Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Intervalo de año de publicación
1.
EMBO J ; 42(11): e111901, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36917141

RESUMEN

Changes in mitochondrial morphology are associated with nutrient utilization, but the precise causalities and the underlying mechanisms remain unknown. Here, using cellular models representing a wide variety of mitochondrial shapes, we show a strong linear correlation between mitochondrial fragmentation and increased fatty acid oxidation (FAO) rates. Forced mitochondrial elongation following MFN2 over-expression or DRP1 depletion diminishes FAO, while forced fragmentation upon knockdown or knockout of MFN2 augments FAO as evident from respirometry and metabolic tracing. Remarkably, the genetic induction of fragmentation phenocopies distinct cell type-specific biological functions of enhanced FAO. These include stimulation of gluconeogenesis in hepatocytes, induction of insulin secretion in islet ß-cells exposed to fatty acids, and survival of FAO-dependent lymphoma subtypes. We find that fragmentation increases long-chain but not short-chain FAO, identifying carnitine O-palmitoyltransferase 1 (CPT1) as the downstream effector of mitochondrial morphology in regulation of FAO. Mechanistically, we determined that fragmentation reduces malonyl-CoA inhibition of CPT1, while elongation increases CPT1 sensitivity to malonyl-CoA inhibition. Overall, these findings underscore a physiologic role for fragmentation as a mechanism whereby cellular fuel preference and FAO capacity are determined.


Asunto(s)
Ácidos Grasos , Malonil Coenzima A , Ácidos Grasos/metabolismo , Malonil Coenzima A/metabolismo , Malonil Coenzima A/farmacología , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Oxidación-Reducción , Mitocondrias/metabolismo
2.
Sci Rep ; 11(1): 8173, 2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33854174

RESUMEN

Atherosclerosis, a chronic inflammatory disease of large arteries, is the major contributor to the growing burden of cardiovascular disease-related mortality and morbidity. During early atherogenesis, as a result of inflammation and endothelial dysfunction, monocytes transmigrate into the aortic intimal areas, and differentiate into lipid-laden foam cells, a critical process in atherosclerosis. Numerous natural compounds such as flavonoids and polyphenols are known to have anti-inflammatory and anti-atherogenic properties. Herein, using a fluorometric imaging plate reader-supported Ca2+ influx assay, we report semi high-throughput screening-based identification of ginkgetin, a biflavone, as a novel inhibitor of transient receptor potential vanilloid 4 (TRPV4)-dependent proatherogenic and inflammatory processes in macrophages. We found that ginkgetin (1) blocks TRPV4-elicited Ca2+ influx into macrophages, (2) inhibits oxidized low-density lipoprotein (oxLDL)-induced foam cell formation by suppressing the uptake but not the binding of oxLDL in macrophages, and (3) attenuates oxLDL-induced phosphorylation of JNK2, expression of TRPV4 proteins, and induction of inflammatory mRNAs. Considered all together, the results of this study show that ginkgetin inhibits proatherogenic/inflammatory macrophage function in a TRPV4-dependent manner, thus strengthening the rationale for the use of natural compounds for developing therapeutic and/or chemopreventive molecules.


Asunto(s)
Aterosclerosis/metabolismo , Biflavonoides/farmacología , Calcio/metabolismo , Canales Catiónicos TRPV/antagonistas & inhibidores , Animales , Aterosclerosis/tratamiento farmacológico , Línea Celular , Células Espumosas/citología , Células Espumosas/efectos de los fármacos , Células Espumosas/metabolismo , Ensayos Analíticos de Alto Rendimiento , Lipoproteínas LDL/efectos adversos , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Células RAW 264.7 , Canales Catiónicos TRPV/genética
3.
J Biol Chem ; 296: 100129, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33262217

RESUMEN

Multinucleated giant cells are formed by the fusion of macrophages and are a characteristic feature in numerous pathophysiological conditions including the foreign body response (FBR). Foreign body giant cells (FBGCs) are inflammatory and destructive multinucleated macrophages and may cause damage and/or rejection of implants. However, while these features of FBGCs are well established, the molecular mechanisms underlying their formation remain elusive. Improved understanding of the molecular mechanisms underlying the formation of FBGCs may permit the development of novel implants that eliminate or reduce the FBR. Our previous study showed that transient receptor potential vanilloid 4 (TRPV4), a mechanosensitive ion channel/receptor, is required for FBGC formation and FBR to biomaterials. Here, we have determined that (a) TRPV4 is directly involved in fusogenic cytokine (interleukin-4 plus granulocyte macrophage-colony stimulating factor)-induced activation of Rac1, in bone marrow-derived macrophages; (b) TRPV4 directly interacts with Rac1, and their interaction is further augmented in the presence of fusogenic cytokines; (c) TRPV4-dependent activation of Rac1 is essential for the augmentation of intracellular stiffness and regulation of cytoskeletal remodeling; and (d) TRPV4-Rac1 signaling axis is critical in fusogenic cytokine-induced FBGC formation. Together, these data suggest a novel mechanism whereby a functional interaction between TRPV4 and Rac1 leads to cytoskeletal remodeling and intracellular stiffness generation to modulate FBGC formation.


Asunto(s)
Células Gigantes de Cuerpo Extraño/metabolismo , Células Gigantes/metabolismo , Macrófagos/metabolismo , Neuropéptidos/metabolismo , Canales Catiónicos TRPV/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Animales , Fusión Celular , Células Cultivadas , Modelos Animales de Enfermedad , Células Gigantes/patología , Células Gigantes de Cuerpo Extraño/patología , Macrófagos/patología , Mecanotransducción Celular , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuropéptidos/genética , Transducción de Señal , Canales Catiónicos TRPV/genética , Proteína de Unión al GTP rac1/genética
4.
Front Immunol ; 11: 570195, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33381111

RESUMEN

Phenotypic polarization of macrophages is deemed essential in innate immunity and various pathophysiological conditions. We have now determined key aspects of the molecular mechanism by which mechanical cues regulate macrophage polarization. We show that Transient Receptor Potential Vanilloid 4 (TRPV4), a mechanosensitive ion channel, mediates substrate stiffness-induced macrophage polarization. Using atomic force microscopy, we showed that genetic ablation of TRPV4 function abrogated fibrosis-induced matrix stiffness generation in skin tissues. We have determined that stiffer skin tissue promotes the M1 macrophage subtype in a TRPV4-dependent manner; soft tissue does not. These findings were further validated by our in vitro results which showed that stiff matrix (50 kPa) alone increased expression of macrophage M1 markers in a TRPV4-dependent manner, and this response was further augmented by the addition of soluble factors; neither of which occurred with soft matrix (1 kPa). A direct requirement for TRPV4 in M1 macrophage polarization spectrum in response to increased stiffness was evident from results of gain-of-function assays, where reintroduction of TRPV4 significantly upregulated the expression of M1 markers in TRPV4 KO macrophages. Together, these data provide new insights regarding the role of TRPV4 in matrix stiffness-induced macrophage polarization spectrum that may be explored in tissue engineering and regenerative medicine and targeted therapeutics.


Asunto(s)
Matriz Extracelular/metabolismo , Macrófagos/fisiología , Canales Catiónicos TRPV/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Femenino , Inmunidad Innata , Activación de Macrófagos , Masculino , Mecanotransducción Celular , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía de Fuerza Atómica , Canales Catiónicos TRPV/genética
5.
Lab Invest ; 100(2): 178-185, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31645630

RESUMEN

Transient receptor ion channels have emerged as immensely important channels/receptors in diverse physiological and pathological responses. Of particular interest is the transient receptor potential channel subfamily V member 4 (TRPV4), which is a polymodal, nonselective, calcium-permeant cation channel, and is activated by both endogenous and exogenous stimuli. Both neuronal and nonneuronal cells express functional TRPV4, which is responsive to a variety of biochemical and biomechanical stimuli. Emerging discoveries have advanced our understanding of the role of macrophage TRPV4 in numerous inflammatory diseases. In lung injury, TRPV4 mediates macrophage phagocytosis, secretion of pro-resolution cytokines, and generation of reactive oxygen species. TRPV4 regulates lipid-laden macrophage foam cell formation, the hallmark of atheroinflammatory conditions, in response to matrix stiffness and lipopolysaccharide stimulation. Accumulating data also point to a role of macrophage TRPV4 in the pathogenesis of the foreign body response, a chronic inflammatory condition, through the formation of foreign body giant cells. Deletion of TRPV4 in macrophages suppresses the allergic and nonallergic itch in a mouse model, suggesting a role of TRPV4 in skin disease. Here, we discuss the current understanding of the role of macrophage TRPV4 in various inflammatory conditions.


Asunto(s)
Inflamación , Macrófagos , Canales Catiónicos TRPV , Animales , Aterosclerosis , Fibrosis , Humanos , Enfermedades Pulmonares , Macrófagos/inmunología , Macrófagos/fisiología , Ratones , Prurito
6.
Cell Mol Bioeng ; 12(2): 139-152, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31681446

RESUMEN

INTRODUCTION: The implantation of biomaterials into soft tissue leads to the development of foreign body response, a non-specific inflammatory condition that is characterized by the presence of fibrotic tissue. Epithelial-mesenchymal transition (EMT) is a key event in development, fibrosis, and oncogenesis. Emerging data support a role for both a mechanical signal and a biochemical signal in EMT. We hypothesized that transient receptor potential vanilloid 4 (TRPV4), a mechanosensitive channel, is a mediator of EMT. METHODS: Normal human primary epidermal keratinocytes (NHEKs) were seeded on collagen-coated plastic plates or varied stiffness polyacrylamide gels in the presence or absence of TGFß1, Immunofluorescence, immunoblot, and polymerase chain reaction analysis were performed to determine expression level of EMT markers and signaling proteins. Knock-down of TRPV4 function was achieved by siRNA transfection or by GSK2193874 treatment. RESULTS: We found that knock-down of TRPV4 blocked both matrix stiffness- and TGFß1-induced EMT in NHEKs. In a murine skin fibrosis model, TRPV4 deletion resulted in decreased expression of the mesenchymal marker, α-SMA, and increased expression of epithelial marker, E-cadherin. Mechanistically, our data showed that: i) TRPV4 was essential for the nuclear translocation of TAZ in response to matrix stiffness and TGFß1; ii) Antagonism of TRPV4 inhibited both matrix stiffness-induced and TGFß1-induced expression of TAZ proteins; and iii) TRPV4 antagonism suppressed both matrix stiffness-induced and TGFß1-induced activation of Smad2/3, but not of AKT. CONCLUSIONS: These data identify a novel role for TRPV4-TAZ mechanotransduction signaling axis in regulating EMT in NHEKs in response to both matrix stiffness and TGFß1.

7.
J Cell Mol Med ; 23(2): 761-774, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30450767

RESUMEN

Substrate stiffness (or rigidity) of the extracellular matrix has important functions in numerous pathophysiological processes including fibrosis. Emerging data support a role for both a mechanical signal, for example, matrix stiffness, and a biochemical signal, for example, transforming growth factor ß1 (TGFß1), in epithelial-mesenchymal transition (EMT), a process critically involved in fibrosis. Here, we report evidence showing that transient receptor potential vanilloid 4 (TRPV4), a mechanosensitive channel, is the likely mediator of EMT in response to both TGFß1 and matrix stiffness. Specifically, we found that: (a) genetic ablation or pharmacological inhibition of TRPV4 blocked matrix stiffness and TGFß1-induced EMT in normal mouse primary epidermal keratinocytes (NMEKs) as determined by changes in morphology, adhesion, migration and alterations of expression of EMT markers including E-cadherin, N-cadherin (NCAD) and α-smooth muscle actin (α-SMA), and (b) TRPV4 deficiency prevented matrix stiffness-induced EMT in NMEKs over a pathophysiological range. Intriguingly, TRPV4 deletion in mice suppressed expression of mesenchymal markers, NCAD and α-SMA, in a bleomycin-induced murine skin fibrosis model. Mechanistically, we found that: (a) TRPV4 was essential for the nuclear translocation of YAP/TAZ (yes-associated protein/transcriptional coactivator with PDZ-binding motif) in response to matrix stiffness and TGFß1, (b) TRPV4 deletion inhibited both matrix stiffness- and TGFß1-induced expression of YAP/TAZ proteins and (c) TRPV4 deletion abrogated both matrix stiffness- and TGFß1-induced activation of AKT, but not Smad2/3, suggesting a mechanism by which TRPV4 activity regulates EMT in NMEKs. Altogether, these data identify a novel role for TRPV4 in regulating EMT.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Ciclo Celular/genética , Epidermis/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Matriz Extracelular/efectos de los fármacos , Canales Catiónicos TRPV/genética , Transactivadores/genética , Actinas/genética , Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Bleomicina/administración & dosificación , Cadherinas/genética , Cadherinas/metabolismo , Adhesión Celular/efectos de los fármacos , Proteínas de Ciclo Celular/metabolismo , Movimiento Celular/efectos de los fármacos , Epidermis/metabolismo , Epidermis/patología , Transición Epitelial-Mesenquimal/genética , Matriz Extracelular/metabolismo , Fibrosis/inducido químicamente , Regulación de la Expresión Génica , Humanos , Queratinocitos/citología , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Mecanotransducción Celular , Ratones , Cultivo Primario de Células , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína smad3/genética , Proteína smad3/metabolismo , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/deficiencia , Transactivadores/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Proteínas Señalizadoras YAP
8.
Free Radic Biol Med ; 110: 142-150, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28602913

RESUMEN

Cardiovascular disease is the number one cause of death in United States, and atherosclerosis, a chronic inflammatory arterial disease, is the most dominant underlying pathology. Macrophages are thought to orchestrate atherosclerosis by generating lipid-laden foam cells and by secreting inflammatory mediators. Emerging data support a role for a mechanical factor, e.g., matrix stiffness, in regulation of macrophage function, vascular elasticity, and atherogenesis. However, the identity of the plasma membrane mechanosensor and the mechanisms by which pro-atherogenic signals are transduced/maintained are unknown. We have obtained evidence that TRPV4, an ion channel in the transient receptor potential vanilloid family and a known mechanosensor, is the likely mediator of oxidized low-density lipoprotein (oxLDL)-dependent macrophage foam cell formation, a critical process in atherogenesis. Specifically, we found that: i) genetic ablation of TRPV4 or pharmacologic inhibition of TRPV4 activity by a specific antagonist blocked oxLDL-induced macrophage foam cell formation, and ii) TRPV4 deficiency prevented pathophysiological range matrix stiffness or scratch-induced exacerbation of oxLDL-induced foam cell formation. Mechanistically, we found that: i) plasma membrane localization of TRPV4 was sensitized to the increasing level of matrix stiffness, ii) lack of foam cell formation in TRPV4 null cells was not due to lack of expression of CD36, a major receptor for oxLDL, and iii) TRPV4 channel activity regulated oxLDL uptake but not its binding on macrophages. Altogether, these findings identify a novel role for TRPV4 in regulating macrophage foam cell formation by modulating uptake of oxLDL. These findings suggest that therapeutic targeting of TRPV4 may provide a selective approach to the treatment of atherosclerosis.


Asunto(s)
Células Espumosas/efectos de los fármacos , Lipoproteínas LDL/farmacología , Macrófagos/efectos de los fármacos , Canales Catiónicos TRPV/genética , Animales , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Transporte Biológico , Fenómenos Biomecánicos , Antígenos CD36/genética , Antígenos CD36/metabolismo , Diferenciación Celular/efectos de los fármacos , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Células Espumosas/metabolismo , Células Espumosas/patología , Expresión Génica , Macrófagos/metabolismo , Macrófagos/patología , Mecanotransducción Celular , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Cultivo Primario de Células , Células RAW 264.7 , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA