Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Phytopathology ; 111(7): 1064-1079, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33200960

RESUMEN

Scientific communication is facilitated by a data-driven, scientifically sound taxonomy that considers the end-user's needs and established successful practice. In 2013, the Fusarium community voiced near unanimous support for a concept of Fusarium that represented a clade comprising all agriculturally and clinically important Fusarium species, including the F. solani species complex (FSSC). Subsequently, this concept was challenged in 2015 by one research group who proposed dividing the genus Fusarium into seven genera, including the FSSC described as members of the genus Neocosmospora, with subsequent justification in 2018 based on claims that the 2013 concept of Fusarium is polyphyletic. Here, we test this claim and provide a phylogeny based on exonic nucleotide sequences of 19 orthologous protein-coding genes that strongly support the monophyly of Fusarium including the FSSC. We reassert the practical and scientific argument in support of a genus Fusarium that includes the FSSC and several other basal lineages, consistent with the longstanding use of this name among plant pathologists, medical mycologists, quarantine officials, regulatory agencies, students, and researchers with a stake in its taxonomy. In recognition of this monophyly, 40 species described as genus Neocosmospora were recombined in genus Fusarium, and nine others were renamed Fusarium. Here the global Fusarium community voices strong support for the inclusion of the FSSC in Fusarium, as it remains the best scientific, nomenclatural, and practical taxonomic option available.


Asunto(s)
Fusarium , Fusarium/genética , Filogenia , Enfermedades de las Plantas , Plantas
2.
Plant Dis ; 103(5): 1006-1013, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30946629

RESUMEN

Isolates of the Fusarium oxysporum species complex have been characterized as plant pathogens that commonly cause vascular wilt, stunting, and yellowing of the leaves in a variety of hosts. F. oxysporum species complex isolates have been grouped into formae speciales based on their ability to cause disease on a specific host. F. oxysporum f. sp. fragariae is the causal agent of Fusarium wilt of strawberry and has become a threat to production as fumigation practices have changed in California. F. oxysporum f. sp. fragariae is polyphyletic and limited genetic markers are available for its detection. In this study, next-generation sequencing and comparative genomics were used to identify a unique genetic locus that can detect all of the somatic compatibility groups of F. oxysporum f. sp. fragariae identified in California. This locus was used to develop a TaqMan quantitative polymerase chain reaction assay and an isothermal recombinase polymerase amplification (RPA) assay that have very high sensitivity and specificity for more than 180 different isolates of the pathogen tested. RPA assay results from multiple field samples were validated with pathogenicity tests of recovered isolates.


Asunto(s)
Fragaria , Fusarium , Filogenia , California , Fragaria/microbiología , Fusarium/genética , Fusarium/fisiología , Genes Fúngicos/genética , Enfermedades de las Plantas/microbiología
3.
G3 (Bethesda) ; 8(5): 1817-1828, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29602808

RESUMEN

Fusarium wilt, a soil-borne disease caused by the fungal pathogen Fusarium oxysporum f. sp. fragariae, threatens strawberry (Fragaria × ananassa) production worldwide. The spread of the pathogen, coupled with disruptive changes in soil fumigation practices, have greatly increased disease pressure and the importance of developing resistant cultivars. While resistant and susceptible cultivars have been reported, a limited number of germplasm accessions have been analyzed, and contradictory conclusions have been reached in earlier studies to elucidate the underlying genetic basis of resistance. Here, we report the discovery of Fw1, a dominant gene conferring resistance to Fusarium wilt in strawberry. The Fw1 locus was uncovered in a genome-wide association study of 565 historically and commercially important strawberry accessions genotyped with 14,408 SNP markers. Fourteen SNPs in linkage disequilibrium with Fw1 physically mapped to a 2.3 Mb segment on chromosome 2 in a diploid F. vesca reference genome. Fw1 and 11 tightly linked GWAS-significant SNPs mapped to linkage group 2C in octoploid segregating populations. The most significant SNP explained 85% of the phenotypic variability and predicted resistance in 97% of the accessions tested-broad-sense heritability was 0.96. Several disease resistance and defense-related gene homologs, including a small cluster of genes encoding nucleotide-binding leucine-rich-repeat proteins, were identified in the 0.7 Mb genomic segment predicted to harbor Fw1 DNA variants and candidate genes identified in the present study should facilitate the development of high-throughput genotyping assays for accurately predicting Fusarium wilt phenotypes and applying marker-assisted selection.


Asunto(s)
Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Fragaria/genética , Fragaria/microbiología , Fusarium/fisiología , Genes Dominantes , Estudio de Asociación del Genoma Completo , Enfermedades de las Plantas/genética , Segregación Cromosómica/genética , Cromosomas de las Plantas/genética , Genes de Plantas , Desequilibrio de Ligamiento/genética , Fenotipo , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple/genética
4.
ACS Nano ; 8(11): 11101-7, 2014 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25250976

RESUMEN

Nanostructured transition-metal phosphides have recently emerged as Earth-abundant alternatives to platinum for catalyzing the hydrogen-evolution reaction (HER), which is central to several clean energy technologies because it produces molecular hydrogen through the electrochemical reduction of water. Iron-based catalysts are very attractive targets because iron is the most abundant and least expensive transition metal. We report herein that iron phosphide (FeP), synthesized as nanoparticles having a uniform, hollow morphology, exhibits among the highest HER activities reported to date in both acidic and neutral-pH aqueous solutions. As an electrocatalyst operating at a current density of -10 mA cm(-2), FeP nanoparticles deposited at a mass loading of ∼1 mg cm(-2) on Ti substrates exhibited overpotentials of -50 mV in 0.50 M H2SO4 and -102 mV in 1.0 M phosphate buffered saline. The FeP nanoparticles supported sustained hydrogen production with essentially quantitative faradaic yields for extended time periods under galvanostatic control. Under UV illumination in both acidic and neutral-pH solutions, FeP nanoparticles deposited on TiO2 produced H2 at rates and amounts that begin to approach those of Pt/TiO2. FeP therefore is a highly Earth-abundant material for efficiently facilitating the HER both electrocatalytically and photocatalytically.

5.
Nano Lett ; 13(6): 2857-63, 2013 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-23701224

RESUMEN

The influence of particle shape on plasmonic response and local electric field strength is well-documented in metallic nanoparticles. Morphologies such as rods, plates, and octahedra are readily synthesized and exhibit drastically different extinction spectra than spherical particles. Despite this fact, the influence of composition and shape on the optical properties of plasmonic semiconductor nanocrystals, in which free electrons result from heavy doping, has not been well-studied. Here, we report the first observation of plasmonic resonance in indium-doped cadmium oxide (ICO) nanocrystals, which exhibit the highest quality factors reported for semiconductor nanocrystals. Furthermore, we are able to independently control the shape and free electron concentration in ICO nanocrystals, allowing for the influence of shape on the optical response of a plasmonic semiconductor to be conclusively demonstrated. The highly uniform particles may be self-assembled into ordered single component and binary nanocrystal superlattices, and in thin films, exhibit negative permittivity in the near infrared (NIR) region, validating their use as a new class of tunable low-loss plasmonic building blocks for 3-D optical metamaterials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA