Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Intervalo de año de publicación
1.
Toxins (Basel) ; 12(4)2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32252376

RESUMEN

Bacterial toxins play a key role in the pathogenesis of lung disease. Based on their structural and functional properties, they employ various strategies to modulate lung barrier function and to impair host defense in order to promote infection. Although in general, these toxins target common cellular signaling pathways and host compartments, toxin- and cell-specific effects have also been reported. Toxins can affect resident pulmonary cells involved in alveolar fluid clearance (AFC) and barrier function through impairing vectorial Na+ transport and through cytoskeletal collapse, as such, destroying cell-cell adhesions. The resulting loss of alveolar-capillary barrier integrity and fluid clearance capacity will induce capillary leak and foster edema formation, which will in turn impair gas exchange and endanger the survival of the host. Toxins modulate or neutralize protective host cell mechanisms of both the innate and adaptive immunity response during chronic infection. In particular, toxins can either recruit or kill central players of the lung's innate immune responses to pathogenic attacks, i.e., alveolar macrophages (AMs) and neutrophils. Pulmonary disorders resulting from these toxin actions include, e.g., acute lung injury (ALI), the acute respiratory syndrome (ARDS), and severe pneumonia. When acute infection converts to persistence, i.e., colonization and chronic infection, lung diseases, such as bronchitis, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF) can arise. The aim of this review is to discuss the impact of bacterial toxins in the lungs and the resulting outcomes for pathogenesis, their roles in promoting bacterial dissemination, and bacterial survival in disease progression.


Asunto(s)
Bacterias/patogenicidad , Infecciones Bacterianas/microbiología , Toxinas Bacterianas/metabolismo , Pulmón/microbiología , Infecciones del Sistema Respiratorio/microbiología , Inmunidad Adaptativa , Animales , Bacterias/inmunología , Bacterias/metabolismo , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/metabolismo , Infecciones Bacterianas/patología , Progresión de la Enfermedad , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/patología , Infecciones del Sistema Respiratorio/inmunología , Infecciones del Sistema Respiratorio/metabolismo , Infecciones del Sistema Respiratorio/patología , Transducción de Señal
2.
Front Immunol ; 9: 1309, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29951058

RESUMEN

Pneumonia is a leading cause of death in children and the elderly worldwide, accounting for 15% of all deaths of children under 5 years old. Streptococcus pneumoniae is a common and aggressive cause of pneumonia and can also contribute to meningitis and sepsis. Despite the widespread use of antibiotics, mortality rates for pneumonia remain unacceptably high in part due to the release of bacterial toxins. Pneumolysin (PLY) is a cholesterol-dependent toxin that is produced by Streptococcus, and it is both necessary and sufficient for the development of the extensive pulmonary permeability edema that underlies acute lung injury. The mechanisms by which PLY disrupts the pulmonary endothelial barrier are not fully understood. Previously, we found that reactive oxygen species (ROS) contribute to the barrier destructive effects of PLY and identified an unexpected but potent role of Hsp70 in suppressing ROS production. The ability of Hsp70 to influence PLY-induced barrier dysfunction is not yet described, and the goal of the current study was to identify whether Hsp70 upregulation is an effective strategy to protect the lung microvascular endothelial barrier from G+ bacterial toxins. Overexpression of Hsp70 via adenovirus-mediated gene transfer attenuated PLY-induced increases in permeability in human lung microvascular endothelial cells (HLMVEC) with no evidence of cytotoxicity. To adopt a more translational approach, we employed a pharmacological approach using geranylgeranylacetone (GGA) to acutely upregulate endogenous Hsp70 expression. Following acute treatment (6 h) with GGA, HLMVECs exposed to PLY displayed improved cell viability and enhanced endothelial barrier function as measured by both Electric Cell-substrate Impedance Sensing (ECIS) and transwell permeability assays compared to control treated cells. PLY promoted increased mitochondrial ROS, decreased mitochondrial oxygen consumption, and increased caspase 3 cleavage and cell death, which were collectively improved in cells pretreated with GGA. In mice, IP pretreatment with GGA 24 h prior to IT administration of PLY resulted in significantly less Evans Blue Dye extravasation compared to vehicle, indicating preserved endothelial barrier integrity and suggesting that the acute upregulation of Hsp70 may be an effective therapeutic approach in the treatment of lung injury associated with pneumonia.

3.
Toxins (Basel) ; 10(2)2018 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-29439494

RESUMEN

Pulmonary permeability edema is characterized by reduced alveolar Na⁺ uptake capacity and capillary barrier dysfunction and is a potentially lethal complication of listeriosis. Apical Na⁺ uptake is mainly mediated by the epithelial sodium channel (ENaC) and initiates alveolar liquid clearance. Here we examine how listeriolysin O (LLO), the pore-forming toxin of Listeria monocytogenes, impairs the expression and activity of ENaC. To that purpose, we studied how sub-lytic concentrations of LLO affect negative and positive regulators of ENaC expression in the H441 airway epithelial cell line. LLO reduced expression of the crucial ENaC-α subunit in H441 cells within 2 h and this was preceded by activation of PKC-α, a negative regulator of the channel's expression. At later time points, LLO caused a significant reduction in the phosphorylation of Sgk-1 at residue T256 and of Akt-1 at residue S473, both of which are required for full activation of ENaC. The TNF-derived TIP peptide prevented LLO-mediated PKC-α activation and restored phospho-Sgk-1-T256. The TIP peptide also counteracted the observed LLO-induced decrease in amiloride-sensitive Na⁺ current and ENaC-α expression in H441 cells. Intratracheally instilled LLO caused profound pulmonary edema formation in mice, an effect that was prevented by the TIP peptide; thus indicating the therapeutic potential of the peptide for the treatment of pore-forming toxin-associated permeability edema.


Asunto(s)
Toxinas Bacterianas/toxicidad , Canales Epiteliales de Sodio/fisiología , Proteínas de Choque Térmico/toxicidad , Proteínas Hemolisinas/toxicidad , Péptidos/farmacología , Péptidos/uso terapéutico , Edema Pulmonar/tratamiento farmacológico , Animales , Bronquios/citología , Línea Celular , Células Epiteliales/efectos de los fármacos , Células Epiteliales/fisiología , Humanos , Proteínas Inmediatas-Precoces/metabolismo , Masculino , Ratones Endogámicos C57BL , Fosforilación/efectos de los fármacos , Proteína Quinasa C-alfa/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
4.
Am J Respir Cell Mol Biol ; 58(5): 614-624, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29115856

RESUMEN

One of the early events in the progression of LPS-mediated acute lung injury in mice is the disruption of the pulmonary endothelial barrier resulting in lung edema. However, the molecular mechanisms by which the endothelial barrier becomes compromised remain unresolved. The SRY (sex-determining region on the Y chromosome)-related high-mobility group box (Sox) group F family member, SOX18, is a barrier-protective protein through its ability to increase the expression of the tight junction protein CLDN5. Thus, the purpose of this study was to determine if downregulation of the SOX18-CLDN5 axis plays a role in the pulmonary endothelial barrier disruption associated with LPS exposure. Our data indicate that both SOX18 and CLDN5 expression is decreased in two models of in vivo LPS exposure (intraperitoneal, intratracheal). A similar downregulation was observed in cultured human lung microvascular endothelial cells (HLMVECs) exposed to LPS. SOX18 overexpression in HLMVECs or in the mouse lung attenuated the LPS-mediated vascular barrier disruption. Conversely, reduced CLDN5 expression (siRNA) reduced the HLMVEC barrier-protective effects of SOX18 overexpression. The mechanism by which LPS decreases SOX18 expression was identified as transcriptional repression through binding of NF-κB (p65) to a SOX18 promoter sequence located between -1,082 and -1,073 bp with peroxynitrite contributing to LPS-mediated NF-κB activation. We conclude that NF-κB-dependent decreases in the SOX18-CLDN5 axis are essentially involved in the disruption of human endothelial cell barrier integrity associated with LPS-mediated acute lung injury.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Permeabilidad Capilar , Células Endoteliales/metabolismo , Lipopolisacáridos , Pulmón/irrigación sanguínea , FN-kappa B/metabolismo , Edema Pulmonar/metabolismo , Factores de Transcripción SOXF/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/patología , Animales , Sitios de Unión , Células Cultivadas , Claudina-5/genética , Claudina-5/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo , Células Endoteliales/patología , Humanos , Masculino , Ratones Endogámicos C57BL , FN-kappa B/genética , Ácido Peroxinitroso/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Edema Pulmonar/inducido químicamente , Edema Pulmonar/genética , Edema Pulmonar/patología , Factores de Transcripción SOXF/genética , Transducción de Señal , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/metabolismo
5.
Am J Respir Crit Care Med ; 190(5): 522-32, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25029038

RESUMEN

RATIONALE: Alveolar liquid clearance is regulated by Na(+) uptake through the apically expressed epithelial sodium channel (ENaC) and basolaterally localized Na(+)-K(+)-ATPase in type II alveolar epithelial cells. Dysfunction of these Na(+) transporters during pulmonary inflammation can contribute to pulmonary edema. OBJECTIVES: In this study, we sought to determine the precise mechanism by which the TIP peptide, mimicking the lectin-like domain of tumor necrosis factor (TNF), stimulates Na(+) uptake in a homologous cell system in the presence or absence of the bacterial toxin pneumolysin (PLY). METHODS: We used a combined biochemical, electrophysiological, and molecular biological in vitro approach and assessed the physiological relevance of the lectin-like domain of TNF in alveolar liquid clearance in vivo by generating triple-mutant TNF knock-in mice that express a mutant TNF with deficient Na(+) uptake stimulatory activity. MEASUREMENTS AND MAIN RESULTS: TIP peptide directly activates ENaC, but not the Na(+)-K(+)-ATPase, upon binding to the carboxy-terminal domain of the α subunit of the channel. In the presence of PLY, a mediator of pneumococcal-induced pulmonary edema, this binding stabilizes the ENaC-PIP2-MARCKS complex, which is necessary for the open probability conformation of the channel and preserves ENaC-α protein expression, by means of blunting the protein kinase C-α pathway. Triple-mutant TNF knock-in mice are more prone than wild-type mice to develop edema with low-dose intratracheal PLY, correlating with reduced pulmonary ENaC-α subunit expression. CONCLUSIONS: These results demonstrate a novel TNF-mediated mechanism of direct ENaC activation and indicate a physiological role for the lectin-like domain of TNF in the resolution of alveolar edema during inflammation.


Asunto(s)
Agonistas del Canal de Sodio Epitelial/metabolismo , Canales Epiteliales de Sodio/metabolismo , Péptidos Cíclicos/metabolismo , Alveolos Pulmonares/metabolismo , Edema Pulmonar/metabolismo , Estreptolisinas , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Proteínas Bacterianas , Agonistas del Canal de Sodio Epitelial/química , Canales Epiteliales de Sodio/química , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Péptidos Cíclicos/química , Alveolos Pulmonares/microbiología , Edema Pulmonar/microbiología , Factor de Necrosis Tumoral alfa/química
6.
Am J Physiol Lung Cell Mol Physiol ; 306(6): L497-507, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24414256

RESUMEN

Acute lung injury and acute respiratory distress syndrome (ALI/ARDS) affect 200,000 people a year in the USA. Pulmonary vascular and specifically endothelial cell (EC) barrier compromise is a hallmark of these diseases. We have recently shown that extracellular adenosine enhances human pulmonary (EC) barrier via activation of adenosine receptors (ARs) in cell cultures. On the basis of these data, we hypothesized that activation of ARs might exert barrier-protective effects in a model of ALI/ARDS in mice. To test this hypothesis, we examined the effects of pre- and posttreatment of adenosine and 5'-N-ethylcarboxamidoadenosine (NECA), a nonselective stable AR agonist, on LPS-induced lung injury. Mice were given vehicle or LPS intratracheally followed by adenosine, NECA, or vehicle instilled via the internal jugular vein. Postexperiment cell counts, Evans Blue Dye albumin (EBDA) extravasation, levels of proteins, and inflammatory cytokines were analyzed. Harvested lungs were used for histology and myeloperoxidase studies. Mice challenged with LPS alone demonstrated an inflammatory response typical of ALI. Cell counts, EBDA extravasation, as well as levels of proteins and inflammatory cytokines were decreased in adenosine-treated mice. Histology displayed reduced infiltration of neutrophils. NECA had a similar effect on LPS-induced vascular barrier compromise. Importantly, posttreatment with adenosine or NECA recovers lung vascular barrier and reduces inflammation induced by LPS challenge. Furthermore, adenosine significantly attenuated protein degradation of A2A and A3 receptors induced by LPS. Collectively, our results demonstrate that activation of ARs protects and restores vascular barrier functions and reduces inflammation in LPS-induced ALI.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Adenosina/metabolismo , Endotelio/metabolismo , Receptores Purinérgicos P1/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Adenosina-5'-(N-etilcarboxamida)/metabolismo , Animales , Líquido del Lavado Bronquioalveolar/citología , Permeabilidad Capilar/efectos de los fármacos , Recuento de Células , Citocinas/metabolismo , Células Endoteliales/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Interleucina-6/metabolismo , Lipopolisacáridos , Pulmón/metabolismo , Pulmón/fisiología , Ratones , Ratones Endogámicos C57BL , Agonistas del Receptor Purinérgico P1/metabolismo , Síndrome de Dificultad Respiratoria/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
7.
Toxins (Basel) ; 5(7): 1244-60, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23860351

RESUMEN

Severe pneumonia is the main single cause of death worldwide in children under five years of age. The main etiological agent of pneumonia is the G+ bacterium Streptococcus pneumoniae, which accounts for up to 45% of all cases. Intriguingly, patients can still die days after commencing antibiotic treatment due to the development of permeability edema, although the pathogen was successfully cleared from their lungs. This condition is characterized by a dramatically impaired alveolar epithelial-capillary barrier function and a dysfunction of the sodium transporters required for edema reabsorption, including the apically expressed epithelial sodium channel (ENaC) and the basolaterally expressed sodium potassium pump (Na+-K+-ATPase). The main agent inducing this edema formation is the virulence factor pneumolysin, a cholesterol-binding pore-forming toxin, released in the alveolar compartment of the lungs when pneumococci are being lysed by antibiotic treatment or upon autolysis. Sub-lytic concentrations of pneumolysin can cause endothelial barrier dysfunction and can impair ENaC-mediated sodium uptake in type II alveolar epithelial cells. These events significantly contribute to the formation of permeability edema, for which currently no standard therapy is available. This review focuses on discussing some recent developments in the search for the novel therapeutic agents able to improve lung function despite the presence of pore-forming toxins. Such treatments could reduce the potentially lethal complications occurring after antibiotic treatment of patients with severe pneumonia.


Asunto(s)
Pulmón/microbiología , Neumonía/terapia , Streptococcus pneumoniae/patogenicidad , Estreptolisinas/toxicidad , Animales , Proteínas Bacterianas/toxicidad , Preescolar , Modelos Animales de Enfermedad , Hormona del Crecimiento/metabolismo , Humanos , Sistema Inmunológico/microbiología , Lectinas/uso terapéutico , Pulmón/patología , Neumonía/microbiología , Edema Pulmonar/microbiología , Edema Pulmonar/terapia , Relación Estructura-Actividad , Factor de Necrosis Tumoral alfa/metabolismo , Factores de Virulencia
8.
Proc Natl Acad Sci U S A ; 109(6): 2084-9, 2012 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-22308467

RESUMEN

Aggressive treatment with antibiotics in patients infected with Streptococcus pneumoniae induces release of the bacterial virulence factor pneumolysin (PLY). Days after lungs are sterile, this pore-forming toxin can still induce pulmonary permeability edema in patients, characterized by alveolar/capillary barrier dysfunction and impaired alveolar liquid clearance (ALC). ALC is mainly regulated through Na(+) transport by the apically expressed epithelial sodium channel (ENaC) and the basolaterally expressed Na(+)/K(+)-ATPase in type II alveolar epithelial cells. Because no standard treatment is currently available to treat permeability edema, the search for novel therapeutic candidates is of high priority. We detected mRNA expression for the active receptor splice variant SV1 of the hypothalamic polypeptide growth hormone-releasing hormone (GHRH), as well as for GHRH itself, in human lung microvascular endothelial cells (HL-MVEC). Therefore, we have evaluated the effect of the GHRH agonist JI-34 on PLY-induced barrier and ALC dysfunction. JI-34 blunts PLY-mediated endothelial hyperpermeability in monolayers of HL-MVEC, in a cAMP-dependent manner, by means of reducing the phosphorylation of myosin light chain and vascular endothelial (VE)-cadherin. In human airway epithelial H441 cells, PLY significantly impairs Na(+) uptake, but JI-34 restores it to basal levels by means of increasing cAMP levels. Intratracheal instillation of PLY into C57BL6 mice causes pulmonary alveolar epithelial and endothelial hyperpermeability as well as edema formation, all of which are blunted by JI-34. These findings point toward a protective role of the GHRH signaling pathway in PLY-induced permeability edema.


Asunto(s)
Hormona Liberadora de Hormona del Crecimiento/agonistas , Edema Pulmonar/patología , Estreptolisinas/toxicidad , Animales , Antígenos CD/metabolismo , Proteínas Bacterianas/toxicidad , Cadherinas/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Regulación de la Expresión Génica , Hormona Liberadora de Hormona del Crecimiento/genética , Hormona Liberadora de Hormona del Crecimiento/metabolismo , Humanos , Activación del Canal Iónico , Pulmón/metabolismo , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Microvasos/patología , Cadenas Ligeras de Miosina/metabolismo , Permeabilidad , Fosforilación , Alveolos Pulmonares/efectos de los fármacos , Alveolos Pulmonares/patología , Edema Pulmonar/genética , Edema Pulmonar/fisiopatología , Empalme del ARN/genética , Receptores de Neuropéptido/genética , Receptores de Neuropéptido/metabolismo , Receptores de Hormona Reguladora de Hormona Hipofisaria/genética , Receptores de Hormona Reguladora de Hormona Hipofisaria/metabolismo , Canales de Sodio/metabolismo
9.
Vascul Pharmacol ; 56(1-2): 56-63, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22074808

RESUMEN

We have previously shown that the anti-cancer agent 2-methoxyestradiol (2ME) induces hyperpermeability across endothelial monolayers. Here, we show that both microtubule disruptor, 2ME, and microtubule stabilizer, paclitaxel (taxol), increase vascular lung permeability in vitro and in vivo. Simultaneous application of 2ME and taxol alleviates 2ME-induced endothelial barrier dysfunction, which is evident by the decreased Evans Blue Dye accumulation in lung tissue and increased transendothelial resistance across monolayers. 2ME significantly increases the level of p38 and MLC phosphorylation in both endothelial monolayers and murine lungs; this increase is suppressed in the presence of taxol. Taxol treatment leads to an immediate and sustained increase in tubulin acetylation in human pulmonary artery endothelial cells (HPAEC). Surprisingly, 2ME treatment also increases tubulin acetylation; however, the onset of this process is delayed and coincides with the stage of a partial barrier restoration in HPAEC monolayer. Inhibition of histone deacetylase 6 (HDAC6) with tubacin increases tubulin acetylation level, suppresses 2ME-induced HSP27 and MLC phosphorylation, and decreases 2ME-induced barrier dysfunction, suggesting barrier-protective and/or barrier-restorative role for tubulin acetylation in vascular endothelium.


Asunto(s)
Permeabilidad Capilar/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Estradiol/análogos & derivados , Paclitaxel/farmacología , 2-Metoxiestradiol , Acetilación/efectos de los fármacos , Anilidas/farmacología , Animales , Células Cultivadas , Interacciones Farmacológicas , Células Endoteliales/enzimología , Células Endoteliales/metabolismo , Endotelio Vascular/enzimología , Endotelio Vascular/metabolismo , Estradiol/farmacología , Proteínas de Choque Térmico HSP27/metabolismo , Histona Desacetilasas/metabolismo , Humanos , Ácidos Hidroxámicos/farmacología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microtúbulos/metabolismo , Cadenas Ligeras de Miosina/metabolismo , Fosforilación/efectos de los fármacos , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/enzimología , Arteria Pulmonar/metabolismo , Tubulina (Proteína)/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
10.
Am J Respir Cell Mol Biol ; 45(6): 1185-94, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21659656

RESUMEN

We showed previously that microtubule disruptor 2-methoxyestradiol (2ME) induces hyperpermeability of the endothelial monolayer via mechanisms that include the activation of p38 and Rho kinase (ROCK) and rearrangement of the actin cytoskeleton. Using the protein kinase C (PKC) inhibitors Ro-31-7549 and Ro-32-0432, we show in vitro and in vivo that 2ME-induced barrier dysfunction is also PKC-dependent. The known PKC substrates ezrin, radixin, and moesin (ERM) were recently implicated in the regulation of endothelial permeability. This study tested the hypotheses that ERM proteins are phosphorylated in response to 2ME, and that this phosphorylation is involved in 2ME-induced barrier dysfunction. We show that the application of 2ME leads to a dramatic increase in the level of ERM phosphorylation. This increase is attenuated in cells pretreated with the microtubule stabilizer taxol. In human pulmonary artery endothelial cells (HPAECs), the phosphorylation of ERM occurs in a p38-dependent and PKC-dependent manner. The activation of p38 appears to occur upstream from the activation of PKC, in response to 2ME. Phosphorylated ERM are localized at the cell periphery during the early phase of response to 2ME (15 minutes), and colocalize with F-actin branching points during the later phase of response (60 minutes). Using the short interfering RNA approach, we also showed that individual ERM depletion significantly attenuates 2ME-induced hyperpermeability. HPAEC monolayers, depleted of ERM proteins and monolayers, overexpressing phosphorylation-deficient ERM mutants, exhibit less attenuation of 2ME-induced barrier disruption in response to the PKC inhibitor Ro-31-7549. These results suggest a critical role of PKC activation in response to microtubule-disrupting agents, and implicate the phosphorylation of ERM in the barrier dysfunction induced by 2ME.


Asunto(s)
Permeabilidad Capilar/efectos de los fármacos , Proteínas del Citoesqueleto/metabolismo , Endotelio Vascular/metabolismo , Estradiol/análogos & derivados , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Moduladores de Tubulina/farmacología , 2-Metoxiestradiol , Animales , Permeabilidad Capilar/genética , Células Cultivadas , Proteínas del Citoesqueleto/genética , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Inhibidores Enzimáticos/farmacología , Estradiol/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Humanos , Indoles/farmacología , Masculino , Maleimidas/farmacología , Proteínas de la Membrana/genética , Ratones , Proteínas de Microfilamentos/genética , Paclitaxel/farmacología , Fosforilación/efectos de los fármacos , Fosforilación/genética , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Pirroles/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/metabolismo
11.
J Cardiovasc Dis Res ; 1(1): 29-36, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21188088

RESUMEN

UNLABELLED: -Pulmonary edema, a major manifestation of left ventricular heart failure, renal insufficiency, shock, diffuse alveolar damage and lung hypersensitivity states, is a significant medical problem worldwide and can be life-threatening. The proinflammatory cytokine tumor necrosis factor (TNF) has been shown to contribute to the pathogenesis and development of pulmonary edema. However, some recent studies have demonstrated surprisingly that TNF can also promote alveolar fluid reabsorption in vivo and in vitro. This protective effect of the cytokine is mediated by the lectin-like domain of the cytokine, which is spatially distinct from the TNF receptor binding sites. The TIP peptide, a synthetic mimic of the lectin-like domain of TNF, can significantly increase alveolar fluid clearance and improve lung compliance in pulmonary edema models. In this review, we will discuss the dual role of TNF in pulmonary edema. ABBREVIATIONS: -tumor necrosis factor (TNF); acute lung injury (ALI); acute respiratory distress syndrome (ARDS); positive end-expiratory pressure (PEEP);epithelial sodium channel (ENaC);neural precursor cell-expressed developmentally downregulated (gene 4) protein (Nedd4-2);serum and glucocorticoid dependent kinase (Sgk-1);insulin-like growth factor 1 (IGF-1);Protein Kinase C (PKC);reactive oxygen species (ROS);myosin light chain (MLC);pneumolysin (PLY);listeriolysin (LLO);interleukin (IL);bronchoalveolar lavage fluids (BALF);Bacillus Calmette-Guerin (BCG);TNF receptor type 1 (TNFR1); TNF receptor type 2 (TNF-R2);

12.
J Cell Physiol ; 223(1): 215-23, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20054824

RESUMEN

Extracellular beta-NAD is known to elevate intracellular levels of calcium ions, inositol 1,4,5-trisphate and cAMP. Recently, beta-NAD was identified as an agonist for P2Y1 and P2Y11 purinergic receptors. Since beta-NAD can be released extracellularly from endothelial cells (EC), we have proposed its involvement in the regulation of EC permeability. Here we show, for the first time, that endothelial integrity can be enhanced in EC endogenously expressing beta-NAD-activated purinergic receptors upon beta-NAD stimulation. Our data demonstrate that extracellular beta-NAD increases the transendothelial electrical resistance (TER) of human pulmonary artery EC (HPAEC) monolayers in a concentration-dependent manner indicating endothelial barrier enhancement. Importantly, beta-NAD significantly attenuated thrombin-induced EC permeability as well as the barrier-compromising effects of Gram-negative and Gram-positive bacterial toxins representing the barrier-protective function of beta-NAD. Immunofluorescence microscopy reveals more pronounced staining of cell-cell junctional protein VE-cadherin at the cellular periphery signifying increased tightness of the cell-cell contacts after beta-NAD stimulation. Interestingly, inhibitory analysis (pharmacological antagonists and receptor sequence specific siRNAs) indicates the participation of both P2Y1 and P2Y11 receptors in beta-NAD-induced TER increase. beta-NAD-treatment attenuates the lipopolysaccharide (LPS)-induced phosphorylation of myosin light chain (MLC) indicating its involvement in barrier protection. Our studies also show the involvement of cAMP-dependent protein kinase A and EPAC1 pathways as well as small GTPase Rac1 in beta-NAD-induced EC barrier enhancement. With these results, we conclude that beta-NAD regulates the pulmonary EC barrier integrity via small GTPase Rac1- and MLCP- dependent signaling pathways.


Asunto(s)
Actinas/metabolismo , Permeabilidad Capilar , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Citoesqueleto/metabolismo , Células Endoteliales/enzimología , Factores de Intercambio de Guanina Nucleótido/metabolismo , NAD/metabolismo , Arteria Pulmonar/enzimología , Proteína de Unión al GTP rac1/metabolismo , Antígenos CD/metabolismo , Proteínas Bacterianas/farmacología , Cadherinas/metabolismo , Permeabilidad Capilar/efectos de los fármacos , Células Cultivadas , Citoesqueleto/efectos de los fármacos , Impedancia Eléctrica , Células Endoteliales/efectos de los fármacos , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Uniones Intercelulares/metabolismo , Lipopolisacáridos/farmacología , Cadenas Ligeras de Miosina/metabolismo , Fosfatasa de Miosina de Cadena Ligera/metabolismo , Fosforilación , Arteria Pulmonar/citología , Arteria Pulmonar/efectos de los fármacos , Interferencia de ARN , ARN Mensajero/metabolismo , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2Y1 , Transducción de Señal , Estreptolisinas/farmacología , Trombina/metabolismo , Factores de Tiempo , Proteína de Unión al GTP rac1/genética
13.
Am J Physiol Lung Cell Mol Physiol ; 290(3): L540-8, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16257999

RESUMEN

Endothelial cell (EC) permeability is precisely controlled by cytoskeletal elements [actin filaments, microtubules (MT), intermediate filaments] and cell contact protein complexes (focal adhesions, adherens junctions, tight junctions). We have recently shown that the edemagenic agonist thrombin caused partial MT disassembly, which was linked to activation of small GTPase Rho, Rho-mediated actin remodeling, cell contraction, and dysfunction of lung EC barrier. GEF-H1 is an MT-associated Rho-specific guanosine nucleotide (GDP/GTP) exchange factor, which in MT-unbound state stimulates Rho activity. In this study we tested hypothesis that GEF-H1 may be a key molecule involved in Rho activation, myosin light chain phosphorylation, actin remodeling, and EC barrier dysfunction associated with partial MT disassembly. Our results show that depletion of GEF-H1 or expression of dominant negative GEF-H1 mutant significantly attenuated permeability increase, actin stress fiber formation, and increased MLC and MYPT1 phosphorylation induced by thrombin or MT-depolymerizing agent nocodazole. In contrast, expression of wild-type or activated GEF-H1 mutants dramatically enhanced thrombin and nocodazole effects on stress fiber formation and cell retraction. These results show a critical role for the GEF-H1 in the Rho activation caused by MT disassembly and suggest GEF-H1 as a key molecule involved in cross talk between MT and actin cytoskeleton in agonist-induced Rho-dependent EC barrier regulation.


Asunto(s)
Endotelio Vascular/metabolismo , Factores de Intercambio de Guanina Nucleótido/fisiología , Arteria Pulmonar/citología , Proteínas de Unión al GTP rho/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Antineoplásicos/farmacología , Permeabilidad Capilar , Endotelio Vascular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Genes Dominantes , Humanos , Cadenas Ligeras de Miosina/metabolismo , Fosfatasa de Miosina de Cadena Ligera/metabolismo , Nocodazol/farmacología , Fosforilación/efectos de los fármacos , ARN Interferente Pequeño/farmacología , Factores de Intercambio de Guanina Nucleótido Rho , Trombina/farmacología
14.
FEBS Lett ; 579(18): 4031-7, 2005 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-16004987

RESUMEN

The ability of inflammatory cytokine TGF-beta1 to alter endothelial cell phenotype suggests its role in the regulation of vascular endothelial cell permeability. We demonstrate that depletion of TGF-beta1 receptor ALK5 and regulatory protein Smad4, but not ALK1 receptor attenuates TGF-beta1-induced permeability increase and significantly inhibits TGF-beta1-induced EC contraction manifested by actin stress fiber formation and increased MLC and MYPT1 phosphorylation. Consistent with these results, EC treatment with SB 431542, an inhibitor of ALK5 but not ALK1 receptor, significantly attenuates TGF-beta1-induced permeability. Thus, our data demonstrate for the first time direct link between TGF-beta1-mediated activation of ALK5/Smad and EC barrier dysfunction.


Asunto(s)
Receptores de Activinas Tipo I/fisiología , Proteínas de Unión al ADN/fisiología , Endotelio Vascular/metabolismo , Pulmón/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/fisiología , Transactivadores/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Actinas/metabolismo , Receptores de Activinas Tipo I/metabolismo , Animales , Benzamidas/farmacología , Western Blotting , Bovinos , Células Cultivadas , Citoesqueleto/metabolismo , Dioxoles/farmacología , Impedancia Eléctrica , Endotelio Vascular/citología , Microscopía Fluorescente , Fosfatasa de Miosina de Cadena Ligera/metabolismo , Miosinas/química , Permeabilidad , Fenotipo , Fosforilación , Proteínas Serina-Treonina Quinasas , ARN Interferente Pequeño/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Proteína Smad4 , Factores de Tiempo , Factor de Crecimiento Transformador beta1 , Tubulina (Proteína)/metabolismo
15.
Am J Physiol Lung Cell Mol Physiol ; 289(1): L75-84, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15778245

RESUMEN

Lung endothelial barrier function is regulated by multiple signaling pathways, including mitogen-activated protein kinases (MAPK) extracellular signal-regulated kinases (ERK) 1/2 and p38. We have recently shown involvement of microtubule (MT) disassembly in endothelial cell (EC) barrier failure. In this study, we examined potential involvement of ERK1/2 and p38 MAPK in lung EC barrier dysfunction associated with MT disassembly. MT inhibitors nocodazole (0.2 microM) and vinblastine (0.1 microM) induced sustained activation of Ras-Raf-MEK1/2-ERK1/2 and MKK3/6-p38-MAPKAPK2 MAPK cascades in human and bovine pulmonary EC, as detected by phosphospecific antibodies and in MAPK activation assays. These effects were linked to increased permeability assessed by measurements of transendothelial electrical resistance and cytoskeletal remodeling analyzed by morphometric analysis of EC monolayers. MT stabilization by taxol (5 microM, 1 h) attenuated nocodazole-induced ERK1/2 and p38 MAPK activation and phosphorylation of p38 MAPK substrate 27-kDa heat shock protein and regulatory myosin light chains, the proteins involved in actin polymerization and actomyosin contraction. Importantly, only pharmacological inhibition of p38 MAPK by SB-203580 (20 microM, 1 h) attenuated nocodazole-induced MT depolymerization, actin remodeling, and EC barrier dysfunction, whereas the MEK/ERK1/2 inhibitor U0126 (5 microM, 1 h) exhibited no effect. These data suggest a direct link between p38 MAPK activation, remodeling of MT network, and EC barrier regulation.


Asunto(s)
Permeabilidad Capilar/fisiología , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Pulmón/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Microtúbulos/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Animales , Antineoplásicos/farmacología , Butadienos/farmacología , Permeabilidad Capilar/efectos de los fármacos , Bovinos , Células Cultivadas , Células Endoteliales/citología , Endotelio Vascular/citología , Inhibidores Enzimáticos/farmacología , Humanos , Imidazoles/farmacología , Pulmón/citología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Nitrilos/farmacología , Proteínas Quinasas/metabolismo , Piridinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA