used as models to understand norovirus biology. Recent studies have suggested that the assembly of stress granules is central in orchestrating stress and antiviral responses to restrict viral replication. Overall, our study provides the first insight on how caliciviruses impair stress granule assembly by targeting the nucleating factor G3BP1 via the viral proteinase NS6(Pro) This work provides new insights into host-pathogen interactions that regulate stress pathways during FCV infection.


Asunto(s)
Infecciones por Caliciviridae/virología , Calicivirus Felino/patogenicidad , Proteínas Portadoras/metabolismo , Gránulos Citoplasmáticos/metabolismo , Interacciones Huésped-Patógeno , Replicación Viral , Proteasas Virales 3C , Animales , Infecciones por Caliciviridae/metabolismo , Infecciones por Caliciviridae/patología , Proteínas Portadoras/genética , Gatos , Cisteína Endopeptidasas/metabolismo , Gránulos Citoplasmáticos/virología , ADN Helicasas , Factor 2 Eucariótico de Iniciación/metabolismo , Células HeLa , Humanos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Proteínas de Unión a Poli-ADP-Ribosa , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN , Proteínas Virales/metabolismo
10.
Sci Rep ; 5: 15575, 2015 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-26510767

RESUMEN

Viral cycle progression depends upon host-cell processes in infected cells, and this is true for bovine viral diarrhoea virus (BVDV), the causative agent of BVD that is a worldwide threat to the bovine industry. Heme oxygenase-1 (HO-1) is a ubiquitously expressed inducible isoform of the first and rate-limiting enzyme for heme degradation. Recent studies have demonstrated that HO-1 has significant antiviral properties, inhibiting the replication of viruses such as ebola virus, human immunodeficiency virus, hepatitis C virus, and porcine reproductive and respiratory syndrome virus. However, the function of HO-1 in BVDV infection is unclear. In the present study, the relationship between HO-1 and BVDV was investigated. In vitro analysis of HO-1 expression in BVDV-infected MDBK cells demonstrated that a decrease in HO-1 as BVDV replication increased. Increasing HO-1 expression through adenoviral-mediated overexpression or induction with cobalt protoporphyrin (CoPP, a potent HO-1 inducer), pre- and postinfection, effectively inhibited BVDV replication. In contrast, HO-1 siRNA knockdown in BVDV-infected cells increased BVDV replication. Therefore, the data were consistent with HO-1 acting as an anti-viral factor and these findings suggested that induction of HO-1 may be a useful prevention and treatment strategy against BVDV infection.


Asunto(s)
Virus de la Diarrea Viral Bovina/fisiología , Regulación Enzimológica de la Expresión Génica , Hemo-Oxigenasa 1/biosíntesis , Replicación Viral/fisiología , Animales , Bovinos , Línea Celular , Hemo-Oxigenasa 1/genética , Humanos
11.
J Pathol ; 235(2): 206-16, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25312350

RESUMEN

Norovirus infection in humans typically results in acute gastroenteritis but may also occur in many animal species. Noroviruses are recognized as one of the most common causes of acute gastroenteritis in the world, being responsible for almost 20% of all cases. Despite their prevalence and impact, our knowledge of the norovirus life cycle and the pathological processes associated with norovirus-induced disease is limited. Whilst infection of the intestine is the norm, extraintestinal spread and associated pathologies have also been described. In addition, long-term chronic infections are now recognized as a significant cause of morbidity and mortality in the immunocompromised. This review aims to summarize the current state of knowledge with respect to norovirus pathology and the underlying mechanisms that have been characterized to date.


Asunto(s)
Infecciones por Caliciviridae/patología , Infecciones por Caliciviridae/virología , Gastroenteritis/patología , Gastroenteritis/virología , Norovirus/patogenicidad , Patología Molecular/métodos , Animales , Biopsia , Infecciones por Caliciviridae/inmunología , Infecciones por Caliciviridae/mortalidad , Gastroenteritis/inmunología , Gastroenteritis/mortalidad , Genotipo , Interacciones Huésped-Patógeno , Humanos , Norovirus/genética , Norovirus/inmunología , Valor Predictivo de las Pruebas , Pronóstico , Tropismo Viral , Virología/métodos , Virulencia
12.
PLoS One ; 5(3): e9562, 2010 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-20224775

RESUMEN

BACKGROUND: Positive strand RNA viruses rely heavily on host cell RNA binding proteins for various aspects of their life cycle. Such proteins interact with sequences usually present at the 5' or 3' extremities of the viral RNA genome, to regulate viral translation and/or replication. We have previously reported that the well characterized host RNA binding protein polypyrimidine tract binding protein (PTB) interacts with the 5'end of the feline calicivirus (FCV) genomic and subgenomic RNAs, playing a role in the FCV life cycle. PRINCIPAL FINDINGS: We have demonstrated that PTB interacts with at least two binding sites within the 5'end of the FCV genome. In vitro translation indicated that PTB may function as a negative regulator of FCV translation and this was subsequently confirmed as the translation of the viral subgenomic RNA in PTB siRNA treated cells was stimulated under conditions in which RNA replication could not occur. We also observed that PTB redistributes from the nucleus to the cytoplasm during FCV infection, partially localizing to viral replication complexes, suggesting that PTB binding may be involved in the switch from translation to replication. Reverse genetics studies demonstrated that synonymous mutations in the PTB binding sites result in a cell-type specific defect in FCV replication. CONCLUSIONS: Our data indicates that PTB may function to negatively regulate FCV translation initiation. To reconcile this with efficient virus replication in cells, we propose a putative model for the function of PTB in the FCV life cycle. It is possible that during the early stages of infection, viral RNA is translated in the absence of PTB, however, as the levels of viral proteins increase, the nuclear-cytoplasmic shuttling of PTB is altered, increasing the cytoplasmic levels of PTB, inhibiting viral translation. Whether PTB acts directly to repress translation initiation or via the recruitment of other factors remains to be determined but this may contribute to the stimulation of viral RNA replication via clearance of ribosomes from viral RNA.


Asunto(s)
Calicivirus Felino/metabolismo , Regulación Viral de la Expresión Génica , Proteína de Unión al Tracto de Polipirimidina/fisiología , Animales , Sitios de Unión , Gatos , Línea Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Genoma Viral , Proteínas Fluorescentes Verdes/metabolismo , Mutación , Proteína de Unión al Tracto de Polipirimidina/genética , Unión Proteica , Biosíntesis de Proteínas , ARN Interferente Pequeño/metabolismo , Ribonucleasa H/metabolismo , Replicación Viral
13.
J Virol ; 83(18): 9370-87, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19587035

RESUMEN

A poliovirus (PV) mutant (termed GG), which is incapable of producing 3AB, VPg, and 3CD proteins due to a defective cleavage site between the 3B and 3C proteins, replicated, producing 3BC-linked RNA rather than the VPg-linked RNA produced by the wild type (WT). GG PV RNA is quasi-infectious. The yield of infectious GG PV relative to replicated RNA is reduced by almost 5 logs relative to that of WT PV. Proteolytic activity required for polyprotein processing is normal for the GG mutant. 3BC-linked RNA can be encapsidated as efficiently as VPg-linked RNA. However, a step after genome replication but preceding virus assembly that is dependent on 3CD and/or 3AB proteins limits production of infectious GG PV. This step may involve release of replicated genomes from replication complexes. A pseudorevertant (termed EG) partially restored cleavage at the 3B-3C cleavage site. The reduced rate of formation of 3AB and 3CD caused corresponding reductions in the observed rate of genome replication and infectious virus production by EG PV without impacting the final yield of replicated RNA or infectious virus relative to that of WT PV. Using EG PV, we showed that genome replication and encapsidation were distinct steps in the multiplication cycle. Ectopic expression of 3CD protein reversed the genome replication phenotype without alleviating the infectious-virus production phenotype. This is the first report of a trans-complementable function for 3CD for any picornavirus. This observation supports an interaction between 3CD protein and viral and/or host factors that is critical for genome replication, perhaps formation of replication complexes.


Asunto(s)
Genoma Viral , Poliovirus/genética , Ensamble de Virus , Replicación Viral/genética , Humanos , Mutación , Poliproteínas , ARN Viral , Proteínas Virales
14.
EMBO J ; 26(17): 3936-44, 2007 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-17690690

RESUMEN

The ErbB3-binding protein 1 (Ebp1) is an important regulator of transcription, affecting eukaryotic cell growth, proliferation, differentiation and survival. Ebp1 can also affect translation and cooperates with the polypyrimidine tract-binding protein (PTB) to stimulate the activity of the internal ribosome entry site (IRES) of foot-and-mouth disease virus (FMDV). We report here the crystal structure of murine Ebp1 (p48 isoform), providing the first glimpse of the architecture of this versatile regulator. The structure reveals a core domain that is homologous to methionine aminopeptidases, coupled to a C-terminal extension that contains important motifs for binding proteins and RNA. It sheds new light on the conformational differences between the p42 and p48 isoforms of Ebp1, the disposition of the key protein-interacting motif ((354)LKALL(358)) and the RNA-binding activity of Ebp1. We show that the primary RNA-binding site is formed by a Lys-rich motif in the C terminus and mediates the interaction with the FMDV IRES. We also demonstrate a specific functional requirement for Ebp1 in FMDV IRES-directed translation that is independent of a direct interaction with PTB.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Modelos Moleculares , Proteínas Adaptadoras Transductoras de Señales/fisiología , Aminopeptidasas/química , Sitios de Unión , Virus de la Fiebre Aftosa/genética , Lisina/química , Metionil Aminopeptidasas , Biosíntesis de Proteínas , Conformación Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/fisiología , ARN Interferente Pequeño/genética , ARN Viral/química , Activación Transcripcional
15.
J Gen Virol ; 88(Pt 8): 2091-2100, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17622609

RESUMEN

Despite the significant disease burden caused by human norovirus infection, an efficient tissue-culture system for these viruses remains elusive. Murine norovirus (MNV) is an ideal surrogate for the study of norovirus biology, as the virus replicates efficiently in tissue culture and a low-cost animal model is readily available. In this report, a reverse-genetics system for MNV is described, using a fowlpox virus (FWPV) recombinant expressing T7 RNA polymerase to recover genetically defined MNV in tissue culture for the first time. These studies demonstrated that approaches that have proved successful for other members of the family Caliciviridae failed to lead to recovery of MNV. This was due to our observation that vaccinia virus infection had a negative effect on MNV replication. In contrast, FWPV infection had no deleterious effect and allowed the recovery of infectious MNV from cells previously transfected with MNV cDNA constructs. These studies also indicated that the nature of the 3'-terminal nucleotide is critical for efficient virus recovery and that inclusion of a hepatitis delta virus ribozyme at the 3' end can increase the efficiency with which virus is recovered. This system now allows the recovery of genetically defined noroviruses and will facilitate the analysis of the effects of genetic variation on norovirus pathogenesis.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Virus de la Viruela de las Aves de Corral/metabolismo , Vectores Genéticos/metabolismo , Norovirus/fisiología , Virus Reordenados/metabolismo , Proteínas Virales/fisiología , Región de Flanqueo 3'/fisiología , Animales , Bacteriófago T7/enzimología , Línea Celular , Cricetinae , ADN Complementario/genética , ARN Polimerasas Dirigidas por ADN/genética , Virus de la Viruela de las Aves de Corral/genética , Virus de la Hepatitis Delta/enzimología , Macrófagos/virología , Ratones , ARN Catalítico/fisiología , Especificidad de la Especie , Transfección , Replicación Viral
16.
J Gen Virol ; 87(Pt 11): 3339-3347, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17030868

RESUMEN

The interaction of host-cell nucleic acid-binding proteins with the genomes of positive-stranded RNA viruses is known to play a role in the translation and replication of many viruses. To date, however, the characterization of similar interactions with the genomes of members of the family Caliciviridae has been limited to in vitro binding analysis. In this study, Feline calicivirus (FCV) has been used as a model system to identify and characterize the role of host-cell factors that interact with the viral RNA. It was demonstrated that polypyrimidine tract-binding protein (PTB) interacts specifically with the 5' sequences of the FCV genomic and subgenomic RNAs. Using RNA interference it was shown that PTB is required for efficient FCV replication in a temperature-dependent manner. siRNA-mediated knockdown of PTB resulted in a 15- to 100-fold reduction in virus titre, as well as a concomitant reduction in viral RNA and protein synthesis at 32 degrees C. In addition, virus-induced cytopathic effect was significantly delayed as a result of an siRNA-mediated reduction in PTB levels. A role for PTB in the calicivirus life cycle was more apparent at temperatures above and below 37 degrees C, fitting with the hypothesis that PTB functions as an RNA chaperone, potentially aiding the folding of RNA into functional structures. This is the first functional demonstration of a host-cell protein interacting with a calicivirus RNA.


Asunto(s)
Calicivirus Felino/fisiología , Proteína de Unión al Tracto de Polipirimidina/fisiología , Regiones no Traducidas 5'/metabolismo , Animales , Línea Celular , Eliminación de Gen , Proteína de Unión al Tracto de Polipirimidina/genética , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Unión Proteica , ARN Interferente Pequeño/genética , ARN Viral/metabolismo , Temperatura , Replicación Viral
17.
J Virol ; 79(18): 12016-24, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16140777

RESUMEN

We previously reported that soluble decay-accelerating factor (DAF) and coxsackievirus-adenovirus receptor (CAR) blocked coxsackievirus B3 (CVB3) myocarditis in mice, but only soluble CAR blocked CVB3-mediated pancreatitis. Here, we report that the in vitro mechanisms of viral inhibition by these soluble receptors also differ. Soluble DAF inhibited virus infection through the formation of reversible complexes with CVB3, while binding of soluble CAR to CVB induced the formation of altered (A) particles with a resultant irreversible loss of infectivity. A-particle formation was characterized by loss of VP4 from the virions and required incubation of CVB3-CAR complexes at 37 degrees C. Dimeric soluble DAF (DAF-Fc) was found to be 125-fold-more effective at inhibiting CVB3 than monomeric DAF, which corresponded to a 100-fold increase in binding affinity as determined by surface plasmon resonance analysis. Soluble CAR and soluble dimeric CAR (CAR-Fc) bound to CVB3 with 5,000- and 10,000-fold-higher affinities than the equivalent forms of DAF. While DAF-Fc was 125-fold-more effective at inhibiting virus than monomeric DAF, complement regulation by DAF-Fc was decreased 4 fold. Therefore, while the virus binding was a cooperative event, complement regulation was hindered by the molecular orientation of DAF-Fc, indicating that the regions responsible for complement regulation and virus binding do not completely overlap. Relative contributions of CVB binding affinity, receptor binding footprint on the virus capsid, and induction of capsid conformation alterations for the ability of cellular DAF and CAR to act as receptors are discussed.


Asunto(s)
Infecciones por Coxsackievirus/prevención & control , Enterovirus Humano B/patogenicidad , Receptores Virales/fisiología , Animales , Unión Competitiva , Antígenos CD55/química , Antígenos CD55/genética , Antígenos CD55/fisiología , Línea Celular , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus , Infecciones por Coxsackievirus/fisiopatología , Infecciones por Coxsackievirus/virología , Dimerización , Enterovirus Humano B/fisiología , Células HeLa , Humanos , Técnicas In Vitro , Receptores Virales/química , Receptores Virales/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Solubilidad , Porcinos
18.
J Virol ; 79(12): 7698-706, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15919922

RESUMEN

The 5' terminus of picornavirus genomic RNA is covalently linked to the virus-encoded peptide 3B (VPg). Foot-and-mouth disease virus (FMDV) is unique in encoding and using 3 distinct forms of this peptide. These peptides each act as primers for RNA synthesis by the virus-encoded RNA polymerase 3D(pol). To act as the primer for positive-strand RNA synthesis, the 3B peptides have to be uridylylated to form VPgpU(pU). For certain picornaviruses, it has been shown that this reaction is achieved by the 3D(pol) in the presence of the 3CD precursor plus an internal RNA sequence termed a cis-acting replication element (cre). The FMDV cre has been identified previously to be within the 5' untranslated region, whereas all other picornavirus cre structures are within the viral coding region. The requirements for the in vitro uridylylation of each of the FMDV 3B peptides has now been determined, and the role of the FMDV cre (also known as the 3B-uridylylation site, or bus) in this reaction has been analyzed. The poly(A) tail does not act as a significant template for FMDV 3B uridylylation.


Asunto(s)
Virus de la Fiebre Aftosa/metabolismo , Péptidos/metabolismo , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Uridina Monofosfato/metabolismo , Proteínas del Núcleo Viral/metabolismo , Elementos de Facilitación Genéticos , Virus de la Fiebre Aftosa/química , Virus de la Fiebre Aftosa/genética , Replicación Viral
19.
J Gen Virol ; 84(Pt 9): 2359-2363, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12917456

RESUMEN

Nucleotides in the terminal loop of the poliovirus 2C cis-acting replication element (2C(CRE)), a 61 nt structured RNA, function as the template for the addition of two uridylate (U) residues to the viral protein VPg. This uridylylation reaction leads to the formation of VPgpUpU, which is used by the viral RNA polymerase as a nucleotide-peptide primer for genome replication. Although VPg primes both positive- and negative-strand replication, the specific requirement for 2C(CRE)-mediated uridylylation for one or both events has not been demonstrated. We have used a cell-free in vitro translation and replication reaction to demonstrate that 2C(CRE) is not required for the initiation of the negative-sense strand, which is synthesized in the absence of 2C(CRE)-mediated VPgpUpU formation. We propose that the 3' poly(A) tail could serve as the template for the formation of a VPg-poly(U) primer that functions in the initiation of negative-sense strands.


Asunto(s)
Poliovirus/genética , Poliovirus/metabolismo , Replicón/fisiología , Uridina Monofosfato/metabolismo , Proteínas del Núcleo Viral/metabolismo , Genoma Viral , ARN Viral/biosíntesis , Elementos de Respuesta , Proteínas del Núcleo Viral/genética , Replicación Viral
20.
RNA ; 9(1): 124-37, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12554882

RESUMEN

The poliovirus cis-acting replication element (CRE) templates the uridylylation of VPg, the protein primer for genome replication. The CRE is a highly conserved structural RNA element in the enteroviruses and located within the polyprotein-coding region of the genome. We have determined the native structure of the CRE, defined the regions of the structure critical for activity, and investigated the influence of genomic location on function. Our results demonstrate that a 14-nucleotide unpaired terminal loop, presented on a suitably stable stem, is all that is required for function. These conclusions complement the recent analysis of the 14-nucleotide terminal loop in the CRE of human rhinovirus type 14. The CRE can be translocated to the 5' noncoding region of the genome, at least 3.7-kb distant from the native location, without adversely influencing activity, and CRE duplications do not adversely influence replication. We do not have evidence for a specific interaction between the CRE and the RNA-binding 3CD(pro) complex, an essential component of the uridylylation reaction, and the mechanism by which the CRE is coordinated and orientated during the reaction remains unclear. These studies provide a detailed overview of the structural determinants required for CRE function, and will facilitate a better understanding of the requirements for picornavirus replication.


Asunto(s)
Poliovirus/genética , ARN Viral/genética , Secuencia de Bases , Ensayo de Cambio de Movilidad Electroforética , Células HeLa , Humanos , Datos de Secuencia Molecular , Mutagénesis , Conformación de Ácido Nucleico , Poliovirus/fisiología , ARN Viral/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA