Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Intervalo de año de publicación
1.
Acta Neuropathol Commun ; 11(1): 150, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37715247

RESUMEN

The hippocampus is a primary region affected in Alzheimer's disease (AD). Because AD postmortem brain tissue is not available prior to symptomatic stage, we lack understanding of early cellular pathogenic mechanisms. To address this issue, we examined the cellular origin and progression of AD pathogenesis by comparing patient-based model systems including iPSC-derived brain cells transplanted into the mouse brain hippocampus. Proteomic analysis of the graft enabled the identification of pathways and network dysfunction in AD patient brain cells, associated with increased levels of Aß-42 and ß-sheet structures. Interestingly, the host cells surrounding the AD graft also presented alterations in cellular biological pathways. Furthermore, proteomic analysis across human iPSC-based models and human post-mortem hippocampal tissue projected coherent longitudinal cellular changes indicative of early to end stage AD cellular pathogenesis. Our data showcase patient-based models to study the cell autonomous origin and progression of AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Animales , Ratones , Humanos , Proteómica , Autopsia , Hipocampo
2.
Life Sci Alliance ; 6(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37290814

RESUMEN

Apolipoprotein E4 (ApoE4) is the most important genetic risk factor for Alzheimer's disease (AD). Among the earliest changes in AD is endosomal enlargement in neurons, which was reported as enhanced in ApoE4 carriers. ApoE is thought to be internalized into endosomes of neurons, whereas ß-amyloid (Aß) accumulates within neuronal endosomes early in AD. However, it remains unknown whether ApoE and Aß intersect intracellularly. We show that internalized astrocytic ApoE localizes mostly to lysosomes in neuroblastoma cells and astrocytes, whereas in neurons, it preferentially localizes to endosomes-autophagosomes of neurites. In AD transgenic neurons, astrocyte-derived ApoE intersects intracellularly with amyloid precursor protein/Aß. Moreover, ApoE4 increases the levels of endogenous and internalized Aß42 in neurons. Taken together, we demonstrate differential localization of ApoE in neurons, astrocytes, and neuron-like cells, and show that internalized ApoE intersects with amyloid precursor protein/Aß in neurons, which may be of considerable relevance to AD.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Humanos , Precursor de Proteína beta-Amiloide/genética , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Péptidos beta-Amiloides/genética , Enfermedad de Alzheimer/genética , Neuronas/fisiología
3.
Sci Rep ; 12(1): 2987, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35194057

RESUMEN

Parkinson's disease (PD) and Alzheimer's disease (AD) are characterized by pathological accumulation and aggregation of different amyloidogenic proteins, α-synuclein (aSyn) in PD, and amyloid-ß (Aß) and Tau in AD. Strikingly, few PD and AD patients' brains exhibit pure pathology with most cases presenting mixed types of protein deposits in the brain. Bimolecular fluorescence complementation (BiFC) is a technique based on the complementation of two halves of a fluorescent protein, which allows direct visualization of protein-protein interactions. In the present study, we assessed the ability of aSyn and Tau to interact with each other. For in vitro evaluation, HEK293 and human neuroblastoma cells were used, while in vivo studies were performed by AAV6 injection in the substantia nigra pars compacta (SNpc) of mice and rats. We observed that the co-expression of aSyn and Tau led to the emergence of fluorescence, reflecting the interaction of the proteins in cell lines, as well as in mouse and rat SNpc. Thus, our data indicates that aSyn and Tau are able to interact with each other in a biologically relevant context, and that the BiFC assay is an effective tool for studying aSyn-Tau interactions in vitro and in different rodent models in vivo.


Asunto(s)
Fluorescencia , Técnica del Anticuerpo Fluorescente/métodos , Mapas de Interacción de Proteínas , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo , Animales , Línea Celular Tumoral , Células HEK293 , Humanos , Técnicas In Vitro , Ratones , Agregado de Proteínas , Ratas
4.
Int J Mol Sci ; 22(7)2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33810433

RESUMEN

Alzheimer's disease affects millions of lives worldwide. This terminal disease is characterized by the formation of amyloid aggregates, so-called amyloid oligomers. These oligomers are composed of ß-sheet structures, which are believed to be neurotoxic. However, the actual secondary structure that contributes most to neurotoxicity remains unknown. This lack of knowledge is due to the challenging nature of characterizing the secondary structure of amyloids in cells. To overcome this and investigate the molecular changes in proteins directly in cells, we used synchrotron-based infrared microspectroscopy, a label-free and non-destructive technique available for in situ molecular imaging, to detect structural changes in proteins and lipids. Specifically, we evaluated the formation of ß-sheet structures in different monogenic and bigenic cellular models of Alzheimer's disease that we generated for this study. We report on the possibility to discern different amyloid signatures directly in cells using infrared microspectroscopy and demonstrate that bigenic (amyloid-ß, α-synuclein) and (amyloid-ß, Tau) neuron-like cells display changes in ß-sheet load. Altogether, our findings support the notion that different molecular mechanisms of amyloid aggregation, as opposed to a common mechanism, are triggered by the specific cellular environment and, therefore, that various mechanisms lead to the development of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Amiloide/química , Espectrofotometría Infrarroja/métodos , Enfermedad de Alzheimer/diagnóstico por imagen , Péptidos beta-Amiloides/metabolismo , Amiloidosis/metabolismo , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Ratones , Microscopía Fluorescente , Neuroblastoma/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Conformación Proteica , Estructura Secundaria de Proteína , Espectroscopía Infrarroja por Transformada de Fourier , Sincrotrones , alfa-Sinucleína/química
5.
Neurobiol Dis ; 113: 1-10, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29414379

RESUMEN

Alzheimer's disease (AD) brain tissue can act as a seed to accelerate aggregation of amyloid-ß (Aß) into plaques in AD transgenic mice. Aß seeds have been hypothesized to accelerate plaque formation in a prion-like manner of templated seeding and intercellular propagation. However, the structure(s) and location(s) of the Aß seeds remain unknown. Moreover, in contrast to tau and α-synuclein, an in vitro system with prion-like Aß has not been reported. Here we treat human APP expressing N2a cells with AD transgenic mouse brain extracts to induce inclusions of Aß in a subset of cells. We isolate cells with induced Aß inclusions and using immunocytochemistry, western blot and infrared spectroscopy show that these cells produce oligomeric Aß over multiple replicative generations. Further, we demonstrate that cell lysates of clones with induced oligomeric Aß can induce aggregation in previously untreated N2a APP cells. These data strengthen the case that Aß acts as a prion-like protein, demonstrate that Aß seeds can be intracellular oligomers and for the first time provide a cellular model of nucleated seeding of Aß.


Asunto(s)
Péptidos beta-Amiloides/biosíntesis , Líquido Intracelular/metabolismo , Placa Amiloide/metabolismo , Proteínas Priónicas/biosíntesis , Prosencéfalo/metabolismo , Péptidos beta-Amiloides/genética , Animales , Línea Celular Tumoral , Humanos , Ratones , Ratones Transgénicos , Placa Amiloide/patología , Proteínas Priónicas/genética , Prosencéfalo/patología
6.
J Cell Sci ; 128(14): 2520-8, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26002056

RESUMEN

Intracellular amyloid-ß (Aß) accumulation is a key feature of early Alzheimer's disease and precedes the appearance of Aß in extracellular plaques. Aß is generated through proteolytic processing of amyloid precursor protein (APP), but the intracellular site of Aß production is unclear. APP has been localized to multivesicular bodies (MVBs) where sorting of APP onto intraluminal vesicles (ILVs) could promote amyloidogenic processing, or reduce Aß production or accumulation by sorting APP and processing products to lysosomes for degradation. Here, we show that APP localizes to the ILVs of a subset of MVBs that also traffic EGF receptor (EGFR), and that it is delivered to lysosomes for degradation. Depletion of the endosomal sorting complexes required for transport (ESCRT) components, Hrs (also known as Hgs) or Tsg101, inhibited targeting of APP to ILVs and the subsequent delivery to lysosomes, and led to increased intracellular Aß accumulation. This was accompanied by dramatically decreased Aß secretion. Thus, the early ESCRT machinery has a dual role in limiting intracellular Aß accumulation through targeting of APP and processing products to the lysosome for degradation, and promoting Aß secretion.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Endosomas/metabolismo , Lisosomas/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Línea Celular Tumoral , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Endosomas/genética , Endosomas/ultraestructura , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Lisosomas/genética
7.
ACS Chem Neurosci ; 4(12): 1537-48, 2013 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-24020966

RESUMEN

Decreases of the sex steroids, testosterone and estrogen, are associated with increased risk of Alzheimer's disease. Testosterone and estrogen supplementation improves cognitive deficits in animal models of Alzheimer's disease. Sex hormones play a role in the regulation of amyloid-ß via induction of the amyloid-ß degrading enzymes neprilysin and insulin-degrading enzyme. To mimic the effect of dihydrotestosterone (DHT), we administered a selective androgen receptor agonist, ACP-105, alone and in combination with the selective estrogen receptor ß (ERß) agonist AC-186 to male gonadectomized triple transgenic mice. We assessed long-term spatial memory in the Morris water maze, spontaneous locomotion, and anxiety-like behavior in the open field and in the elevated plus maze. We found that ACP-105 given alone decreases anxiety-like behavior. Furthermore, when ACP-105 is administered in combination with AC-186, they increase the amyloid-ß degrading enzymes neprilysin and insulin-degrading enzyme and decrease amyloid-ß levels in the brain as well as improve cognition. Interestingly, the androgen receptor level in the brain was increased by chronic treatment with the same combination treatment, ACP-105 and AC-186, not seen with DHT or ACP-105 alone. Based on these results, the beneficial effect of the selective ERß agonist as a potential therapeutic for Alzheimer's disease warrants further investigation.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Andrógenos/farmacología , Encéfalo/efectos de los fármacos , Receptor beta de Estrógeno/agonistas , Animales , Western Blotting , Encéfalo/metabolismo , Ciclohexanos/farmacología , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunohistoquímica , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Fenoles/farmacología
8.
Life Sci ; 91(23-24): 1153-8, 2012 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-22727791

RESUMEN

AIMS: Multiple lines of evidence have implicated ß-amyloid (Aß) in the pathogenesis of Alzheimer's disease (AD). However, the mechanism(s) whereby Aß is involved in the disease process remains unclear. The dominant hypothesis in AD has been that Aß initiates the disease via toxicity from secreted, extracellular Aß aggregates. More recently, an alternative hypothesis has emerged focusing on a pool of Aß that accumulates early on within AD vulnerable neurons of the brain. Although the topic of intraneuronal Aß has been of major interest in the field, technical difficulties in detecting intraneuronal Aß have also made this topic remarkably controversial. Here we review evidence pointing to the critical role of intraneuronal Aß in AD and provide insights both into challenges faced in detecting intracellular Aß and the prion-like properties of Aß. MAIN METHODS: Immunoprecipitation and Western blot are used for Aß detection. KEY FINDINGS: We highlight that a standard biochemical method can underestimate intraneuronal Aß and that extracellular Aß can up-regulate intracellular Aß. We also show that detergent can remove intraneuronal Aß. SIGNIFICANCE: There is a growing awareness that intraneuronal Aß is a key pathogenic pool of Aß involved in causing synapse dysfunction. Difficulties in detecting intraneuronal Aß are an insufficient reason for ignoring this critical pool of Aß.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neuronas/metabolismo , Animales , Western Blotting , Línea Celular Tumoral , Humanos , Inmunoprecipitación , Ratones , Octoxinol , Saponinas , Tripsina
9.
J Alzheimers Dis ; 27(1): 211-23, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21799249

RESUMEN

Increased oxidative stress is implicated in the pathogenesis of Alzheimer's disease (AD). A large body of evidence suggests that mitochondrial dysfunction and increased reactive oxygen species occur prior to amyloid-ß (Aß) deposition. Coenzyme Q10 (CoQ10), a component of the mitochondrial electron transport chain, is well characterized as a neuroprotective antioxidant in animal models and human trials of Huntington's disease and Parkinson's disease, and reduces plaque burden in AßPP/PS1 mice. We now show that CoQ10 reduces oxidative stress and amyloid pathology and improves behavioral performance in the Tg19959 mouse model of AD. CoQ10 treatment decreased brain levels of protein carbonyls, a marker of oxidative stress. CoQ10 treatment resulted in decreased plaque area and number in hippocampus and in overlying cortex immunostained with an Aß42-specific antibody. Brain Aß42 levels were also decreased by CoQ10 supplementation. Levels of amyloid-ß protein precursor (AßPP) ß-carboxyterminal fragments were decreased. Importantly, CoQ10-treated mice showed improved cognitive performance during Morris water maze testing. Our results show decreased pathology and improved behavior in transgenic AD mice treated with the naturally occurring antioxidant compound CoQ10. CoQ10 is well tolerated in humans and may be promising for therapeutic trials in AD.


Asunto(s)
Enfermedad de Alzheimer/dietoterapia , Péptidos beta-Amiloides/metabolismo , Síntomas Conductuales/tratamiento farmacológico , Ubiquinona/análogos & derivados , Vitaminas/uso terapéutico , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/genética , Amiloide/efectos de los fármacos , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Ácido Aspártico Endopeptidasas/metabolismo , Síntomas Conductuales/etiología , Trastornos del Conocimiento/dietoterapia , Trastornos del Conocimiento/etiología , Ensayo de Inmunoadsorción Enzimática , Conducta Exploratoria/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Humanos , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Actividad Motora/genética , Destreza Motora/efectos de los fármacos , Destreza Motora/fisiología , Mutación/genética , Neuroblastoma/patología , Fragmentos de Péptidos/metabolismo , Carbonilación Proteica/efectos de los fármacos , Carbonilación Proteica/genética , Factores de Tiempo , Ubiquinona/uso terapéutico
10.
J Neurosci ; 29(31): 9704-13, 2009 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-19657023

RESUMEN

A central question in Alzheimer's disease research is what role synaptic activity plays in the disease process. Synaptic activity has been shown to induce beta-amyloid peptide release into the extracellular space, and extracellular beta-amyloid has been shown to be toxic to synapses. We now provide evidence that the well established synaptotoxicity of extracellular beta-amyloid requires gamma-secretase processing of amyloid precursor protein. Recent evidence supports an important role for intraneuronal beta-amyloid in the pathogenesis of Alzheimer's disease. We show that synaptic activity reduces intraneuronal beta-amyloid and protects against beta-amyloid-related synaptic alterations. We demonstrate that synaptic activity promotes the transport of the amyloid precursor protein to synapses using live cell imaging, and that the protease neprilysin is involved in reduction of intraneuronal beta-amyloid with synaptic activity.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Interneuronas/fisiología , Plasticidad Neuronal/fisiología , Receptores de Superficie Celular/metabolismo , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Transporte Biológico Activo/fisiología , Células Cultivadas , Homólogo 4 de la Proteína Discs Large , Espacio Extracelular/metabolismo , Guanilato-Quinasas , Hipocampo/fisiología , Humanos , Técnicas In Vitro , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Potenciación a Largo Plazo/fisiología , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Neprilisina/metabolismo , Fragmentos de Péptidos/metabolismo , Nexinas de Proteasas
12.
J Biol Chem ; 282(26): 18895-906, 2007 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-17468102

RESUMEN

Immunotherapy against beta-amyloid peptide (Abeta) is a leading therapeutic direction for Alzheimer disease (AD). Experimental studies in transgenic mouse models of AD have demonstrated that Abeta immunization reduces Abeta plaque pathology and improves cognitive function. However, the biological mechanisms by which Abeta antibodies reduce amyloid accumulation in the brain remain unclear. We provide evidence that treatment of AD mutant neuroblastoma cells or primary neurons with Abeta antibodies decreases levels of intracellular Abeta. Antibody-mediated reduction in cellular Abeta appears to require that the antibody binds to the extracellular Abeta domain of the amyloid precursor protein (APP) and be internalized. In addition, treatment with Abeta antibodies protects against synaptic alterations that occur in APP mutant neurons.


Asunto(s)
Enfermedad de Alzheimer/terapia , Precursor de Proteína beta-Amiloide/inmunología , Anticuerpos Monoclonales/farmacocinética , Neuronas/patología , Sinapsis/patología , Enfermedad de Alzheimer/inmunología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Especificidad de Anticuerpos , Complejo Antígeno-Anticuerpo/metabolismo , Línea Celular Tumoral , Endocitosis , Inmunización/métodos , Ratones , Ratones Transgénicos , Neuroblastoma , Estructura Terciaria de Proteína , Temperatura
13.
J Neurochem ; 101(3): 854-62, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17448150

RESUMEN

Mutations within the amyloid-beta (Abeta) domain of the amyloid precursor protein (APP) typically generate hemorrhagic strokes and vascular amyloid angiopathy. In contrast, the Arctic mutation (APP E693G) results in Alzheimer's disease. Little is known about the pathologic mechanisms that result from the Arctic mutation, although increased formation of Abeta protofibrils in vitro and intraneuronal Abeta aggregates in vivo suggest that early steps in the amyloidogenic pathway are facilitated. Here we show that the Arctic mutation favors proamyloidogenic APP processing by increased beta-secretase cleavage, as demonstrated by altered levels of N- and C-terminal APP fragments. Although the Arctic mutation is located close to the alpha-secretase site, APP harboring the Arctic mutation is not an inferior substrate to a disintegrin and metalloprotease-10, a major alpha-secretase. Instead, the localization of Arctic APP is altered, with reduced levels at the cell surface making Arctic APP less available for alpha-secretase cleavage. As a result, the extent and subcellular location of Abeta formation is changed, as revealed by increased Abeta levels, especially at intracellular locations. Our findings suggest that the unique clinical symptomatology and neuropathology associated with the Arctic mutation, but not with other intra-Abeta mutations, could relate to altered APP processing with increased steady-state levels of Arctic Abeta, particularly at intracellular locations.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/genética , Mutación/fisiología , Línea Celular Tumoral , Humanos , Mutagénesis Sitio-Dirigida/métodos , Neuroblastoma , Estructura Terciaria de Proteína , Transfección/métodos
14.
J Neurosci ; 26(16): 4277-88, 2006 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-16624948

RESUMEN

Increasing evidence links intraneuronal beta-amyloid (Abeta42) accumulation with the pathogenesis of Alzheimer's disease (AD). In Abeta precursor protein (APP) mutant transgenic mice and in human AD brain, progressive intraneuronal accumulation of Abeta42 occurs especially in multivesicular bodies (MVBs). We hypothesized that this impairs the MVB sorting pathway. We used the trafficking of the epidermal growth factor receptor (EGFR) and TrkB receptor to investigate the MVB sorting pathway in cultured neurons. We report that, during EGF stimulation, APP mutant neurons demonstrated impaired inactivation, degradation, and ubiquitination of EGFR. EGFR degradation is dependent on translocation from MVB outer to inner membranes, which is regulated by the ubiquitin-proteasome system (UPS). We provide evidence that Abeta accumulation in APP mutant neurons inhibits the activities of the proteasome and deubiquitinating enzymes. These data suggest a mechanism whereby Abeta accumulation in neurons impairs the MVB sorting pathway via the UPS in AD.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Inhibidores de Proteasoma , Vesículas Sinápticas/metabolismo , Ubiquitina/antagonistas & inhibidores , Péptidos beta-Amiloides/análisis , Precursor de Proteína beta-Amiloide/análisis , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Células Cultivadas , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/análisis , Receptores ErbB/metabolismo , Hipocampo/química , Hipocampo/enzimología , Hipocampo/metabolismo , Humanos , Masculino , Ratones , Ratones Transgénicos , Complejo de la Endopetidasa Proteasomal/análisis , Complejo de la Endopetidasa Proteasomal/metabolismo , Ratas , Ratas Sprague-Dawley , Vesículas Sinápticas/química , Vesículas Sinápticas/enzimología , Ubiquitina/análisis , Ubiquitina/metabolismo
15.
J Neurosci ; 25(47): 10960-9, 2005 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-16306409

RESUMEN

Early events in Alzheimer's disease (AD) pathogenesis implicate the accumulation of beta-amyloid (Abeta) peptide inside neurons in vulnerable brain regions. However, little is known about the consequences of intraneuronal Abeta on signaling mechanisms. Here, we demonstrate, using an inducible viral vector system to drive intracellular expression of Abeta42 peptide in primary neuronal cultures, that this accumulation results in the inhibition of the Akt survival signaling pathway. Induction of intraneuronal Abeta42 expression leads to a sequential decrease in levels of phospho-Akt, increase in activation of glycogen synthase kinase-3beta, and apoptosis. Downregulation of Akt also paralleled intracellular Abeta accumulation in vivo in the Tg2576 AD mouse model. Overexpression of constitutively active Akt reversed the toxic effects of Abeta through a mechanism involving the induction of heat shock proteins (Hsps). We used a small-interfering RNA approach to explore the possibility of a link between Akt activity and Hsp70 expression and concluded that neuroprotection by Akt could be mediated through downstream induction of Hsp70 expression. These results suggest that the early dysfunction associated with intraneuronal Abeta accumulation in AD involve the associated impairments of Akt signaling and suppression of the stress response.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Regulación hacia Abajo , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Estrés Fisiológico/fisiopatología , Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/envenenamiento , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/citología , Líquido Extracelular/metabolismo , Proteínas HSP70 de Choque Térmico/biosíntesis , Proteínas HSP70 de Choque Térmico/metabolismo , Membranas Intracelulares/metabolismo , Ratones , Ratones Transgénicos , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacología , Fragmentos de Péptidos/metabolismo , Proteínas Proto-Oncogénicas c-akt/farmacología , Proteínas Proto-Oncogénicas c-akt/fisiología , Ratas , Ratas Sprague-Dawley , Estrés Fisiológico/metabolismo , Distribución Tisular
16.
J Neurosci ; 25(29): 6755-64, 2005 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-16033885

RESUMEN

Accumulation of beta-amyloid (Abeta) peptides in the cerebral cortex is considered a key event in the pathogenesis of Alzheimer's disease (AD). Presenilin 1 (PS1) plays an essential role in the gamma-secretase cleavage of the amyloid precursor protein (APP) and the generation of Abeta peptides. Reduction of Abeta generation via the inhibition of gamma-secretase activity, therefore, has been proposed as a therapeutic approach for AD. In this study, we examined whether genetic inactivation of PS1 in postnatal forebrain-restricted conditional knock-out (PS1 cKO) mice can prevent the accumulation of Abeta peptides and ameliorate cognitive deficits exhibited by an amyloid mouse model that overexpresses human mutant APP. We found that conditional inactivation of PS1 in APP transgenic mice (PS1 cKO;APP Tg) effectively prevented the accumulation of Abeta peptides and formation of amyloid plaques and inflammatory responses, although it also caused an age-related accumulation of C-terminal fragments of APP. Short-term PS1 inactivation in young PS1 cKO;APP Tg mice rescued deficits in contextual fear conditioning and serial spatial reversal learning in a water maze, which were associated with APP Tg mice. Longer-term PS1 inactivation in older PS1 cKO;APP Tg mice, however, failed to rescue the contextual memory and hippocampal synaptic deficits and had a decreasing ameliorative effect on the spatial memory impairment. These results reveal that in vivo reduction of Abeta via the inactivation of PS1 effectively prevents amyloid-associated neuropathological changes and can, but only temporarily, improve cognitive impairments in APP transgenic mice.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Envejecimiento/patología , Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide , Amiloidosis/metabolismo , Amiloidosis/patología , Amiloidosis/fisiopatología , Animales , Ácido Aspártico Endopeptidasas , Conducta Animal/fisiología , Endopeptidasas/metabolismo , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/patología , Trastornos de la Memoria/fisiopatología , Memoria a Corto Plazo/fisiología , Ratones , Ratones Noqueados , Ratones Transgénicos , Plasticidad Neuronal/fisiología , Presenilina-1 , Terminales Presinápticos/metabolismo , Percepción Espacial/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA