Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cells ; 9(12)2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33255741

RESUMEN

Following a prolonged exposure to hypoxia-reoxygenation, a partial disruption of the ER-mitochondria tethering by mitofusin 2 (MFN2) knock-down decreases the Ca2+ transfer between the two organelles limits mitochondrial Ca2+ overload and prevents the Ca2+-dependent opening of the mitochondrial permeability transition pore, i.e., limits cardiomyocyte cell death. The impact of the metabolic changes resulting from the alteration of this Ca2+crosstalk on the tolerance to hypoxia-reoxygenation injury remains partial and fragmented between different field of expertise. >In this study, we report that MFN2 loss of function results in a metabolic switch driven by major modifications in energy production by mitochondria. During hypoxia, mitochondria maintain their ATP concentration and, concomitantly, the inner membrane potential by importing cytosolic ATP into mitochondria through an overexpressed ANT2 protein and by decreasing the expression and activity of the ATP hydrolase via IF1. This adaptation further blunts the detrimental hyperpolarisation of the inner mitochondrial membrane (IMM) upon re-oxygenation. These metabolic changes play an important role to attenuate cell death during a prolonged hypoxia-reoxygenation challenge.


Asunto(s)
Translocador 2 del Nucleótido Adenina/metabolismo , Adenosina Trifosfato/metabolismo , Hipoxia/metabolismo , Mitocondrias/metabolismo , Animales , Calcio/metabolismo , Muerte Celular/fisiología , Línea Celular , Potencial de la Membrana Mitocondrial/fisiología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Miocitos Cardíacos/metabolismo , Ratas
2.
Cells ; 9(5)2020 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-32466308

RESUMEN

During myocardial infarction, dysregulation of Ca2+ homeostasis between the reticulum, mitochondria, and cytosol occurs in cardiomyocytes and leads to cell death. Ca2+ leak channels are thought to be key regulators of the reticular Ca2+ homeostasis and cell survival. The present study aimed to determine whether a particular reticular Ca2+ leak channel, the translocon, also known as translocation channel, could be a relevant target against ischemia/reperfusion-mediated heart injury. To achieve this objective, we first used an intramyocardial adenoviral strategy to express biosensors in order to assess Ca2+ variations in freshly isolated adult mouse cardiomyocytes to show that translocon is a functional reticular Ca2+ leak channel. Interestingly, translocon activation by puromycin mobilized a ryanodine receptor (RyR)-independent reticular Ca2+ pool and did not affect the excitation-concentration coupling. Second, puromycin pretreatment decreased mitochondrial Ca2+ content and slowed down the mitochondrial permeability transition pore (mPTP) opening and the rate of cytosolic Ca2+ increase during hypoxia. Finally, this translocon pre-activation also protected cardiomyocytes after in vitro hypoxia reoxygenation and reduced infarct size in mice submitted to in vivo ischemia-reperfusion. Altogether, our report emphasizes the role of translocon in cardioprotection and highlights a new paradigm in cardioprotection by functionally uncoupling the RyR-dependent Ca2+ stores and translocon-dependent Ca2+ stores.


Asunto(s)
Calcio/metabolismo , Cardiotónicos/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Canales de Translocación SEC/metabolismo , Animales , Acoplamiento Excitación-Contracción , Masculino , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Puromicina/farmacología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
3.
Cells ; 8(11)2019 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-31731523

RESUMEN

Under physiological conditions, nitric oxide (NO) produced by the endothelial NO synthase (eNOS) upregulates hepatic insulin sensitivity. Recently, contact sites between the endoplasmic reticulum and mitochondria named mitochondria-associated membranes (MAMs) emerged as a crucial hub for insulin signaling in the liver. As mitochondria are targets of NO, we explored whether NO regulates hepatic insulin sensitivity by targeting MAMs. In Huh7 cells, primary rat hepatocytes and mouse livers, enhancing NO concentration increased MAMs, whereas inhibiting eNOS decreased them. In vitro, those effects were prevented by inhibiting protein kinase G (PKG) and mimicked by activating soluble guanylate cyclase (sGC) and PKG. In agreement with the regulation of MAMs, increasing NO concentration improved insulin signaling, both in vitro and in vivo, while eNOS inhibition disrupted this response. Finally, inhibition of insulin signaling by wortmannin did not affect the impact of NO on MAMs, while experimental MAM disruption, using either targeted silencing of cyclophilin D or the overexpression of the organelle spacer fetal and adult testis-expressed 1 (FATE-1), significantly blunted the effects of NO on both MAMs and insulin response. Therefore, under physiological conditions, NO participates to the regulation of MAM integrity through the sGC/PKG pathway and concomitantly improves hepatic insulin sensitivity. Altogether, our data suggest that the induction of MAMs participate in the impact of NO on hepatocyte insulin response.


Asunto(s)
Hepatocitos/metabolismo , Resistencia a la Insulina/fisiología , Membranas Mitocondriales/metabolismo , Animales , Línea Celular Tumoral , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Retículo Endoplásmico/metabolismo , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III , Cultivo Primario de Células , Ratas , Transducción de Señal/efectos de los fármacos , Guanilil Ciclasa Soluble/metabolismo , Wortmanina/metabolismo
4.
Biochim Biophys Acta Mol Cell Res ; 1865(7): 981-994, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29678654

RESUMEN

Calcium (Ca2+) release from the endoplasmic reticulum plays an important role in many cell-fate defining cellular processes. Traditionally, this Ca2+ release was associated with the ER Ca2+ release channels, inositol 1,4,5­triphosphate receptor (IP3R) and ryanodine receptor (RyR). Lately, however, other calcium conductances have been found to be intracellularly localized and to participate in cell fate regulation. Nonetheless, molecular identity and functional properties of the ER Ca2+ release mechanisms associated with multiple diseases, e.g. prostate cancer, remain unknown. Here we identify a new family of transient receptor potential melastatine 8 (TRPM8) channel isoforms as functional ER Ca2+ release channels expressed in mitochondria-associated ER membranes (MAMs). These TRPM8 isoforms exhibit an unconventional structure with 4 transmembrane domains (TMs) instead of 6 TMs characteristic of the TRP channel archetype. We show that these 4TM-TRPM8 isoforms form functional channels in the ER and participate in regulation of the steady-state Ca2+ concentration ([Ca2+]) in mitochondria and the ER. Thus, our study identifies 4TM-TRPM8 isoforms as ER Ca2+ release mechanism distinct from classical Ca2+ release channels.


Asunto(s)
Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Neoplasias de la Próstata/metabolismo , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo , Anciano , Empalme Alternativo , Línea Celular Tumoral , Células Epiteliales/citología , Células Epiteliales/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Próstata/citología , Próstata/metabolismo , Neoplasias de la Próstata/genética , Dominios Proteicos , Canales Catiónicos TRPM/química
5.
Front Immunol ; 9: 3170, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30693003

RESUMEN

Muscle inflammation as in idiopathic inflammatory myopathies (IIM) leads to muscle weakness, mononuclear cell infiltration, and myofiber dysfunction affecting calcium channels. The effects of interleukin-17A (IL-17) and tumor necrosis factor-α (TNFα) on inflammation and calcium changes were investigated in human myoblasts. Human myoblasts were exposed to IL-17 and/or TNFα with/without store-operated Ca2+ entry (SOCE) inhibitors (2-ABP or BTP2). For co-cultures, peripheral blood mononuclear cells (PBMC) from healthy donors activated or not with phytohemagglutinin (PHA) were added to myoblasts at a 5:1 ratio. IL-17 and TNFα induced in synergy CCL20 and IL-6 production by myoblasts (>14-fold). PBMC-myoblast co-cultures enhanced CCL20 and IL-6 production in the presence or not of PHA compared to PBMC or myoblast monocultures. Anti-IL-17 and/or anti-TNFα decreased the production of IL-6 in co-cultures (p < 0.05). Transwell system that prevents direct cell-cell contact reduced CCL20 (p < 0.01) but not IL-6 secretion. IL-17 and/or TNFα increased the level of the ER stress marker Grp78, mitochondrial ROS and promoted SOCE activation by 2-fold (p < 0.01) in isolated myoblasts. SOCE inhibitors reduced the IL-6 production induced by IL-17/TNFα. Therefore, muscle inflammation induced by IL-17 and/or TNFα may increase muscle cell dysfunction, which, in turn, increased inflammation. Such close interplay between immune and non-immune mechanisms may drive and increase muscle inflammation and weakness.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Interleucina-17/metabolismo , Mioblastos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Comunicación Celular , Células Cultivadas , Quimiocina CCL20/biosíntesis , Chaperón BiP del Retículo Endoplásmico , Humanos , Interleucina-17/farmacología , Interleucina-6/biosíntesis , Leucocitos Mononucleares/metabolismo , Mitocondrias Musculares/metabolismo , Imagen Molecular , Mioblastos/efectos de los fármacos , Estrés Oxidativo , Factor de Necrosis Tumoral alfa/farmacología
6.
J Biol Chem ; 288(18): 12459-68, 2013 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-23508951

RESUMEN

T-type Ca(2+) channel inhibitors protect hippocampal CA1 neurons from delayed death after global ischemia in rats, suggesting that Cav3.1, Cav3.2, or Cav3.3 channels generate cytotoxic Ca(2+) elevations during anoxia. To test this hypothesis, we measured the Ca(2+) concentration changes evoked by oxygen and glucose deprivation (OGD) in the cytosol and in the mitochondria of PC12 cells. OGD evoked long-lasting cytosolic Ca(2+) elevations that were reduced by Cav3.2 inhibition (50 µm Ni(2+)) and Cav3.1/Cav3.2 silencing and potentiated by Cav3.2 overexpression. The kinetics of the sustained cytosolic Ca(2+) elevations occurring during OGD directly correlated to the extent of cell death measured 20 h after reoxygenation, which was decreased by Ni(2+) and Cav3.1/Cav3.2 silencing and increased by Cav3.2 overexpression. Ni(2+) and Cav3.1/Cav3.2 silencing delayed the decline of cellular ATP during OGD, consistent with a reduction in the Ca(2+) load actively extruded by plasma membrane Ca(2+) pumps. The cytosolic Ca(2+) elevations were paralleled by mitochondrial Ca(2+) elevations that were also increased by Cav3.2 overexpression and decreased by Ni(2+) but not by Cav3.1/Cav3.2 silencing. Overexpression and silencing of the mitochondrial Ca(2+) uniporter, the major mitochondrial Ca(2+) uptake protein, revealed that the cytotoxicity was correlated to the amplitude of the mitochondrial, rather than the cytosolic, Ca(2+) elevations. Selective activation of T-type Ca(2+) channels evoked both cytosolic and mitochondrial Ca(2+) elevations, but only the mitochondrial responses were reduced by Cav3.1/Cav3.2 silencing. We conclude that the opening of Cav3.2 channels during ischemia contribute to the entry of Ca(2+) ions that are transmitted to mitochondria, resulting in a deleterious mitochondrial Ca(2+) overload.


Asunto(s)
Canales de Calcio Tipo T/metabolismo , Calcio/metabolismo , Membrana Celular/metabolismo , Citoplasma/metabolismo , Mitocondrias/metabolismo , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Animales , Canales de Calcio Tipo T/genética , Hipoxia de la Célula , Membrana Celular/genética , Citoplasma/genética , Silenciador del Gen , Mitocondrias/genética , Células PC12 , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA