Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Intervalo de año de publicación
1.
PLoS Pathog ; 19(7): e1011528, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37494386

RESUMEN

Subacute sclerosing panencephalitis (SSPE) is a fatal neurodegenerative disease caused by measles virus (MV), which typically develops 7 to 10 years after acute measles. During the incubation period, MV establishes a persistent infection in the brain and accumulates mutations that generate neuropathogenic SSPE virus. The neuropathogenicity is closely associated with enhanced propagation mediated by cell-to-cell fusion in the brain, which is principally regulated by hyperfusogenic mutations of the viral F protein. The molecular mechanisms underlying establishment and maintenance of persistent infection are unclear because it is impractical to isolate viruses before the appearance of clinical signs. In this study, we found that the L and P proteins, components of viral RNA-dependent RNA polymerase (RdRp), of an SSPE virus Kobe-1 strain did not promote but rather attenuated viral neuropathogenicity. Viral RdRp activity corresponded to F protein expression; the suppression of RdRp activity in the Kobe-1 strain because of mutations in the L and P proteins led to restriction of the F protein level, thereby reducing cell-to-cell fusion mediated propagation in neuronal cells and decreasing neuropathogenicity. Therefore, the L and P proteins of Kobe-1 did not contribute to progression of SSPE. Three mutations in the L protein strongly suppressed RdRp activity. Recombinant MV harboring the three mutations limited viral spread in neuronal cells while preventing the release of infectious progeny particles; these changes could support persistent infection by enabling host immune escape and preventing host cell lysis. Therefore, the suppression of RdRp activity is necessary for the persistent infection of the parental MV on the way to transform into Kobe-1 SSPE virus. Because mutations in the genome of an SSPE virus reflect the process of SSPE development, mutation analysis will provide insight into the mechanisms underlying persistent infection.


Asunto(s)
Sarampión , Enfermedades Neurodegenerativas , Panencefalitis Esclerosante Subaguda , Humanos , Virus del Sarampión/genética , Virus SSPE/genética , Virus SSPE/metabolismo , Panencefalitis Esclerosante Subaguda/genética , Panencefalitis Esclerosante Subaguda/patología , Proteinas del Complejo de Replicasa Viral/metabolismo , Infección Persistente , Proteínas Virales de Fusión/genética , Proteínas Virales de Fusión/metabolismo , Sarampión/genética , Sarampión/metabolismo
2.
Front Immunol ; 13: 970750, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36045682

RESUMEN

Retinoic acid-inducible gene I (RIG-I) is a receptor that senses viral RNA and interacts with mitochondrial antiviral signaling (MAVS) protein, leading to the production of type I interferons and inflammatory cytokines to establish an antiviral state. This signaling axis is initiated by the K63-linked RIG-I ubiquitination, mediated by E3 ubiquitin ligases such as TRIM25. However, many viruses, including several members of the family Paramyxoviridae and human respiratory syncytial virus (HRSV), a member of the family Pneumoviridae, escape the immune system by targeting RIG-I/TRIM25 signaling. In this study, we screened human metapneumovirus (HMPV) open reading frames (ORFs) for their ability to block RIG-I signaling reconstituted in HEK293T cells by transfection with TRIM25 and RIG-I CARD (an N-terminal CARD domain that is constitutively active in RIG-I signaling). HMPV M2-2 was the most potent inhibitor of RIG-I/TRIM25-mediated interferon (IFN)-ß activation. M2-2 silencing induced the activation of transcription factors (IRF and NF-kB) downstream of RIG-I signaling in A549 cells. Moreover, M2-2 inhibited RIG-I ubiquitination and CARD-dependent interactions with MAVS. Immunoprecipitation revealed that M2-2 forms a stable complex with RIG-I CARD/TRIM25 via direct interaction with the SPRY domain of TRIM25. Similarly, HRSV NS1 also formed a stable complex with RIG-I CARD/TRIM25 and inhibited RIG-I ubiquitination. Notably, the inhibitory actions of HMPV M2-2 and HRSV NS1 are similar to those of V proteins of several members of the Paramyxoviridae family. In this study, we have identified a novel mechanism of immune escape by HMPV, similar to that of Pneumoviridae and Paramyxoviridae family members.


Asunto(s)
Interferón Tipo I , Metapneumovirus , Infecciones por Paramyxoviridae/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Antivirales , Proteína 58 DEAD Box/metabolismo , Células HEK293 , Humanos , Inmunidad Innata , Interferón Tipo I/metabolismo , Interferón beta/metabolismo , Paramyxoviridae , Infecciones por Paramyxoviridae/virología , Receptores Inmunológicos/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
3.
Virology ; 573: 1-11, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35679629

RESUMEN

Subacute sclerosing panencephalitis (SSPE) is a rare progressive neurodegenerative disease caused by measles virus variants (SSPE viruses) that results in eventual death. Amino acid substitution(s) in the viral fusion (F) protein are key for viral propagation in the brain in a cell-to-cell manner, a specific trait of SSPE viruses, leading to neuropathogenicity. In this study, we passaged an SSPE virus in cultured human neuronal cells and isolated an adapted virus that propagated more efficiently in neuronal cells and exhibited increased cell-to-cell fusion. Contrary to our expectation, the virus harbored mutations in the large protein, a viral RNA-dependent RNA polymerase, and in the phosphoprotein, its co-factor, rather than in the F protein. Our results imply that upregulated RNA polymerase activity, which increases F protein expression and cell-to-cell fusion, could be a viral factor that provides a growth advantage and contributes to the adaptation of SSPE viruses to neuronal cells.


Asunto(s)
Enfermedades Neurodegenerativas , Panencefalitis Esclerosante Subaguda , Humanos , Virus del Sarampión/fisiología , Virus SSPE/genética , Virus SSPE/metabolismo , Panencefalitis Esclerosante Subaguda/genética , Panencefalitis Esclerosante Subaguda/metabolismo , Regulación hacia Arriba , Proteínas Virales de Fusión/genética , Proteinas del Complejo de Replicasa Viral
4.
J Gen Virol ; 102(10)2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34643483

RESUMEN

Subacute sclerosing panencephalitis (SSPE) is a rare fatal neurodegenerative disease caused by a measles virus (MV) variant, SSPE virus, that accumulates mutations during long-term persistent infection of the central nervous system (CNS). Clusters of mutations identified around the matrix (M) protein in many SSPE viruses suppress productive infectious particle release and accelerate cell-cell fusion, which are features of SSPE viruses. It was reported, however, that these defects of M protein function might not be correlated directly with promotion of neurovirulence, although they might enable establishment of persistent infection. Neuropathogenicity is closely related to the character of the viral fusion (F) protein, and amino acid substitution(s) in the F protein of some SSPE viruses confers F protein hyperfusogenicity, facilitating viral propagation in the CNS through cell-cell fusion and leading to neurovirulence. The F protein of an SSPE virus Kobe-1 strain, however, displayed only moderately enhanced fusion activity and required additional mutations in the M protein for neuropathogenicity in mice. We demonstrated here the mechanism for the M protein of the Kobe-1 strain supporting the fusion activity of the F protein and cooperatively inducing neurovirulence, even though each protein, independently, has no effect on virulence. The occurrence of SSPE has been estimated recently as one in several thousand in children who acquired measles under the age of 5 years, markedly higher than reported previously. The probability of a specific mutation (or mutations) occurring in the F protein conferring hyperfusogenicity and neuropathogenicity might not be sufficient to explain the high frequency of SSPE. The induction of neurovirulence by M protein synergistically with moderately fusogenic F protein could account for the high frequency of SSPE.


Asunto(s)
Encéfalo/virología , Virus SSPE/patogenicidad , Panencefalitis Esclerosante Subaguda/virología , Proteínas Virales de Fusión/metabolismo , Proteínas de la Matriz Viral/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Genes Virales , Células Gigantes/virología , Humanos , Fusión de Membrana , Ratones , Mutación , Neuronas/virología , Virus SSPE/genética , Proteínas Virales de Fusión/genética , Proteínas de la Matriz Viral/genética
5.
Innate Immun ; 24(7): 430-438, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30189760

RESUMEN

To suppress virus multiplication, infected macrophages produce NO. However, it remains unclear how infecting viruses then overcome NO challenge. In the present study, we report the effects of accessory protein C from Sendai virus (SeV), a prototypical paramyxovirus, on NO output. We found that in RAW264.7 murine macrophages, a mutant SeV without C protein (4C(-)) significantly enhanced inducible NO synthase (iNOS) expression and subsequent NO production compared to wild type SeV (wtSeV). SeV 4C(-) infection caused marked production of IFN-ß, which is involved in induction of iNOS expression via the JAK-STAT pathway. Addition of anti-IFN-ß Ab, however, resulted in only marginal suppression of NO production. In contrast, NF-κB, a primarily important factor for transcription of the iNOS gene, was also activated by 4C(-) infection but not wtSeV infection. Induction of NO production and iNOS expression by 4C(-) was significantly suppressed in cells constitutively expressing influenza virus NS1 protein that can sequester double-stranded (ds)RNA, which triggers activation of signaling pathways leading to activation of NF-κB and IRF3. Therefore, C protein appears to suppress NF-κB activation to inhibit iNOS expression and subsequent NO production, possibly by limiting dsRNA generation in the context of viral infection.


Asunto(s)
Macrófagos/fisiología , Infecciones por Respirovirus/inmunología , Virus Sendai/fisiología , Proteínas Virales/metabolismo , Animales , Regulación de la Expresión Génica , Factor 3 Regulador del Interferón/metabolismo , Quinasas Janus/metabolismo , Ratones , Mutación/genética , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Células RAW 264.7 , ARN Bicatenario/metabolismo , Factores de Transcripción STAT/metabolismo , Transducción de Señal , Proteínas no Estructurales Virales/metabolismo , Proteínas Virales/genética
6.
J Virol ; 92(19)2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30021903

RESUMEN

Inflammasomes play a key role in host innate immune responses to viral infection by caspase-1 (Casp-1) activation to facilitate interleukin-1ß (IL-1ß) secretion, which contributes to the host antiviral defense. The NLRP3 inflammasome consists of the cytoplasmic sensor molecule NLRP3, adaptor protein ASC, and effector protein pro-caspase-1 (pro-Casp-1). NLRP3 and ASC promote pro-Casp-1 cleavage, leading to IL-1ß maturation and secretion. However, as a countermeasure, viral pathogens have evolved virulence factors to antagonize inflammasome pathways. Here we report that V gene knockout Sendai virus [SeV V(-)] induced markedly greater amounts of IL-1ß than wild-type SeV in infected THP1 macrophages. Deficiency of NLRP3 in cells inhibited SeV V(-)-induced IL-1ß secretion, indicating an essential role for NLRP3 in SeV V(-)-induced IL-1ß activation. Moreover, SeV V protein inhibited the assembly of NLRP3 inflammasomes, including NLRP3-dependent ASC oligomerization, NLRP3-ASC association, NLRP3 self-oligomerization, and intermolecular interactions between NLRP3 molecules. Furthermore, a high correlation between the NLRP3-binding capacity of V protein and the ability to block inflammasome complex assembly was observed. Therefore, SeV V protein likely inhibits NLRP3 self-oligomerization by interacting with NLRP3 and inhibiting subsequent recruitment of ASC to block NLRP3-dependent ASC oligomerization, in turn blocking full activation of the NLRP3 inflammasome and thus blocking IL-1ß secretion. Notably, the inhibitory action of SeV V protein on NLRP3 inflammasome activation is shared by other paramyxovirus V proteins, such as Nipah virus and human parainfluenza virus type 2. We thus reveal a mechanism by which paramyxovirus inhibits inflammatory responses by inhibiting NLRP3 inflammasome complex assembly and IL-1ß activation.IMPORTANCE The present study demonstrates that the V protein of SeV, Nipah virus, and human parainfluenza virus type 2 interacts with NLRP3 to inhibit NLRP3 inflammasome activation, potentially suggesting a novel strategy by which viruses evade the host innate immune response. As all members of the Paramyxovirinae subfamily carry similar V genes, this new finding may also lead to identification of novel therapeutic targets for paramyxovirus infection and related diseases.


Asunto(s)
Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Infecciones por Respirovirus/metabolismo , Virus Sendai/metabolismo , Proteínas Virales/metabolismo , Caspasa 1/genética , Caspasa 1/metabolismo , Células HEK293 , Humanos , Inflamasomas/genética , Interleucina-1beta/genética , Macrófagos/patología , Macrófagos/virología , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Multimerización de Proteína/genética , Infecciones por Respirovirus/genética , Infecciones por Respirovirus/patología , Virus Sendai/genética , Células THP-1 , Proteínas Virales/genética
7.
J Virol ; 91(20)2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28768858

RESUMEN

Human metapneumovirus (HMPV) has the ability to inhibit Toll-like receptor 7 (TLR7)- and TLR9-dependent alpha interferon (IFN-α) production by plasmacytoid dendritic cells (pDCs). However, the inhibition mechanism remains largely unknown. To identify viral proteins responsible for this inhibition, we performed a screening of HMPV open reading frames (ORFs) for the ability to block TLR7/9-dependent signaling reconstituted in HEK293T cells by transfection with myeloid differentiation factor 88 (MyD88), tumor necrosis factor receptor-associated factor 6 (TRAF6), IKKα, and IFN regulatory factor 7 (IRF7). This screening demonstrated that the M2-2 protein was the most potent inhibitor of TLR7/9-dependent IFN-α induction. A recombinant HMPV in which the M2-2 ORF was silenced indeed induced greater IFN-α production by human pDCs than wild-type HMPV did. Immunoprecipitation experiments showed direct physical association of the M2-2 protein with the inhibitory domain (ID) of IRF7. As a natural consequence of this, transfection of IRF7 lacking the ID, a constitutively active mutant, resulted in activation of the IFN-α promoter even in the presence of M2-2. Bioluminescence resonance energy transfer assays and split Renilla luciferase complementation assays revealed that M2-2 inhibited MyD88/TRAF6/IKKα-induced homodimerization of IRF7. In contrast, expression of the M2-2 protein did not result in inhibition of IPS-1-induced homodimerization and resultant activation of IRF7. This indicates that inhibition of MyD88/TRAF6/IKKα-induced IRF7 homodimerization does not result from a steric effect of M2-2 binding. Instead, it was found that M2-2 inhibited MyD88/TRAF6/IKKα-induced phosphorylation of IRF7 on Ser477. These results suggest that M2-2 blocks TLR7/9-dependent IFN-α induction by preventing IRF7 homodimerization, possibly through its effects on the phosphorylation status of IRF7.IMPORTANCE The family Paramyxoviridae is divided into two subfamilies, the Paramyxovirinae and the Pneumovirinae Members of the subfamily Paramyxovirinae have the ability to inhibit TLR7/9-dependent IFN-α production, and the underlying inhibition mechanism has been intensively studied. In contrast, little is known about how members of the subfamily Pneumovirinae regulate IFN-α production by pDCs. We identified the M2-2 protein of HMPV, a member of the subfamily Pneumovirinae, as a negative regulator of IFN-α production by pDCs and uncovered the underlying mechanism. This study explains in part why the M2-2 knockout recombinant HMPV is attenuated and further suggests that M2-2 is a potential target for HMPV therapy.


Asunto(s)
Células Dendríticas/inmunología , Interferón-alfa/biosíntesis , Metapneumovirus/fisiología , Proteínas Virales/metabolismo , Transferencia de Energía por Resonancia de Bioluminiscencia , Células Dendríticas/virología , Prueba de Complementación Genética , Células HEK293 , Humanos , Quinasa I-kappa B/genética , Evasión Inmune , Factor 7 Regulador del Interferón/genética , Interferón-alfa/inmunología , Péptidos y Proteínas de Señalización Intracelular , Factor 88 de Diferenciación Mieloide/genética , Sistemas de Lectura Abierta , Fosforilación , Transducción de Señal , Factor 6 Asociado a Receptor de TNF/genética , Receptor Toll-Like 7/inmunología , Receptor Toll-Like 9/inmunología , Transfección , Proteínas Virales/genética , Proteínas Virales/inmunología
8.
Cell Death Differ ; 24(4): 615-625, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28060376

RESUMEN

Necroptosis is a form of necrotic cell death that requires the activity of the death domain-containing kinase RIP1 and its family member RIP3. Necroptosis occurs when RIP1 is deubiquitinated to form a complex with RIP3 in cells deficient in the death receptor adapter molecule FADD or caspase-8. Necroptosis may play a role in host defense during viral infection as viruses like vaccinia can induce necroptosis while murine cytomegalovirus encodes a viral inhibitor of necroptosis. To see how general the interplay between viruses and necroptosis is, we surveyed seven different viruses. We found that two of the viruses tested, Sendai virus (SeV) and murine gammaherpesvirus-68 (MHV68), are capable of inducing dramatic necroptosis in the fibrosarcoma L929 cell line. We show that MHV68-induced cell death occurs through the cytosolic STING sensor pathway in a TNF-dependent manner. In contrast, SeV-induced death is mostly independent of TNF. Knockdown of the RNA sensing molecule RIG-I or the RIP1 deubiquitin protein, CYLD, but not STING, rescued cells from SeV-induced necroptosis. Accompanying necroptosis, we also find that wild type but not mutant SeV lacking the viral proteins Y1 and Y2 result in the non-ubiquitinated form of RIP1. Expression of Y1 or Y2 alone can suppress RIP1 ubiquitination but CYLD is dispensable for this process. Instead, we found that Y1 and Y2 can inhibit cIAP1-mediated RIP1 ubiquitination. Interestingly, we also found that SeV infection of B6 RIP3-/- mice results in increased inflammation in the lung and elevated SeV-specific T cells. Collectively, these data identify viruses and pathways that can trigger necroptosis and highlight the dynamic interplay between pathogen-recognition receptors and cell death induction.


Asunto(s)
Proteína 58 DEAD Box/metabolismo , Gammaherpesvirinae/fisiología , Proteínas de la Membrana/metabolismo , Virus Sendai/fisiología , Clorometilcetonas de Aminoácidos/farmacología , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Proteína 58 DEAD Box/antagonistas & inhibidores , Proteína 58 DEAD Box/genética , Enzima Desubiquitinante CYLD , Pulmón/metabolismo , Pulmón/patología , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Necrosis , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/antagonistas & inhibidores , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/farmacología , Ubiquitinación/efectos de los fármacos , Proteínas Virales/genética , Proteínas Virales/metabolismo , Activación Viral
9.
J Gen Virol ; 98(2): 143-154, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27911256

RESUMEN

The fusion (F) protein of measles virus performs refolding from the thermodynamically metastable prefusion form to the highly stable postfusion form via an activated unstable intermediate stage, to induce membrane fusion. Some amino acids involved in the fusion regulation cluster in the heptad repeat B (HR-B) domain of the stalk region, among which substitution of residue 465 by various amino acids revealed that fusion activity correlates well with its side chain length from the Cα (P<0.01) and van der Waals volume (P<0.001), except for Phe, Tyr, Trp, Pro and His carrying ring structures. Directed towards the head region, longer side chains of the non-ring-type 465 residues penetrate more deeply into the head region and may disturb the hydrophobic interaction between the stalk and head regions and cause destabilization of the molecule by lowering the energy barrier for refolding, which conferred the F protein enhanced fusion activity. Contrarily, the side chain of ring-type 465 residues turned away from the head region, resulting in not only no contact with the head region but also extensive coverage of the HR-B surface, which may prevent the dissociation of the HR-B bundle for initiation of membrane fusion and suppress fusion activity. Located in the HR-B domain just at the junction between the head and stalk regions, amino acid 465 is endowed with a possible ability to either destabilize or stabilize the F protein depending on its molecular volume and the direction of the side chain, regulating fusion activity of measles virus F protein.


Asunto(s)
Virus del Sarampión/química , Sarampión/virología , Fusión de Membrana , Proteínas Virales de Fusión/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Chlorocebus aethiops , Humanos , Virus del Sarampión/ultraestructura , Dominios Proteicos , Pliegue de Proteína , Estabilidad Proteica , Termodinámica , Células Vero
10.
FEBS Lett ; 589(1): 152-8, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-25479085

RESUMEN

The fusion (F) protein of measles virus mediates membrane fusion. In this study, we investigated the molecular basis of the cell-cell fusion activity of the F protein. The N465H substitution in the heptad repeat B domain of the stalk region of the F protein eliminates this activity, but an additional mutation in the DIII domain of the head region - N183D, F217L, P219S, I225T or G240R - restores cell-cell fusion. Thermodynamically stabilized by the N465H substitution, the F protein required elevated temperature as high as 40 °C to promote cell-cell fusion, whereas all five DIII mutations caused destabilization of the F protein allowing the highest fusion activity at 30 °C. Stability complementation between the two domains conferred an efficient cell-cell fusion activity on the F protein at 37 °C.


Asunto(s)
Virus del Sarampión/metabolismo , Mutación Missense , Proteínas Virales de Fusión/metabolismo , Sustitución de Aminoácidos , Animales , Fusión Celular , Chlorocebus aethiops , Virus del Sarampión/genética , Estabilidad Proteica , Estructura Terciaria de Proteína , Células Vero , Proteínas Virales de Fusión/genética
11.
FEBS Lett ; 588(1): 28-34, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24269682

RESUMEN

Paramyxovirus C protein targets the host interferon (IFN) system for virus immune evasion. To identify its unknown anti-IFN activity, we examined the effect of Sendai virus C protein on activation of the IFN-α promoter via various signaling pathways. This study uncovers a novel ability of C protein to block Toll-like receptor (TLR) 7- and TLR9-dependent IFN-α induction, which is specific to plasmacytoid dendritic cells. C protein interacts with a serine/threonine kinase IKKα and inhibits phosphorylation of IRF7. This anti-IFN activity of C protein is shared across genera of the Paramyxovirinae, and thus appears to play an important role in paramyxovirus immune evasion.


Asunto(s)
Interferón-alfa/metabolismo , Receptor Toll-Like 7/metabolismo , Receptor Toll-Like 9/metabolismo , Proteínas Virales/metabolismo , Animales , Chlorocebus aethiops , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Células Dendríticas/virología , Células HEK293 , Interacciones Huésped-Patógeno/inmunología , Humanos , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Immunoblotting , Factor 7 Regulador del Interferón/genética , Factor 7 Regulador del Interferón/metabolismo , Interferón-alfa/genética , Mutación , Paramyxoviridae/genética , Paramyxoviridae/metabolismo , Paramyxoviridae/fisiología , Regiones Promotoras Genéticas/genética , Unión Proteica , Activación Transcripcional , Células Vero , Proteínas Virales/genética
12.
Microbes Infect ; 9(8): 954-62, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17548221

RESUMEN

The paramyxovirus P gene encodes accessory proteins antagonistic to interferon (IFN). Viral proteins responsible for the IFN antagonism, however, are distinct among paramyxoviruses. Here we determine bovine parainfluenza virus type 3 (bPIV3) IFN antagonists that suppress IFN-beta production, and investigate the underlying molecular mechanism. Of bPIV3 P gene products, C and V proteins were found to suppress double-stranded RNA-stimulated IFN-beta production. The V protein of bPIV3 and Sendai virus in the same genus Respirovirus significantly inhibits double-stranded RNA-stimulated IFN-beta production and the IFN-beta promoter activation enhanced by overexpression of MDA5 but not RIG-I, and yet does not suppress IFN-beta production induced by TRIF, TBK1, and IKKi. The V protein of both viruses specifically binds to MDA5 but not RIG-I. These results suggest that the V protein targets MDA5 for blockage of the IFN-beta gene activation signal. On the other hand, both bPIV3 and Sendai virus C proteins modestly inhibited IFN-beta production irrespective of a species of the signaling molecules used as an inducer. Interestingly, reporter gene expression driven by various promoters was also suppressed by the C proteins irrespective of the promoter species. These results demonstrate that the target of the respirovirus C protein is undoubtedly different from that of the V protein.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Interferón beta/antagonistas & inhibidores , Virus de la Parainfluenza 3 Bovina/patogenicidad , Proteínas Virales/metabolismo , Animales , Bovinos , Línea Celular , Proteína 58 DEAD Box , ARN Helicasas DEAD-box/genética , Regulación de la Expresión Génica , Células HeLa , Humanos , Helicasa Inducida por Interferón IFIH1 , Interferón beta/metabolismo , Receptores Inmunológicos , Transducción de Señal , Activación Transcripcional , Proteínas Virales/genética
13.
Hiroshima J Med Sci ; 55(3): 71-7, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16995492

RESUMEN

Interferon is important for anti-viral defense of the host. The E2, NS3/4A, and NS5A proteins of hepatitis C virus (HCV) have recently been reported to confront anti-viral action induced by interferon. However, roles of the individual HCV proteins in anti-interferon action are still not well understood. We have isolated an HCV strain, HCV-K, from a patient with acute hepatitis. Nucleotide sequencing of the entire genomic DNA of HCV-K revealed that the isolate belongs to the genotype 1b, which is generally resistant to interferon therapy. In the present study, we expressed individual HCV-K proteins in mammalian cells and investigated effects of the proteins on interferon signal transduction. The results showed that the core, E1, NS4A, and NS4B proteins suppressed activation of interferon stimulation responsive element (ISRE) and gamma activation sequence (GAS) reporters. These results suggest that multiple HCV proteins have a function in suppression of the anti-viral effect by interferon and may indicate a novel role of E1 and NS4B proteins in interferon antagonism.


Asunto(s)
Interferones/antagonistas & inhibidores , Regiones Promotoras Genéticas , Proteínas del Envoltorio Viral/fisiología , Proteínas no Estructurales Virales/fisiología , Células Cultivadas , Humanos , Interferón beta/genética , Elementos de Respuesta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA