Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
J Biol Chem ; 300(2): 105618, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38176652

RESUMEN

The F1FO-ATP synthase engine is essential for viability and growth of nontuberculous mycobacteria (NTM) by providing the biological energy ATP and keeping ATP homeostasis under hypoxic stress conditions. Here, we report the discovery of the diarylquinoline TBAJ-5307 as a broad spectrum anti-NTM inhibitor, targeting the FO domain of the engine and preventing rotation and proton translocation. TBAJ-5307 is active at low nanomolar concentrations against fast- and slow-growing NTM as well as clinical isolates by depleting intrabacterial ATP. As demonstrated for the fast grower Mycobacterium abscessus, the compound is potent in vitro and in vivo, without inducing toxicity. Combining TBAJ-5307 with anti-NTM antibiotics or the oral tebipenem-avibactam pair showed attractive potentiation. Furthermore, the TBAJ-5307-tebipenem-avibactam cocktail kills the pathogen, suggesting a novel oral combination for the treatment of NTM lung infections.


Asunto(s)
Antibacterianos , Diarilquinolinas , Inhibidores Enzimáticos , Infecciones por Mycobacterium no Tuberculosas , Micobacterias no Tuberculosas , Humanos , Adenosina Trifosfato , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Compuestos de Azabiciclo , Carbapenémicos , Inhibidores Enzimáticos/farmacología , Pruebas de Sensibilidad Microbiana , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología , Diarilquinolinas/farmacología
2.
Biochem Biophys Res Commun ; 690: 149249, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38000294

RESUMEN

The anti-tuberculosis therapeutic bedaquiline (BDQ) is used against Mycobacterium abscessus. In M. abscessus BDQ is only bacteriostatic and less potent compared to M. tuberculosis or M. smegmatis. Here we demonstrate its reduced ATP synthesis inhibition against M. abscessus inside-out vesicles, including the F1FO-ATP synthase. Molecular dynamics simulations and binding free energy calculations highlight the differences in drug-binding of the M. abscessus and M. smegmatis FO-domain at the lagging site, where the drug deploys its mechanistic action, inhibiting ATP synthesis. These data pave the way for improved anti-M. abscessus BDQ analogs.


Asunto(s)
Mycobacterium abscessus , Mycobacterium tuberculosis , Antituberculosos/farmacología , Diarilquinolinas/farmacología , Diarilquinolinas/metabolismo , Mycobacterium tuberculosis/metabolismo , Óxido Nítrico Sintasa/metabolismo , Adenosina Trifosfato/metabolismo , Pruebas de Sensibilidad Microbiana
3.
Microbiol Spectr ; 11(6): e0228223, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37982630

RESUMEN

IMPORTANCE: New drugs are needed to combat multidrug-resistant tuberculosis. The electron transport chain (ETC) maintains the electrochemical potential across the cytoplasmic membrane and allows the production of ATP, the energy currency of any living cell. The mycobacterial engine F-ATP synthase catalyzes the formation of ATP and has come into focus as an attractive and rich drug target. Recent deep insights into these mycobacterial F1FO-ATP synthase elements opened the door for a renaissance of structure-based target identification and inhibitor design. In this study, we present the GaMF1.39 antimycobacterial compound, targeting the rotary subunit γ of the biological engine. The compound is bactericidal, inhibits infection ex vivo, and displays enhanced anti-tuberculosis activity in combination with ETC inhibitors, which promises new strategies to shorten tuberculosis chemotherapy.


Asunto(s)
Clofazimina , Mycobacterium tuberculosis , Clofazimina/farmacología , Clofazimina/uso terapéutico , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Adenosina Trifosfato
4.
Biochem Biophys Res Commun ; 671: 140-145, 2023 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-37302287

RESUMEN

The cases of lung disease caused by non-tuberculous mycobacterium Mycobacterium abscessus (Mab) are increasing and not reliably curable. Repurposing of anti-tuberculosis inhibitors brought the oxidative phosphorylation pathway with its final product ATP, formed by the essential F1FO-ATP synthase (subunits α3:ß3:γ:δ:ε:a:b:b':c9), into focus as an attractive inhibitor target against Mab. Because of the pharmacological attractiveness of this enzyme, we generated and purified a recombinant and enzymatically active Mab F1-ATPase complex, including subunits α3:ß3:γ:δ:ε (MabF1-αßγδε) to achieve mechanistic, regulatory, and structural insights. The high purity of the complex enabled the first cryo-electron microscopy structure determination of the Mab F1-ATPase complex to 7.3 Å resolution. The enzyme showed low ATP hydrolysis activity, which was stimulated by trypsin treatment. No effect was observed in the presence of the detergent lauryldimethylamine oxide.


Asunto(s)
Mycobacterium abscessus , Tuberculosis , Humanos , Microscopía por Crioelectrón , Secuencia de Aminoácidos , ATPasas de Translocación de Protón/metabolismo , Adenosina Trifosfato/metabolismo
5.
FASEB J ; 37(7): e23040, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37318822

RESUMEN

The Acinetobacter baumannii F1 FO -ATP synthase (α3 :ß3 :γ:δ:ε:a:b2 :c10 ), which is essential for this strictly respiratory opportunistic human pathogen, is incapable of ATP-driven proton translocation due to its latent ATPase activity. Here, we generated and purified the first recombinant A. baumannii F1 -ATPase (AbF1 -ATPase) composed of subunits α3 :ß3 :γ:ε, showing latent ATP hydrolysis. A 3.0 Å cryo-electron microscopy structure visualizes the architecture and regulatory element of this enzyme, in which the C-terminal domain of subunit ε (Abε) is present in an extended position. An ε-free AbF1 -ɑßγ complex generated showed a 21.5-fold ATP hydrolysis increase, demonstrating that Abε is the major regulator of AbF1 -ATPase's latent ATP hydrolysis. The recombinant system enabled mutational studies of single amino acid substitutions within Abε or its interacting subunits ß and γ, respectively, as well as C-terminal truncated mutants of Abε, providing a detailed picture of Abε's main element for the self-inhibition mechanism of ATP hydrolysis. Using a heterologous expression system, the importance of Abε's C-terminus in ATP synthesis of inverted membrane vesicles, including AbF1 FO -ATP synthases, has been explored. In addition, we are presenting the first NMR solution structure of the compact form of Abε, revealing interaction of its N-terminal ß-barrel and C-terminal ɑ-hairpin domain. A double mutant of Abε highlights critical residues for Abε's domain-domain formation which is important also for AbF1 -ATPase's stability. Abε does not bind MgATP, which is described to regulate the up and down movements in other bacterial counterparts. The data are compared to regulatory elements of F1 -ATPases in bacteria, chloroplasts, and mitochondria to prevent wasting of ATP.


Asunto(s)
Acinetobacter baumannii , ATPasas de Translocación de Protón , Humanos , ATPasas de Translocación de Protón/metabolismo , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Hidrólisis , Microscopía por Crioelectrón , Secuencia de Aminoácidos , Bacterias/metabolismo , Adenosina Trifosfato/metabolismo
6.
FEBS Lett ; 597(15): 1977-1988, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37259564

RESUMEN

The architectural chromatin factor high-mobility group AT-hook 2 (HMGA2) is causally involved in several human malignancies and pathologies. HMGA2 is not expressed in most normal adult somatic cells, which renders the protein an attractive drug target. An established cell-based compound library screen identified the fibroblast growth factor receptor (FGFR) inhibitor PD173074 as an antagonist of HMGA2-mediated transcriptional reporter gene activation. We determined that PD173074 binds the C-terminus of HMGA2 and interferes with functional coordination of the three AT-hook DNA-binding domains mediated by the C-terminus. The HMGA2-antagonistic effect of PD173074 on transcriptional activation may therefore result from an induced altered DNA-binding mode of HMGA2. PD173074 as a novel HMGA2-specific antagonist could trigger the development of derivates with enhanced attributes and clinical potential.


Asunto(s)
Neoplasias , Receptores de Factores de Crecimiento de Fibroblastos , Adulto , Humanos , Activación Transcripcional , Cromatina , ADN/metabolismo , Proteína HMGA2/genética , Proteína HMGA2/metabolismo
7.
Antimicrob Agents Chemother ; 66(12): e0105622, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36445139

RESUMEN

The F1FO-ATP synthase is required for the viability of tuberculosis (TB) and nontuberculous mycobacteria (NTM) and has been validated as a drug target. Here, we present the cryo-EM structures of the Mycobacterium smegmatis F1-ATPase and the F1FO-ATP synthase with different nucleotide occupation within the catalytic sites and visualize critical elements for latent ATP hydrolysis and efficient ATP synthesis. Mutational studies reveal that the extended C-terminal domain (αCTD) of subunit α is the main element for the self-inhibition mechanism of ATP hydrolysis for TB and NTM bacteria. Rotational studies indicate that the transition between the inhibition state by the αCTD and the active state is a rapid process. We demonstrate that the unique mycobacterial γ-loop and subunit δ are critical elements required for ATP formation. The data underline that these mycobacterium-specific elements of α, γ, and δ are attractive targets, providing a platform for the discovery of species-specific inhibitors.


Asunto(s)
Mycobacterium tuberculosis , Mycobacterium , Tuberculosis , Humanos , Micobacterias no Tuberculosas , Hidrólisis , Adenosina Trifosfato
8.
FEBS J ; 289(20): 6308-6323, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35612822

RESUMEN

Mycobacterium abscessus (Mab) is a nontuberculous mycobacterium of increasing clinical relevance. The rapidly growing opportunistic pathogen is intrinsically multi-drug-resistant and causes difficult-to-cure lung disease. Adenosine triphosphate, generated by the essential F1 FO ATP synthase, is the major energy currency of the pathogen, bringing this enzyme complex into focus for the discovery of novel antimycobacterial compounds. Coupling of proton translocation through the membrane-embedded FO sector and ATP formation in the F1 headpiece of the bipartite F1 FO ATP synthase occurs via the central stalk subunits γ and ε. Here, we used solution NMR spectroscopy to resolve the first atomic structure of the Mab subunit ε (Mabε), showing that it consists of an N-terminal ß-barrel domain (NTD) and a helix-loop-helix motif in its C-terminal domain (CTD). NMR relaxation measurements of Mabε shed light on dynamic epitopes and amino acids relevant for coupling processes within the protein. We describe structural differences between other mycobacterial ε subunits and Mabε's lack of ATP binding. Based on the structural insights, we conducted an in silico inhibitor screen. One hit, Ep1MabF1, was shown to inhibit the growth of Mab and bacterial ATP synthesis. NMR titration experiments and docking studies described the binding epitopes of Ep1MabF1 on Mabε. Together, our data demonstrate the potential to develop inhibitors targeting the ε subunit of Mab F1 FO ATP synthase to interrupt the coupling process.


Asunto(s)
Mycobacterium abscessus , ATPasas de Translocación de Protón , Adenosina Trifosfato/metabolismo , Aminoácidos , Proteínas Bacterianas/metabolismo , Epítopos , Conformación Proteica , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón/metabolismo , Protones
9.
Antimicrob Agents Chemother ; 66(5): e0001822, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35481752

RESUMEN

New drug targets and molecules with bactericidal activity are needed against the respiratory mycobacterial pathogen Mycobacterium abscessus. Employing a lead repurposing strategy, the antituberculosis compound GaMF1 was tested against M. abscessus. Whole-cell and ATP synthesis assays demonstrated that GaMF1 inhibits growth and kills M. abscessus by targeting the F-ATP synthase. GaMF1's anti-M. abscessus activity increased in combination with clofazimine, rifabutin, or amikacin. The study expands the repertoire of anti-M. abscessus compounds targeting oxidative phosphorylation.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Tuberculosis , Adenosina Trifosfato , Antibacterianos/farmacología , Inhibidores Enzimáticos/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología
10.
ACS Chem Biol ; 17(3): 529-535, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35148057

RESUMEN

While many bacteria are able to bypass the requirement for oxidative phosphorylation when grown on carbohydrates, Mycobacterium tuberculosis is unable to do so. Differences of amino acid composition and structural features of the mycobacterial F-ATP synthase (α3:ß3:γ:δ:ε:a:b:b':c9) compared to its prokaryotic or human counterparts were recently elucidated and paved avenues for the discovery of molecules interfering with various regulative mechanisms of this essential energy converter. In this context, the mycobacterial peripheral stalk subunit δ came into focus, which displays a unique N-terminal 111-amino acid extension. Here, mutants of recombinant mycobacterial subunit δ were characterized, revealing significant reduction in ATP synthesis and demonstrating essentiality of this subunit for effective catalysis. These results provided the basis for the generation of a four-feature model forming a δ receptor-based pharmacophore and to identify a potent subunit δ inhibitor DeMF1 via in silico screening. The successful targeting of the δ subunit demonstrates the potential to advance δ's flexible coupling as a new area for the development of F-ATP synthase inhibitors.


Asunto(s)
Mycobacterium tuberculosis , ATPasas de Translocación de Protón , Adenosina Trifosfato/metabolismo , Aminoácidos/farmacología , Proteínas Bacterianas/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón/genética
11.
FEBS J ; 288(3): 818-836, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32525613

RESUMEN

In contrast to most bacteria, the mycobacterial F1 FO -ATP synthase (α3 :ß3 :γ:δ:ε:a:b:b':c9 ) does not perform ATP hydrolysis-driven proton translocation. Although subunits α, γ and ε of the catalytic F1 -ATPase component α3 :ß3 :γ:ε have all been implicated in the suppression of the enzyme's ATPase activity, the mechanism remains poorly defined. Here, we brought the central stalk subunit ε into focus by generating the recombinant Mycobacterium smegmatis F1 -ATPase (MsF1 -ATPase), whose 3D low-resolution structure is presented, and its ε-free form MsF1 αßγ, which showed an eightfold ATP hydrolysis increase and provided a defined system to systematically study the segments of mycobacterial ε's suppression of ATPase activity. Deletion of four amino acids at ε's N terminus, mutant MsF1 αßγεΔ2-5 , revealed similar ATP hydrolysis as MsF1 αßγ. Together with biochemical and NMR solution studies of a single, double, triple and quadruple N-terminal ε-mutants, the importance of the first N-terminal residues of mycobacterial ε in structure stability and latency is described. Engineering ε's C-terminal mutant MsF1 αßγεΔ121 and MsF1 αßγεΔ103-121 with deletion of the C-terminal residue D121 and the two C-terminal ɑ-helices, respectively, revealed the requirement of the very C terminus for communication with the catalytic α3 ß3 -headpiece and its function in ATP hydrolysis inhibition. Finally, we applied the tools developed during the study for an in silico screen to identify a novel subunit ε-targeting F-ATP synthase inhibitor.


Asunto(s)
Proteínas Bacterianas/metabolismo , Mycobacterium smegmatis/enzimología , ATPasas de Translocación de Protón/metabolismo , Proteínas Recombinantes/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biocatálisis/efectos de los fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Hidrólisis/efectos de los fármacos , Modelos Moleculares , Estructura Molecular , Mutación , Mycobacterium , Mycobacterium smegmatis/genética , Unión Proteica/efectos de los fármacos , Dominios Proteicos , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
12.
Mol Divers ; 25(1): 517-524, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31939065

RESUMEN

Mycobacteria have shown enormous resilience to survive and persist by remodeling and altering metabolic requirements. Under stringent conditions or exposure to drugs, mycobacteria have adapted to rescue themselves by shutting down their major metabolic activity and elevate certain survival factor levels and efflux pathways to survive and evade the effects of drug treatments. A fundamental feature in this adaptation is the ability of mycobacteria to vary the enzyme composition of the electron transport chain (ETC), which generates the proton motive force for the synthesis of adenosine triphosphate via oxidative phosphorylation. Mycobacteria harbor dehydrogenases to fuel the ETC, and two terminal respiratory oxidases, an aa3-type cytochrome c oxidase (cyt-bcc-aa3) and a bacterial specific cytochrome bd-type menaquinol oxidase (cyt-bd). In this study, we employed homology modeling and structure-based virtual screening studies to target mycobacteria-specific residues anchoring the b558 menaquinol binding region of Mycobacterium tuberculosis cyt-bd oxidase to obtain a focused library. Furthermore, ATP synthesis inhibition assays were carried out. One of the ligands MQL-H2 inhibited both NADH2- and succinate-driven ATP synthesis inhibition of Mycobacterium smegmatis inside-out vesicles in micromolar potency. Similarly, MQL-H2 also inhibited NADH2-driven ATP synthesis in inside-out vesicles of the cytochrome-bcc oxidase deficient M. smegmatis strain. Since neither varying the electron donor substrates nor deletion of the cyt-bcc oxidase, a major source of protons, hindered the inhibitory effects of the MQL-H2, reflecting that MQL-H2 targets the terminal oxidase cytochrome bd oxidase, which was consistent with molecular docking studies. Characterization of novel cytochrome bd oxidase Menaquinol binding domain inhibitor (MQL-H2) using virtual screening and ATP synthesis inhibition assays.


Asunto(s)
Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/metabolismo , Mycobacterium tuberculosis/enzimología , Naftoles/metabolismo , Adenosina Trifosfato/biosíntesis , Secuencia de Aminoácidos , Sitios de Unión , Evaluación Preclínica de Medicamentos , Epítopos , Ligandos , Modelos Moleculares , Oxidación-Reducción , Homología Estructural de Proteína
13.
FEBS J ; 288(7): 2377-2397, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33067840

RESUMEN

The stringent response, regulated by the bifunctional (p)ppGpp synthetase/hydrolase Rel in mycobacteria, is critical for long-term survival of the drug-tolerant dormant state of Mycobacterium tuberculosis. During amino acid starvation, MtRel senses a drop in amino acid concentration and synthesizes the messengers pppGpp and ppGpp, collectively called (p)ppGpp. Here, we investigate the role of the regulatory 'Aspartokinase, Chorismate mutase and TyrA' (ACT) domain in MtRel. Using NMR spectroscopy approaches, we report the high-resolution structure of dimeric MtRel ACT which selectively binds to valine out of all other branched-chain amino acids tested. A set of MtRel ACT mutants were generated to identify the residues required for maintaining the head-to-tail dimer. Through NMR titrations, we determined the crucial residues for binding of valine and show structural rearrangement of the MtRel ACT dimer in the presence of valine. This study suggests the direct involvement of amino acids in (p)ppGpp accumulation mediated by MtRel independent to interactions with stalled ribosomes. Database Structural data are available in the PDB database under the accession number 6LXG.


Asunto(s)
Aspartato Quinasa/genética , Corismato Mutasa/genética , Ligasas/genética , Mycobacterium tuberculosis/genética , Aspartato Quinasa/química , Aspartato Quinasa/ultraestructura , Corismato Mutasa/química , Corismato Mutasa/ultraestructura , Guanosina Tetrafosfato/genética , Hidrolasas/genética , Ligasas/química , Ligasas/ultraestructura , Espectroscopía de Resonancia Magnética , Mycobacterium tuberculosis/patogenicidad , Dominios Proteicos/genética , Multimerización de Proteína , Factores de Transcripción/genética
14.
Antimicrob Agents Chemother ; 64(12)2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-32988828

RESUMEN

Mycobacterial F1Fo-ATP synthases (α3:ß3:γ:δ:ε:a:b:b':c9 ) are incapable of ATP-driven proton translocation due to their latent ATPase activity. This prevents wasting of ATP and altering of the proton motive force, whose dissipation is lethal to mycobacteria. We demonstrate that the mycobacterial C-terminal extension of nucleotide-binding subunit α contributes mainly to the suppression of ATPase activity in the recombinant mycobacterial F1-ATPase. Using C-terminal deletion mutants, the regions responsible for the enzyme's latency were mapped, providing a new compound epitope.


Asunto(s)
Proteínas Bacterianas , Mycobacterium , Adenosina Trifosfato , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Hidrólisis , Mycobacterium/metabolismo , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo
15.
ACS Infect Dis ; 6(4): 725-737, 2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32092260

RESUMEN

The ability to respire and generate adenosine triphosphate (ATP) is essential for the physiology, persistence, and pathogenicity of Mycobacterium tuberculosis, which causes tuberculosis. By employing a lead repurposing strategy, the malarial cytochrome bc1 inhibitor SCR0911 was tested against mycobacteria. Docking studies were carried out to reveal potential binding and to understand the binding interactions with the target, cytochrome bcc. Whole-cell-based and in vitro assays demonstrated the potency of SCR0911 by inhibiting cell growth and ATP synthesis in both the fast- and slow-growing M. smegmatis and M. bovis bacillus Calmette-Guérin, respectively. The variety of biochemical assays and the use of a cytochrome bcc deficient mutant strain validated the cytochrome bcc oxidase as the direct target of the drug. The data demonstrate the broad-spectrum activity of SCR0911 and open the door for structure-activity relationship studies to improve the potency of new mycobacteria specific SCR0911 analogues.


Asunto(s)
Antimaláricos/farmacología , Antituberculosos/farmacología , Reposicionamiento de Medicamentos , Complejo IV de Transporte de Electrones/antagonistas & inhibidores , Mycobacterium/efectos de los fármacos , Adenosina Trifosfato/biosíntesis , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana Múltiple , Simulación del Acoplamiento Molecular
16.
Biochem Biophys Res Commun ; 522(2): 374-380, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31761325

RESUMEN

The F-ATP synthase is an essential enzyme in mycobacteria, including the pathogenic Mycobacterium tuberculosis. Several new compounds in the TB-drug pipeline target the F-ATP synthase. In light of the importance and pharmacological attractiveness of this novel antibiotic target, tools have to be developed to generate a recombinant mycobacterial F1FO ATP synthase to achieve atomic insight and mutants for mechanistic and regulatory understanding as well as structure-based drug design. Here, we report the first genetically engineered, purified and enzymatically active recombinant M. smegmatis F1FO ATP synthase. The projected 2D- and 3D structures of the recombinant enzyme derived from negatively stained electron micrographs are presented. Furthermore, the first 2D projections from cryo-electron images are revealed, paving the way for an atomic resolution structure determination.


Asunto(s)
ATPasas de Translocación de Protón/metabolismo , Proteínas Recombinantes/metabolismo , Adenosina Trifosfato/metabolismo , Microscopía por Crioelectrón , Hidrólisis , Mycobacterium smegmatis/enzimología , Mycobacterium tuberculosis/enzimología , ATPasas de Translocación de Protón/aislamiento & purificación , ATPasas de Translocación de Protón/ultraestructura , Proteínas Recombinantes/aislamiento & purificación
17.
Artículo en Inglés | MEDLINE | ID: mdl-31712198

RESUMEN

The diarylquinoline F1FO-ATP synthase inhibitor bedaquiline (BDQ) displays protonophore activity. Thus, uncoupling electron transport from ATP synthesis appears to be a second mechanism of action of this antimycobacterial drug. Here, we show that the new BDQ analogue TBAJ-876 did not retain the parental drug's protonophore activity. Comparative time-kill analyses revealed that both compounds exert the same bactericidal activity. These results suggest that the uncoupler activity is not required for the bactericidal activity of diarylquinolines.


Asunto(s)
Antituberculosos/farmacología , Diarilquinolinas/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Desacopladores/farmacología , Adenosina Trifosfato/biosíntesis , Transporte de Electrón/efectos de los fármacos , Membrana Dobles de Lípidos , Pruebas de Sensibilidad Microbiana , Protones
18.
Prog Biophys Mol Biol ; 152: 64-73, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31743686

RESUMEN

The causative agent of Tuberculosis (TB) Mycobacterium tuberculosis (Mtb) encounters unfavourable environmental conditions in the lungs, including nutrient limitation, low oxygen tensions and/or low/high pH values. These harsh conditions in the host triggers Mtb to enter a dormant state in which the pathogen does not replicate and uses host-derived fatty acids instead of carbohydrates as an energy source. Independent to the energy source, the bacterium's energy currency ATP is generated by oxidative phosphorylation, in which the F1FO-ATP synthase uses the proton motive force generated by the electron transport chain. This catalyst is essential in Mtb and inhibition by the diarylquinoline class of drugs like Bedaquilline, TBAJ-587, TBAJ-876 or squaramides demonstrated that this engine is an attractive target in TB drug discovery. A special feature of the mycobacterial F-ATP synthase is its inability to establish a significant proton gradient during ATP hydrolysis, and its latent ATPase activity, to prevent energy waste and to control the membrane potential. Recently, unique epitopes of mycobacterial F1FO-ATP synthase subunits absent in their prokaryotic or mitochondrial counterparts have been identified to contribute to the regulation of the low ATPase activity. Most recent structural insights into individual subunits, the F1 domain or the entire mycobacterial enzyme added to the understanding of mechanisms, regulation and differences of the mycobacterial F1FO-ATP synthase compared to other bacterial and eukaryotic engines. These novel insights provide the basis for the design of new compounds targeting this engine and even novel regimens for multidrug resistant TB.


Asunto(s)
Antituberculosos/metabolismo , Proteínas Bacterianas/metabolismo , Inhibidores Enzimáticos/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Mycobacterium tuberculosis/metabolismo , Tuberculosis/tratamiento farmacológico , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Diseño de Fármacos , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad
19.
Sci Rep ; 9(1): 16759, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31727946

RESUMEN

The dynamic interaction of the N- and C-terminal domains of mycobacterial F-ATP synthase subunit ε is proposed to contribute to efficient coupling of H+-translocation and ATP synthesis. Here, we investigate crosstalk between both subunit ε domains by introducing chromosomal atpC missense mutations in the C-terminal helix 2 of ε predicted to disrupt inter domain and subunit ε-α crosstalk and therefore coupling. The ε mutant εR105A,R111A,R113A,R115A (ε4A) showed decreased intracellular ATP, slower growth rates and lower molar growth yields on non-fermentable carbon sources. Cellular respiration and metabolism were all accelerated in the mutant strain indicative of dysregulated oxidative phosphorylation. The ε4A mutant exhibited an altered colony morphology and was hypersusceptible to cell wall-acting antimicrobials suggesting defective cell wall biosynthesis. In silico screening identified a novel mycobacterial F-ATP synthase inhibitor disrupting ε's coupling activity demonstrating the potential to advance this regulation as a new area for mycobacterial F-ATP synthase inhibitor development.


Asunto(s)
Adenosina Trifosfato/metabolismo , Mutación , Mycobacterium/crecimiento & desarrollo , ATPasas de Translocación de Protón/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pared Celular , Simulación por Computador , Metabolismo Energético , Modelos Moleculares , Mycobacterium/enzimología , Mycobacterium/genética , Conformación Proteica , Estructura Secundaria de Proteína , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/genética
20.
Artículo en Inglés | MEDLINE | ID: mdl-31358589

RESUMEN

The antituberculosis drug bedaquiline (BDQ) inhibits Mycobacterium tuberculosis F-ATP synthase by interfering with two subunits. Drug binding to the c subunit stalls the rotation of the c ring, while binding to the ε subunit blocks coupling of c ring rotation to ATP synthesis at the catalytic α3:ß3 headpiece. BDQ is used for the treatment of drug-resistant tuberculosis. However, the drug is highly lipophilic, displays a long terminal half-life, and has a cardiotoxicity liability by causing QT interval prolongation. Recent medicinal chemistry campaigns have resulted in the discovery of 3,5-dialkoxypyridine analogues of BDQ that are less lipophilic, have higher clearance, and display lower cardiotoxic potential. TBAJ-876, which is a new developmental compound of this series, shows attractive antitubercular activity and efficacy in a murine tuberculosis model. Here, we asked whether TBAJ-876 and selected analogues of the compound retain BDQ's mechanism of action. Biochemical assays showed that TBAJ-876 is a potent inhibitor of mycobacterial F-ATP synthase. Selection of spontaneous TBAJ-876-resistant mutants identified missense mutations at BDQ's binding site on the c subunit, suggesting that TBAJ-876 retains BDQ's targeting of the c ring. Susceptibility testing against a strain overexpressing the ε subunit and a strain harboring an engineered mutation in BDQ's ε subunit binding site suggest that TBAJ-876 retains BDQ's activity on the ε subunit. Nuclear magnetic resonance (NMR) titration studies confirmed that TBAJ-876 binds to the ε subunit at BDQ's binding site. We show that TBAJ-876 retains BDQ's antimycobacterial mode of action. The developmental compound inhibits the mycobacterial F-ATP synthase via a dual-subunit mechanism of interfering with the functions of both the enzyme's c and ε subunits.


Asunto(s)
Antituberculosos/farmacología , Diarilquinolinas/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/enzimología , ATPasas de Translocación de Protón/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Mycobacterium tuberculosis/genética , Conformación Proteica , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA