Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
R Soc Open Sci ; 11(7): 240491, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39021782

RESUMEN

Lanthipeptides are a large group of ribosomally encoded peptides cyclized by thioether and methylene bridges, which include the lantibiotics, lanthipeptides with antimicrobial activity. There are over 100 experimentally characterized lanthipeptides, with at least 25 distinct cyclization bridging patterns. We set out to understand the evolutionary dynamics and diversity of lanthipeptides. We identified 977 peptides in 2785 bacterial genomes from short open-reading frames encoding lanthipeptide modifiable amino acids (C, S and T) that lay chromosomally adjacent to genes encoding proteins containing the cyclase domain. These appeared to be synthesized by both known and novel enzymatic combinations. Our predictor of bridging topology suggested 36 novel-predicted topologies, including a single-cysteine topology seen in 179 lanthionine or labionin containing peptides, which were enriched for histidine. Evidence that supported the relevance of the single-cysteine containing lanthipeptide precursors included the presence of the labionin motif among single cysteine peptides that clustered with labionin-associated synthetase domains, and the leader features of experimentally defined lanthipeptides that were shared with single cysteine predictions. Evolutionary rate variation among peptide subfamilies suggests that selection pressures for functional change differ among subfamilies. Lanthipeptides that have recently evolved specific novel features may represent a richer source of potential novel antimicrobials, since their target species may have had less time to evolve resistance.

2.
Tuberculosis (Edinb) ; : 102453, 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38071177

RESUMEN

Mycobacterium tuberculosis, the causative agent of human tuberculosis (hTB), is a close evolutionary relative of Mycobacterium bovis, which causes bovine tuberculosis (bTB), one of the most damaging infectious diseases to livestock agriculture. Previous studies have shown that the pathogenesis of bTB disease is comparable to hTB disease, and that the bovine and human alveolar macrophage (bAM and hAM, respectively) transcriptomes are extensively reprogrammed in response to infection with these intracellular mycobacterial pathogens. In this study, a multi-omics integrative approach was applied with functional genomics and GWAS data sets across the two primary hosts (Bos taurus and Homo sapiens) and both pathogens (M. bovis and M. tuberculosis). Four different experimental infection groups were used: 1) bAM infected with M. bovis, 2) bAM infected with M. tuberculosis, 3) hAM infected with M. tuberculosis, and 4) human monocyte-derived macrophages (hMDM) infected with M. tuberculosis. RNA-seq data from these experiments 24 h post-infection (24 hpi) was analysed using three computational pipelines: 1) differentially expressed genes, 2) differential gene expression interaction networks, and 3) combined pathway analysis. The results were integrated with high-resolution bovine and human GWAS data sets to detect novel quantitative trait loci (QTLs) for resistance to mycobacterial infection and resilience to disease. This revealed common and unique response macrophage pathways for both pathogens and identified 32 genes (12 bovine and 20 human) significantly enriched for SNPs associated with disease resistance, the majority of which encode key components of the NF-κB signalling pathway and that also drive formation of the granuloma.

3.
Elife ; 112022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36173104

RESUMEN

Macrophages are a highly adaptive population of innate immune cells. Polarization with IFNγ and LPS into the 'classically activated' M1 macrophage enhances pro-inflammatory and microbicidal responses, important for eradicating bacteria such as Mycobacterium tuberculosis. By contrast, 'alternatively activated' M2 macrophages, polarized with IL-4, oppose bactericidal mechanisms and allow mycobacterial growth. These activation states are accompanied by distinct metabolic profiles, where M1 macrophages favor near exclusive use of glycolysis, whereas M2 macrophages up-regulate oxidative phosphorylation (OXPHOS). Here, we demonstrate that activation with IL-4 and IL-13 counterintuitively induces protective innate memory against mycobacterial challenge. In human and murine models, prior activation with IL-4/13 enhances pro-inflammatory cytokine secretion in response to a secondary stimulation with mycobacterial ligands. In our murine model, enhanced killing capacity is also demonstrated. Despite this switch in phenotype, IL-4/13 trained murine macrophages do not demonstrate M1-typical metabolism, instead retaining heightened use of OXPHOS. Moreover, inhibition of OXPHOS with oligomycin, 2-deoxy glucose or BPTES all impeded heightened pro-inflammatory cytokine responses from IL-4/13 trained macrophages. Lastly, this work identifies that IL-10 attenuates protective IL-4/13 training, impeding pro-inflammatory and bactericidal mechanisms. In summary, this work provides new and unexpected insight into alternative macrophage activation states in the context of mycobacterial infection.


Asunto(s)
Interleucina-10 , Interleucina-13 , Animales , Citocinas/metabolismo , Glucosa/metabolismo , Humanos , Interleucina-10/metabolismo , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Lipopolisacáridos/metabolismo , Activación de Macrófagos , Macrófagos/metabolismo , Ratones , Oligomicinas , Fosforilación Oxidativa
4.
Metabolomics ; 18(4): 21, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35320420

RESUMEN

INTRODUCTION: Paratuberculosis, commonly known as Johne's disease, is a chronic granulomatous infection of ruminants caused by Mycobacterium avium subspecies paratuberculosis (MAP). Clinical signs, including reduced milk yields, weight loss and diarrhoea, are typically absent until 2 to 6 years post exposure. OBJECTIVES: To identify metabolomic changes profiles of MAP challenged Holstein-Friesian (HF) cattle and correlate identified metabolites to haematological and immunological parameters. METHODS: At approximately 6 weeks of age, calves (n = 9) were challenged with 3.8 × 109 cells of MAP (clinical isolate CIT003) on 2 consecutive days. Additional unchallenged calves (n = 9) formed the control group. The study used biobanked serum from cattle sampled periodically from 3- to 33-months post challenge. The assessment of sera using flow infusion electrospray high resolution mass spectrometry (FIE-HRMS) for high throughput, sensitive, non-targeted metabolite fingerprinting highlighted differences in metabolite levels between the two groups. RESULTS: In total, 25 metabolites which were differentially accumulated in MAP challenged cattle were identified, including 20 which displayed correlation to haematology parameters, particularly monocyte levels. CONCLUSION: The targeted metabolites suggest shifts in amino acid metabolism that could reflect immune system activation linked to MAP and as well as differences in phosphocholine levels which could reflect activation of the Th1 (tending towards pro-inflammatory) immune response. If verified by future work, selected metabolites could be used as biomarkers to diagnose and manage MAP infected cattle.


Asunto(s)
Enfermedades de los Bovinos , Mycobacterium avium subsp. paratuberculosis , Paratuberculosis , Aminoácidos , Animales , Bovinos , Enfermedades de los Bovinos/diagnóstico , Sistema Inmunológico/metabolismo , Metabolómica , Paratuberculosis/diagnóstico , Paratuberculosis/microbiología
5.
Front Immunol ; 12: 663695, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34691015

RESUMEN

In order to mount an appropriate immune response to infection, the macrophage must alter its metabolism by increasing aerobic glycolysis and concomitantly decreasing oxidative phosphorylation; a process known as the Warburg effect. Consequently, lactate, the end-product of glycolysis, accumulates in the extracellular environment. The subsequent effect of lactate on surrounding macrophages is poorly understood. Mycobacterium tuberculosis (Mtb), the causative organism of Tuberculosis (TB), is phagocytosed by macrophages in the airways. Mtb infected macrophages upregulate aerobic glycolysis and effector functions to try to kill the bacteria. Our lab has previously shown that human macrophages produce lactate in response to infection with Mtb. Although lactate has largely been considered a waste product of aerobic glycolysis, we hypothesised that the presence of extracellular lactate would impact subsequent immunometabolic responses and modulate macrophage function. We demonstrate that the presence of exogenous lactate has an immediate effect on the cellular metabolism of resting human macrophages; causing a decrease in extracellular acidification rate (ECAR; analogous to the rate of glycolysis) and an increase in the oxygen consumption rate (OCR; analogous to oxidative phosphorylation). When lactate-treated macrophages were stimulated with Mtb or LPS, glycolysis proceeds to increase immediately upon stimulation but oxidative phosphorylation remains stable compared with untreated cells that display a decrease in OCR. This resulted in a significantly reduced ECAR/OCR ratio early in response to stimulation. Since altered metabolism is intrinsically linked to macrophage function, we examined the effect of lactate on macrophage cytokine production and ability to kill Mtb. Lactate significantly reduced the concentrations of TNF and IL-1ß produced by human macrophages in response to Mtb but did not alter IL-10 and IL-6 production. In addition, lactate significantly improved bacillary clearance in human macrophages infected with Mtb, through a mechanism that is, at least in part, mediated by promoting autophagy. These data indicate that lactate, the product of glycolysis, has a negative feedback effect on macrophages resulting in an attenuated glycolytic shift upon subsequent stimulation and reduced pro-inflammatory cytokine production. Interestingly, this pro-resolution effect of lactate is associated with increased capacity to kill Mtb.


Asunto(s)
Glucólisis/efectos de los fármacos , Ácido Láctico/farmacología , Macrófagos/efectos de los fármacos , Mycobacterium tuberculosis/patogenicidad , Células Cultivadas , Citocinas/metabolismo , Interacciones Huésped-Patógeno , Humanos , Mediadores de Inflamación/metabolismo , Ácido Láctico/metabolismo , Activación de Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Viabilidad Microbiana , Mycobacterium tuberculosis/inmunología , Mycobacterium tuberculosis/metabolismo , Fosforilación Oxidativa/efectos de los fármacos
6.
Int J Mol Sci ; 22(6)2021 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-33805837

RESUMEN

For over 50 years, patients with drug-sensitive and drug-resistant tuberculosis have undergone long, arduous, and complex treatment processes with several antimicrobials. With the prevalence of drug-resistant strains on the rise and new therapies for tuberculosis urgently required, we assessed whether manipulating iron levels in macrophages infected with mycobacteria offered some insight into improving current antimicrobials that are used to treat drug-resistant tuberculosis. We investigated if the iron chelator, desferrioxamine, can support the function of human macrophages treated with an array of second-line antimicrobials, including moxifloxacin, bedaquiline, amikacin, clofazimine, linezolid and cycloserine. Primary human monocyte-derived macrophages were infected with Bacillus Calmette-Guérin (BCG), which is pyrazinamide-resistant, and concomitantly treated for 5 days with desferrioxamine in combination with each one of the second-line tuberculosis antimicrobials. Our data indicate that desferrioxamine used as an adjunctive treatment to bedaquiline significantly reduced the bacterial load in human macrophages infected with BCG. Our findings also reveal a link between enhanced bactericidal activity and increases in specific cytokines, as the addition of desferrioxamine increased levels of IFN-γ, IL-6, and IL-1ß in BCG-infected human monocyte-derived macrophages (hMDMs) treated with bedaquiline. These results provide insight, and an in vitro proof-of-concept, that iron chelators may prove an effective adjunctive therapy in combination with current tuberculosis antimicrobials.


Asunto(s)
Antituberculosos/farmacología , Deferoxamina/farmacología , Diarilquinolinas/farmacología , Quelantes del Hierro/farmacología , Hierro/metabolismo , Macrófagos/efectos de los fármacos , Mycobacterium bovis/efectos de los fármacos , Amicacina/farmacología , Carga Bacteriana/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Clofazimina/farmacología , Cicloserina/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Sinergismo Farmacológico , Expresión Génica , Humanos , Interferón gamma/genética , Interferón gamma/inmunología , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Interleucina-6/genética , Interleucina-6/inmunología , Linezolid/farmacología , Macrófagos/inmunología , Macrófagos/microbiología , Pruebas de Sensibilidad Microbiana , Moxifloxacino/farmacología , Mycobacterium bovis/crecimiento & desarrollo , Mycobacterium bovis/metabolismo , Cultivo Primario de Células , Pirazinamida/farmacología
7.
PLoS Pathog ; 17(3): e1009410, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33720986

RESUMEN

The Mycobacterium tuberculosis complex (MTBC) is a group of related pathogens that cause tuberculosis (TB) in mammals. MTBC species are distinguished by their ability to sustain in distinct host populations. While Mycobacterium bovis (Mbv) sustains transmission cycles in cattle and wild animals and causes zoonotic TB, M. tuberculosis (Mtb) affects human populations and seldom causes disease in cattle. The host and pathogen determinants underlying host tropism between MTBC species are still unknown. Macrophages are the main host cell that encounters mycobacteria upon initial infection, and we hypothesised that early interactions between the macrophage and mycobacteria influence species-specific disease outcome. To identify factors that contribute to host tropism, we analysed blood-derived primary human and bovine macrophages (hMϕ or bMϕ, respectively) infected with Mbv and Mtb. We show that Mbv and Mtb reside in different cellular compartments and differentially replicate in hMϕ whereas both Mbv and Mtb efficiently replicate in bMϕ. Specifically, we show that out of the four infection combinations, only the infection of bMϕ with Mbv promoted the formation of multinucleated giant cells (MNGCs), a hallmark of tuberculous granulomas. Mechanistically, we demonstrate that both MPB70 from Mbv and extracellular vesicles released by Mbv-infected bMϕ promote macrophage multinucleation. Importantly, we extended our in vitro studies to show that granulomas from Mbv-infected but not Mtb-infected cattle contained higher numbers of MNGCs. Our findings implicate MNGC formation in the contrasting pathology between Mtb and Mbv for the bovine host and identify MPB70 from Mbv and extracellular vesicles from bMϕ as mediators of this process.


Asunto(s)
Interacciones Huésped-Patógeno/fisiología , Macrófagos/microbiología , Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis/microbiología , Tropismo Viral/fisiología , Animales , Bovinos , Células Gigantes , Humanos
8.
ACS Chem Biol ; 15(9): 2415-2421, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32786261

RESUMEN

Macrophages are key immune cells for combatting Mycobacterium tuberculosis. However, M. tuberculosis possesses means to evade macrophage bactericidal responses by, for instance, secretion of the immunomodulatory para-hydroxybenzoic acid derivatives (pHBADs). While these molecules have been implicated in inhibiting macrophage responses in an acute context, little is known about their ability to reprogram macrophages via induction of long-term innate memory. Since innate memory has been highlighted as a promising strategy to augment bactericidal immune responses against M. tuberculosis, investigating corresponding immune evasion mechanisms is highly relevant. Our results reveal for the first time that pHBAD I and related molecules (unmethylated pHBAD I and the hexose l-rhamnose) reduce macrophage bactericidal mechanisms in both the short- and the long-term. Moreover, we demonstrate how methyl-p-anisate hinders bactericidal responses soon after exposure yet results in enhanced pro-inflammatory responses in the long-term. This work highlights new roles for these compounds in M. tuberculosis pathogenesis.


Asunto(s)
Inmunidad Innata/efectos de los fármacos , Factores Inmunológicos/farmacología , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Parabenos/farmacología , Animales , Benzoatos/farmacología , Interleucina-10/metabolismo , Ratones , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Ramnosa/farmacología , Factor de Necrosis Tumoral alfa/metabolismo
9.
Sci Rep ; 10(1): 5908, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32246047

RESUMEN

Extracellular microRNAs (miRNAs) are detectable in the peripheral blood and have been touted as potential biomarkers for a range of maladies. The presence and biomarker potential of miRNAs in other biofluids has been less thoroughly explored, particularly in the veterinary realm. Faecal miRNAs are a case in point; while they have been identified largely in rodents and humans, they have not been reported in cattle but may have prognostic or diagnostic value for Johne's Disease (JD) in cattle, a chronic granulomatous inflammation of the ileum caused by Mycobacterium avium subspecies paratuberculosis (MAP). The aim of this study was thus to characterise the bovine faecal miRNome and to determine the utility of these transcripts as biomarkers for JD. Real-time PCR arrays consisting of 752 miRNA targets, optimised for detection of human miRNA, were used to screen RNA purified from faecal samples obtained from confirmed JD clinical cases vs. healthy controls. Two hundred and fifty-eight miRNAs were detected in bovine faeces, three of which are potentially novel orthologs of known human miRNAs. Differential abundance of three miRNA was evident in animals with clinical JD as compared to healthy controls. Our study has therefore identified a variety of miRNAs in bovine faeces and has demonstrated their utility in differentiating healthy animals from those with late-stage JD, providing potential biomarkers for MAP infection and disease progression.


Asunto(s)
Heces/química , MicroARNs/análisis , Paratuberculosis/diagnóstico , Animales , Biomarcadores/análisis , Estudios de Casos y Controles , Bovinos , Progresión de la Enfermedad , Interacciones Huésped-Patógeno/genética , Mucosa Intestinal/patología , Mycobacterium avium subsp. paratuberculosis/aislamiento & purificación , Paratuberculosis/microbiología , Paratuberculosis/patología , Pronóstico
10.
Cell Rep ; 30(1): 124-136.e4, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31914380

RESUMEN

Increased glycolytic metabolism recently emerged as an essential process driving host defense against Mycobacterium tuberculosis (Mtb), but little is known about how this process is regulated during infection. Here, we observe repression of host glycolysis in Mtb-infected macrophages, which is dependent on sustained upregulation of anti-inflammatory microRNA-21 (miR-21) by proliferating mycobacteria. The dampening of glycolysis by miR-21 is mediated through targeting of phosphofructokinase muscle (PFK-M) isoform at the committed step of glycolysis, which facilitates bacterial growth by limiting pro-inflammatory mediators, chiefly interleukin-1ß (IL-1ß). Unlike other glycolytic genes, PFK-M expression and activity is repressed during Mtb infection through miR-21-mediated regulation, while other less-active isoenzymes dominate. Notably, interferon-γ (IFN-γ), which drives Mtb host defense, inhibits miR-21 expression, forcing an isoenzyme switch in the PFK complex, augmenting PFK-M expression and macrophage glycolysis. These findings place the targeting of PFK-M by miR-21 as a key node controlling macrophage immunometabolic function.


Asunto(s)
Glucólisis , Interacciones Huésped-Patógeno , Interleucina-1beta/metabolismo , MicroARNs/metabolismo , Mycobacterium tuberculosis/fisiología , Fosfofructoquinasa-1/metabolismo , Animales , Antiinflamatorios/metabolismo , Secuencia de Bases , Proliferación Celular , Células HEK293 , Humanos , Interferón gamma/metabolismo , Activación de Macrófagos , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones , MicroARNs/genética , Fosfofructoquinasa-1/genética , Células RAW 264.7 , Tuberculosis/microbiología
11.
Microbiology (Reading) ; 164(4): 437-439, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29465344

RESUMEN

Mycobacterium tuberculosis is an expert and deadly pathogen, causing the disease tuberculosis (TB) in humans. It has several notable features: the ability to enter non-replicating states for long periods and cause latent infection; metabolic remodelling during chronic infection; a thick, waxy cell wall; slow growth rate in culture; and intrinsic drug resistance and antibiotic tolerance. As a pathogen, M. tuberculosis has a complex relationship with its host, is able to replicate inside macrophages, and expresses diverse immunomodulatory molecules. M. tuberculosis currently causes over 1.8 million deaths a year, making it the world's most deadly human pathogen.


Asunto(s)
Mycobacterium tuberculosis/fisiología , Tuberculosis/microbiología , Interacciones Huésped-Patógeno , Humanos , Factores Inmunológicos/biosíntesis , Macrófagos/microbiología , Mycobacterium tuberculosis/clasificación , Mycobacterium tuberculosis/patogenicidad , Tuberculosis/inmunología
12.
Front Immunol ; 8: 118, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28261201

RESUMEN

microRNAs (miRNAs) are a class of small non-coding endogenous RNA molecules that regulate a wide range of biological processes by post-transcriptionally regulating gene expression. Thousands of these molecules have been discovered to date, and multiple miRNAs have been shown to coordinately fine-tune cellular processes key to organismal development, homeostasis, neurobiology, immunobiology, and control of infection. The fundamental regulatory role of miRNAs in a variety of biological processes suggests that differential expression of these transcripts may be exploited as a novel source of molecular biomarkers for many different disease pathologies or abnormalities. This has been emphasized by the recent discovery of remarkably stable miRNAs in mammalian biofluids, which may originate from intracellular processes elsewhere in the body. The potential of circulating miRNAs as biomarkers of disease has mainly been demonstrated for various types of cancer. More recently, however, attention has focused on the use of circulating miRNAs as diagnostic/prognostic biomarkers of infectious disease; for example, human tuberculosis caused by infection with Mycobacterium tuberculosis, sepsis caused by multiple infectious agents, and viral hepatitis. Here, we review these developments and discuss prospects and challenges for translating circulating miRNA into novel diagnostics for infectious disease.

13.
Immunity ; 44(2): 368-79, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26885859

RESUMEN

Humans that are heterozygous for the common S180L polymorphism in the Toll-like receptor (TLR) adaptor Mal (encoded by TIRAP) are protected from a number of infectious diseases, including tuberculosis (TB), whereas those homozygous for the allele are at increased risk. The reason for this difference in susceptibility is not clear. We report that Mal has a TLR-independent role in interferon-gamma (IFN-γ) receptor signaling. Mal-dependent IFN-γ receptor (IFNGR) signaling led to mitogen-activated protein kinase (MAPK) p38 phosphorylation and autophagy. IFN-γ signaling via Mal was required for phagosome maturation and killing of intracellular Mycobacterium tuberculosis (Mtb). The S180L polymorphism, and its murine equivalent S200L, reduced the affinity of Mal for the IFNGR, thereby compromising IFNGR signaling in macrophages and impairing responses to TB. Our findings highlight a role for Mal outside the TLR system and imply that genetic variation in TIRAP may be linked to other IFN-γ-related diseases including autoimmunity and cancer.


Asunto(s)
Interferón gamma/metabolismo , Macrófagos/fisiología , Glicoproteínas de Membrana/metabolismo , Mycobacterium tuberculosis/inmunología , Receptores de Interleucina-1/metabolismo , Tuberculosis Pulmonar/inmunología , Animales , Autofagia/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genotipo , Células HEK293 , Humanos , Inmunidad Innata/genética , Sistema de Señalización de MAP Quinasas/genética , Macrófagos/microbiología , Glicoproteínas de Membrana/genética , Ratones , Ratones Noqueados , Polimorfismo Genético , Unión Proteica/genética , ARN Interferente Pequeño/genética , Receptores de Interferón/metabolismo , Receptores de Interleucina-1/genética , Tuberculosis Pulmonar/genética , Receptor de Interferón gamma
14.
Tuberculosis (Edinb) ; 95(1): 60-7, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25692199

RESUMEN

Mycobacterium bovis, the causative agent of bovine tuberculosis, a major problem for global agriculture, spreads via an airborne route and is taken up by alveolar macrophages (AM) in the lung. Here, we describe the first next-generation sequencing (RNA-seq) approach to temporally profile miRNA expression in primary bovine AMs post-infection with M. bovis. One, six, and forty miRNAs were identified as significantly differentially expressed at 2, 24 and 48 h post-infection, respectively. The differential expression of three miRNAs (bta-miR-142-5p, bta-miR-146a, and bta-miR-423-3p) was confirmed by RT-qPCR. Pathway analysis of the predicted mRNA targets of differentially expressed miRNAs suggests that these miRNAs preferentially target several pathways that are functionally relevant for mycobacterial pathogenesis, including endocytosis and lysosome trafficking, IL-1 signalling and the TGF-ß pathway. Over-expression studies using a bovine macrophage cell-line (Bomac) reveal the targeting of two key genes in the innate immune response to M. bovis, IL-1 receptor-associated kinase 1 (IRAK1) and TGF-ß receptor 2 (TGFBR2), by miR-146. Taken together, our study suggests that miRNAs play a key role in tuning the complex interplay between M. bovis survival strategies and the host immune response.


Asunto(s)
Macrófagos Alveolares/inmunología , MicroARNs/fisiología , Mycobacterium bovis/inmunología , Tuberculosis Bovina/inmunología , Tuberculosis Pulmonar/inmunología , Animales , Bovinos , Células Cultivadas , Regulación hacia Abajo , Endocitosis/inmunología , Expresión Génica/genética , Expresión Génica/inmunología , Perfilación de la Expresión Génica/métodos , Inmunidad Innata/inmunología , Quinasas Asociadas a Receptores de Interleucina-1/antagonistas & inhibidores , Lisosomas/inmunología , Masculino , MicroARNs/genética , MicroARNs/inmunología , ARN Bacteriano/genética , ARN Bacteriano/inmunología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Análisis de Secuencia de ARN/métodos , Transfección/métodos , Factor de Crecimiento Transformador beta2/antagonistas & inhibidores , Regulación hacia Arriba
15.
Front Immunol ; 5: 536, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25414700

RESUMEN

Mycobacterial infections are major causes of morbidity and mortality in cattle and are also potential zoonotic agents with implications for human health. Despite the implementation of comprehensive animal surveillance programs, many mycobacterial diseases have remained recalcitrant to eradication in several industrialized countries. Two major mycobacterial pathogens of cattle are Mycobacterium bovis and Mycobacterium avium subspecies paratuberculosis (MAP), the causative agents of bovine tuberculosis (BTB) and Johne's disease (JD), respectively. BTB is a chronic, granulomatous disease of the respiratory tract that is spread via aerosol transmission, while JD is a chronic granulomatous disease of the intestines that is transmitted via the fecal-oral route. Although these diseases exhibit differential tissue tropism and distinct complex etiologies, both M. bovis and MAP infect, reside, and replicate in host macrophages - the key host innate immune cell that encounters mycobacterial pathogens after initial exposure and mediates the subsequent immune response. The persistence of M. bovis and MAP in macrophages relies on a diverse series of immunomodulatory mechanisms, including the inhibition of phagosome maturation and apoptosis, generation of cytokine-induced necrosis enabling dissemination of infection through the host, local pathology, and ultimately shedding of the pathogen. Here, we review the bovine macrophage response to infection with M. bovis and MAP. In particular, we describe how recent advances in functional genomics are shedding light on the host macrophage-pathogen interactions that underlie different mycobacterial diseases. To illustrate this, we present new analyses of previously published bovine macrophage transcriptomics data following in vitro infection with virulent M. bovis, the attenuated vaccine strain M. bovis BCG, and MAP, and discuss our findings with respect to the differing etiologies of BTB and JD.

16.
J Bacteriol ; 196(10): 1853-65, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24610707

RESUMEN

Mycobacterium tuberculosis expresses the 28-kDa protein HupB (Rv2986c) and the Fe(3+)-specific high-affinity siderophores mycobactin and carboxymycobactin upon iron limitation. The objective of this study was to understand the functional role of HupB in iron acquisition. A hupB mutant strain of M. tuberculosis, subjected to growth in low-iron medium (0.02 µg Fe ml(-1)), showed a marked reduction of both siderophores with low transcript levels of the mbt genes encoding the MB biosynthetic machinery. Complementation of the mutant strain with hupB restored siderophore production to levels comparable to that of the wild type. We demonstrated the binding of HupB to the mbtB promoter by both electrophoretic mobility shift assays and DNA footprinting. The latter revealed the HupB binding site to be a 10-bp AT-rich region. While negative regulation of the mbt machinery by IdeR is known, this is the first report of positive regulation of the mbt operon by HupB. Interestingly, the mutant strain failed to survive inside macrophages, suggesting that HupB plays an important role in vivo.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Histonas/metabolismo , Hierro/metabolismo , Macrófagos Peritoneales/microbiología , Sideróforos/biosíntesis , Animales , Proteínas Bacterianas/genética , Línea Celular , ADN Bacteriano , Eliminación de Gen , Histonas/genética , Ratones , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Regiones Promotoras Genéticas , Unión Proteica
17.
Mol Microbiol ; 90(3): 612-29, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23998761

RESUMEN

Mycobacterium abscessus is an emerging pathogen that is increasingly recognized as a relevant cause of human lung infection in cystic fibrosis patients. This highly antibiotic-resistant mycobacterium is an exception within the rapidly growing mycobacteria, which are mainly saprophytic and non-pathogenic organisms. M. abscessus manifests as either a smooth (S) or a rough (R) colony morphotype, which is of clinical importance as R morphotypes are associated with more severe and persistent infections. To better understand the molecular mechanisms behind the S/R alterations, we analysed S and R variants of three isogenic M. abscessus S/R pairs using an unbiased approach involving genome and transcriptome analyses, transcriptional fusions and integrating constructs. This revealed different small insertions, deletions (indels) or single nucleotide polymorphisms within the non-ribosomal peptide synthase gene cluster mps1-mps2-gap or mmpl4b in the three R variants, consistent with the transcriptional differences identified within this genomic locus that is implicated in the synthesis and transport of Glyco-Peptido-Lipids (GPL). In contrast to previous reports, the identification of clearly defined genetic lesions responsible for the loss of GPL-production or transport makes a frequent switching back-and-forth between smooth and rough morphologies in M. abscessus highly unlikely, which is important for our understanding of persistent M. abscessus infections.


Asunto(s)
Genes Bacterianos , Lípidos/biosíntesis , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium/genética , Péptido Sintasas/genética , Proteínas Bacterianas/genética , Secuencia de Bases , Perfilación de la Expresión Génica , Variación Genética , Genoma Bacteriano , Humanos , Mutación INDEL , Datos de Secuencia Molecular , Familia de Multigenes , Mycobacterium/clasificación , Mycobacterium/patogenicidad , Polimorfismo de Nucleótido Simple
18.
BMC Genomics ; 14: 230, 2013 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-23565803

RESUMEN

BACKGROUND: Mycobacterium bovis, the causative agent of bovine tuberculosis, is an intracellular pathogen that can persist inside host macrophages during infection via a diverse range of mechanisms that subvert the host immune response. In the current study, we have analysed and compared the transcriptomes of M. bovis-infected monocyte-derived macrophages (MDM) purified from six Holstein-Friesian females with the transcriptomes of non-infected control MDM from the same animals over a 24 h period using strand-specific RNA sequencing (RNA-seq). In addition, we compare gene expression profiles generated using RNA-seq with those previously generated by us using the high-density Affymetrix® GeneChip® Bovine Genome Array platform from the same MDM-extracted RNA. RESULTS: A mean of 7.2 million reads from each MDM sample mapped uniquely and unambiguously to single Bos taurus reference genome locations. Analysis of these mapped reads showed 2,584 genes (1,392 upregulated; 1,192 downregulated) and 757 putative natural antisense transcripts (558 upregulated; 119 downregulated) that were differentially expressed based on sense and antisense strand data, respectively (adjusted P-value ≤ 0.05). Of the differentially expressed genes, 694 were common to both the sense and antisense data sets, with the direction of expression (i.e. up- or downregulation) positively correlated for 693 genes and negatively correlated for the remaining gene. Gene ontology analysis of the differentially expressed genes revealed an enrichment of immune, apoptotic and cell signalling genes. Notably, the number of differentially expressed genes identified from RNA-seq sense strand analysis was greater than the number of differentially expressed genes detected from microarray analysis (2,584 genes versus 2,015 genes). Furthermore, our data reveal a greater dynamic range in the detection and quantification of gene transcripts for RNA-seq compared to microarray technology. CONCLUSIONS: This study highlights the value of RNA-seq in identifying novel immunomodulatory mechanisms that underlie host-mycobacterial pathogen interactions during infection, including possible complex post-transcriptional regulation of host gene expression involving antisense RNA.


Asunto(s)
Interacciones Huésped-Patógeno/genética , Macrófagos/microbiología , Transcriptoma , Tuberculosis Bovina/genética , Animales , Bovinos , Femenino , Regulación de la Expresión Génica , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Mycobacterium bovis , Análisis de Secuencia de ARN
19.
PLoS One ; 7(2): e32034, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22384131

RESUMEN

BACKGROUND: Mycobacterium bovis, the causative agent of bovine tuberculosis, is a major cause of mortality in global cattle populations. Macrophages are among the first cell types to encounter M. bovis following exposure and the response elicited by these cells is pivotal in determining the outcome of infection. Here, a functional genomics approach was undertaken to investigate global gene expression profiles in bovine monocyte-derived macrophages (MDM) purified from seven age-matched non-related females, in response to in vitro challenge with M. bovis (multiplicity of infection 2:1). Total cellular RNA was extracted from non-challenged control and M. bovis-challenged MDM for all animals at intervals of 2 hours, 6 hours and 24 hours post-challenge and prepared for global gene expression analysis using the Affymetrix® GeneChip® Bovine Genome Array. RESULTS: Comparison of M. bovis-challenged MDM gene expression profiles with those from the non-challenged MDM controls at each time point identified 3,064 differentially expressed genes 2 hours post-challenge, with 4,451 and 5,267 differentially expressed genes detected at the 6 hour and 24 hour time points, respectively (adjusted P-value threshold ≤ 0.05). Notably, the number of downregulated genes exceeded the number of upregulated genes in the M. bovis-challenged MDM across all time points; however, the fold-change in expression for the upregulated genes was markedly higher than that for the downregulated genes. Systems analysis revealed enrichment for genes involved in: (1) the inflammatory response; (2) cell signalling pathways, including Toll-like receptors and intracellular pathogen recognition receptors; and (3) apoptosis. CONCLUSIONS: The increased number of downregulated genes is consistent with previous studies showing that M. bovis infection is associated with the repression of host gene expression. The results also support roles for MyD88-independent signalling and intracellular PRRs in mediating the host response to M. bovis.


Asunto(s)
Regulación de la Expresión Génica , Monocitos/citología , Mycobacterium bovis/metabolismo , Animales , Bovinos , Femenino , Perfilación de la Expresión Génica , Genoma , Granuloma/metabolismo , Técnicas In Vitro , Macrófagos/citología , Macrófagos/microbiología , Monocitos/microbiología , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN/metabolismo , Transducción de Señal , Biología de Sistemas , Transcriptoma , Tuberculosis Bovina/microbiología
20.
Infect Genet Evol ; 12(4): 866-72, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21945286

RESUMEN

Mycobacterium bovis isolates from the Iberian Peninsula are dominated by strains with spoligotype patterns deleted for spacer 21. Whole-genome sequencing of three Spanish strains with spacer 21 missing in their spoligotype pattern revealed a series of SNPs and subsequent screening of a selection of these SNPs identified one in gene guaA that is specific to these strains. This group of strains from the Iberian Peninsula missing spoligotype spacer 21 represents a new clonal complex of M. bovis, defined by the SNP profile with a distinct spoligotype signature. We have named this clonal complex European 2 (Eu2) and found that it was present at low frequency in both France and Italy and absent from the British Isles.


Asunto(s)
Mycobacterium bovis/clasificación , Mycobacterium bovis/genética , Animales , Bovinos , Evolución Clonal , Francia , Genoma Bacteriano , Genómica , Italia , Mycobacterium bovis/aislamiento & purificación , Filogenia , Filogeografía , Polimorfismo de Nucleótido Simple , Portugal , España
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA