Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Intervalo de año de publicación
1.
mBio ; 14(1): e0247822, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36507833

RESUMEN

The purine-derived signaling molecules c-di-AMP and (p)ppGpp control mecA/PBP2a-mediated ß-lactam resistance in methicillin-resistant Staphylococcus aureus (MRSA) raise the possibility that purine availability can control antibiotic susceptibility. Consistent with this, exogenous guanosine and xanthosine, which are fluxed through the GTP branch of purine biosynthesis, were shown to significantly reduce MRSA ß-lactam resistance. In contrast, adenosine (fluxed to ATP) significantly increased oxacillin resistance, whereas inosine (which can be fluxed to ATP and GTP via hypoxanthine) only marginally increased oxacillin susceptibility. Furthermore, mutations that interfere with de novo purine synthesis (pur operon), transport (NupG, PbuG, PbuX) and the salvage pathway (DeoD2, Hpt) increased ß-lactam resistance in MRSA strain JE2. Increased resistance of a nupG mutant was not significantly reversed by guanosine, indicating that NupG is required for guanosine transport, which is required to reduce ß-lactam resistance. Suppressor mutants resistant to oxacillin/guanosine combinations contained several purine salvage pathway mutations, including nupG and hpt. Guanosine significantly increased cell size and reduced levels of c-di-AMP, while inactivation of GdpP, the c-di-AMP phosphodiesterase negated the impact of guanosine on ß-lactam susceptibility. PBP2a expression was unaffected in nupG or deoD2 mutants, suggesting that guanosine-induced ß-lactam susceptibility may result from dysfunctional c-di-AMP-dependent osmoregulation. These data reveal the therapeutic potential of purine nucleosides, as ß-lactam adjuvants that interfere with the normal activation of c-di-AMP are required for high-level ß-lactam resistance in MRSA. IMPORTANCE The clinical burden of infections caused by antimicrobial resistant (AMR) pathogens is a leading threat to public health. Maintaining the effectiveness of existing antimicrobial drugs or finding ways to reintroduce drugs to which resistance is widespread is an important part of efforts to address the AMR crisis. Predominantly, the safest and most effective class of antibiotics are the ß-lactams, which are no longer effective against methicillin-resistant Staphylococcus aureus (MRSA). Here, we report that the purine nucleosides guanosine and xanthosine have potent activity as adjuvants that can resensitize MRSA to oxacillin and other ß-lactam antibiotics. Mechanistically, exposure of MRSA to these nucleosides significantly reduced the levels of the cyclic dinucleotide c-di-AMP, which is required for ß-lactam resistance. Drugs derived from nucleotides are widely used in the treatment of cancer and viral infections highlighting the clinical potential of using purine nucleosides to restore or enhance the therapeutic effectiveness of ß-lactams against MRSA and potentially other AMR pathogens.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Nucleósidos de Purina/metabolismo , Nucleósidos de Purina/farmacología , Proteínas Bacterianas/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Oxacilina/farmacología , beta-Lactamas/farmacología , Monobactamas/metabolismo , Monobactamas/farmacología , Guanosina/metabolismo , Guanosina/farmacología , Adenosina Trifosfato/metabolismo , Guanosina Trifosfato/metabolismo , Pruebas de Sensibilidad Microbiana , Proteínas de Unión a las Penicilinas/genética , Proteínas de Unión a las Penicilinas/metabolismo , Resistencia betalactámica/genética
2.
J Biol Chem ; 297(5): 101317, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34678313

RESUMEN

Cyclic-di-adenosine monophosphate (c-di-AMP) is an important nucleotide signaling molecule that plays a key role in osmotic regulation in bacteria. c-di-AMP is produced from two molecules of ATP by proteins containing a diadenylate cyclase (DAC) domain. In Bacillus subtilis, the main c-di-AMP cyclase, CdaA, is a membrane-linked cyclase with an N-terminal transmembrane domain followed by the cytoplasmic DAC domain. As both high and low levels of c-di-AMP have a negative impact on bacterial growth, the cellular levels of this signaling nucleotide are tightly regulated. Here we investigated how the activity of the B. subtilis CdaA is regulated by the phosphoglucomutase GlmM, which has been shown to interact with the c-di-AMP cyclase. Using the soluble B. subtilis CdaACD catalytic domain and purified full-length GlmM or the GlmMF369 variant lacking the C-terminal flexible domain 4, we show that the cyclase and phosphoglucomutase form a stable complex in vitro and that GlmM is a potent cyclase inhibitor. We determined the crystal structure of the individual B. subtilis CdaACD and GlmM homodimers and of the CdaACD:GlmMF369 complex. In the complex structure, a CdaACD dimer is bound to a GlmMF369 dimer in such a manner that GlmM blocks the oligomerization of CdaACD and formation of active head-to-head cyclase oligomers, thus suggesting a mechanism by which GlmM acts as a cyclase inhibitor. As the amino acids at the CdaACD:GlmM interphase are conserved, we propose that the observed mechanism of inhibition of CdaA by GlmM may also be conserved among Firmicutes.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/química , Complejos Multienzimáticos/química , Fosfoglucomutasa/química , Liasas de Fósforo-Oxígeno/química , Multimerización de Proteína , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Complejos Multienzimáticos/genética , Fosfoglucomutasa/genética , Liasas de Fósforo-Oxígeno/genética , Dominios Proteicos , Estructura Cuaternaria de Proteína
3.
ACS Appl Bio Mater ; 4(5): 3749-3761, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35006805

RESUMEN

Antimicrobial resistance is a global threat. In addition to the emergence of resistance to last resort drugs, bacteria escape antibiotics killing by forming complex biofilms. Strategies to tackle antibiotic resistance as well as biofilms are urgently needed. Wall teichoic acid (WTA), a generic anionic glycopolymer present on the cell surface of many Gram-positive bacteria, has been proposed as a possible therapeutic target, but its druggability remains to be demonstrated. Here we report a cationic glycosylated block co-ß-peptide that binds to WTA. By doing so, the co-ß-peptide not only inhibits biofilm formation, it also disperses preformed biofilms in several Gram-positive bacteria and resensitizes methicillin-resistant Staphylococcus aureus to oxacillin. The cationic block of the co-ß-peptide physically interacts with the anionic WTA within the cell envelope, whereas the glycosylated block forms a nonfouling corona around the bacteria. This reduces physical interaction between bacteria-substrate and bacteria-biofilm matrix, leading to biofilm inhibition and dispersal. The WTA-targeting co-ß-peptide is a promising lead for the future development of broad-spectrum anti-biofilm strategies against Gram-positive bacteria.


Asunto(s)
Antibacterianos/farmacología , Materiales Biocompatibles/farmacología , Bacterias Grampositivas/efectos de los fármacos , Péptidos/farmacología , Ácidos Teicoicos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Cationes/síntesis química , Cationes/química , Cationes/farmacología , Glicosilación , Ensayo de Materiales , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Péptidos/síntesis química , Péptidos/química , Ácidos Teicoicos/química
4.
Mol Microbiol ; 113(6): 1085-1100, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31997474

RESUMEN

A Staphylococcus aureus strain deleted for the c-di-AMP cyclase gene dacA is unable to survive in rich medium unless it acquires compensatory mutations. Previously identified mutations were in opuD, encoding the main glycine-betaine transporter, and alsT, encoding a predicted amino acid transporter. Here, we show that inactivation of OpuD restores the cell size of a dacA mutant to near wild-type (WT) size, while inactivation of AlsT does not. AlsT was identified as an efficient glutamine transporter, indicating that preventing glutamine uptake in rich medium rescues the growth of the S. aureus dacA mutant. In addition, GltS was identified as a glutamate transporter. By performing growth curves with WT, alsT and gltS mutant strains in defined medium supplemented with ammonium, glutamine or glutamate, we revealed that ammonium and glutamine, but not glutamate promote the growth of S. aureus. This suggests that besides ammonium also glutamine can serve as a nitrogen source under these conditions. Ammonium and uptake of glutamine via AlsT and hence likely a higher intracellular glutamine concentration inhibited c-di-AMP production, while glutamate uptake had no effect. These findings provide, besides the previously reported link between potassium and osmolyte uptake, a connection between nitrogen metabolism and c-di-AMP signalling in S. aureus.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/metabolismo , Proteínas Portadoras/metabolismo , AMP Cíclico/metabolismo , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/metabolismo , Compuestos de Amonio/metabolismo , Metabolismo Energético/genética , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Staphylococcus aureus/genética
5.
PLoS Pathog ; 15(10): e1008032, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31589660

RESUMEN

The intracellular pathogen Listeria monocytogenes is distinguished by its ability to invade and replicate within mammalian cells. Remarkably, of the 15 serovars within the genus, strains belonging to serovar 4b cause the majority of listeriosis clinical cases and outbreaks. The Listeria O-antigens are defined by subtle structural differences amongst the peptidoglycan-associated wall-teichoic acids (WTAs), and their specific glycosylation patterns. Here, we outline the genetic determinants required for WTA decoration in serovar 4b L. monocytogenes, and demonstrate the exact nature of the 4b-specific antigen. We show that challenge by bacteriophages selects for surviving clones that feature mutations in genes involved in teichoic acid glycosylation, leading to a loss of galactose from both wall teichoic acid and lipoteichoic acid molecules, and a switch from serovar 4b to 4d. Surprisingly, loss of this galactose decoration not only prevents phage adsorption, but leads to a complete loss of surface-associated Internalin B (InlB),the inability to form actin tails, and a virulence attenuation in vivo. We show that InlB specifically recognizes and attaches to galactosylated teichoic acid polymers, and is secreted upon loss of this modification, leading to a drastically reduced cellular invasiveness. Consequently, these phage-insensitive bacteria are unable to interact with cMet and gC1q-R host cell receptors, which normally trigger cellular uptake upon interaction with InlB. Collectively, we provide detailed mechanistic insight into the dual role of a surface antigen crucial for both phage adsorption and cellular invasiveness, demonstrating a trade-off between phage resistance and virulence in this opportunistic pathogen.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacteriófagos/patogenicidad , Pared Celular/metabolismo , Galactosa/metabolismo , Listeria monocytogenes/virología , Proteínas de la Membrana/metabolismo , Ácidos Teicoicos/metabolismo , Virulencia , Proteínas Bacterianas/genética , Bacteriófagos/genética , Células CACO-2 , Células Hep G2 , Humanos , Listeria monocytogenes/metabolismo , Proteínas de la Membrana/genética , Mutación , Serogrupo
6.
PLoS Pathog ; 15(1): e1007537, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30668586

RESUMEN

c-di-AMP is an important second messenger molecule that plays a pivotal role in regulating fundamental cellular processes, including osmotic and cell wall homeostasis in many Gram-positive organisms. In the opportunistic human pathogen Staphylococcus aureus, c-di-AMP is produced by the membrane-anchored DacA enzyme. Inactivation of this enzyme leads to a growth arrest under standard laboratory growth conditions and a re-sensitization of methicillin-resistant S. aureus (MRSA) strains to ß-lactam antibiotics. The gene coding for DacA is part of the conserved three-gene dacA/ybbR/glmM operon that also encodes the proposed DacA regulator YbbR and the essential phosphoglucosamine mutase GlmM, which is required for the production of glucosamine-1-phosphate, an early intermediate of peptidoglycan synthesis. These three proteins are thought to form a complex in vivo and, in this manner, help to fine-tune the cellular c-di-AMP levels. To further characterize this important regulatory complex, we conducted a comprehensive structural and functional analysis of the S. aureus DacA and GlmM enzymes by determining the structures of the S. aureus GlmM enzyme and the catalytic domain of DacA. Both proteins were found to be dimers in solution as well as in the crystal structures. Further site-directed mutagenesis, structural and enzymatic studies showed that multiple DacA dimers need to interact for enzymatic activity. We also show that DacA and GlmM form a stable complex in vitro and that S. aureus GlmM, but not Escherichia coli or Pseudomonas aeruginosa GlmM, acts as a strong inhibitor of DacA function without the requirement of any additional cellular factor. Based on Small Angle X-ray Scattering (SAXS) data, a model of the complex revealed that GlmM likely inhibits DacA by masking the active site of the cyclase and preventing higher oligomer formation. Together these results provide an important mechanistic insight into how c-di-AMP production can be regulated in the cell.


Asunto(s)
Inhibidores de Adenilato Ciclasa/metabolismo , Adenilil Ciclasas/metabolismo , Adenilil Ciclasas/ultraestructura , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pared Celular/metabolismo , Fosfatos de Dinucleósidos/antagonistas & inhibidores , Fosfatos de Dinucleósidos/metabolismo , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/metabolismo , Operón/genética , Fosfoglucomutasa/metabolismo , Liasas de Fósforo-Oxígeno/metabolismo , Dominios Proteicos , Dispersión del Ángulo Pequeño , Sistemas de Mensajero Secundario/genética , Infecciones Estafilocócicas/genética , Staphylococcus aureus/metabolismo , Staphylococcus aureus/fisiología , Difracción de Rayos X/métodos
7.
J Biol Chem ; 293(9): 3180-3200, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29326168

RESUMEN

Cyclic di-adenosine monophosphate (c-di-AMP) is a recently discovered signaling molecule important for the survival of Firmicutes, a large bacterial group that includes notable pathogens such as Staphylococcus aureus However, the exact role of this molecule has not been identified. dacA, the S. aureus gene encoding the diadenylate cyclase enzyme required for c-di-AMP production, cannot be deleted when bacterial cells are grown in rich medium, indicating that c-di-AMP is required for growth in this condition. Here, we report that an S. aureus dacA mutant can be generated in chemically defined medium. Consistent with previous findings, this mutant had a severe growth defect when cultured in rich medium. Using this growth defect in rich medium, we selected for suppressor strains with improved growth to identify c-di-AMP-requiring pathways. Mutations bypassing the essentiality of dacA were identified in alsT and opuD, encoding a predicted amino acid and osmolyte transporter, the latter of which we show here to be the main glycine betaine-uptake system in S. aureus. Inactivation of these transporters likely prevents the excessive osmolyte and amino acid accumulation in the cell, providing further evidence for a key role of c-di-AMP in osmotic regulation. Suppressor mutations were also obtained in hepS, hemB, ctaA, and qoxB, coding proteins required for respiration. Furthermore, we show that dacA is dispensable for growth in anaerobic conditions. Together, these findings reveal an essential role for the c-di-AMP signaling network in aerobic, but not anaerobic, respiration in S. aureus.


Asunto(s)
Aminoácidos Cíclicos/metabolismo , Viabilidad Microbiana , Ósmosis , Staphylococcus aureus/fisiología , Anaerobiosis , Proteínas Bacterianas/genética , Betaína/metabolismo , Tamaño de la Célula , Potenciales de la Membrana , Mutación , Especies Reactivas de Oxígeno/metabolismo , Staphylococcus aureus/citología , Staphylococcus aureus/metabolismo
8.
J Biol Chem ; 292(1): 313-327, 2017 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-27881678

RESUMEN

The nucleotide signaling molecule 3',5'-cyclic adenosine monophosphate (3',5'-cAMP) plays important physiological roles, ranging from carbon catabolite repression in bacteria to mediating the action of hormones in higher eukaryotes, including human. However, it remains unclear whether 3',5'-cAMP is universally present in the Firmicutes group of bacteria. We hypothesized that searching for proteins that bind 3',5'-cAMP might provide new insight into this question. Accordingly, we performed a genome-wide screen and identified the essential Staphylococcus aureus tRNA m1G37 methyltransferase enzyme TrmD, which is conserved in all three domains of life as a tight 3',5'-cAMP-binding protein. TrmD enzymes are known to use S-adenosyl-l-methionine (AdoMet) as substrate; we have shown that 3',5'-cAMP binds competitively with AdoMet to the S. aureus TrmD protein, indicating an overlapping binding site. However, the physiological relevance of this discovery remained unclear, as we were unable to identify a functional adenylate cyclase in S. aureus and only detected 2',3'-cAMP but not 3',5'-cAMP in cellular extracts. Interestingly, TrmD proteins from Escherichia coli and Mycobacterium tuberculosis, organisms known to synthesize 3',5'-cAMP, did not bind this signaling nucleotide. Comparative bioinformatics, mutagenesis, and biochemical analyses revealed that the highly conserved Tyr-86 residue in E. coli TrmD is essential to discriminate between 3',5'-cAMP and the native substrate AdoMet. Combined with a phylogenetic analysis, these results suggest that amino acids in the substrate binding pocket of TrmD underwent an adaptive evolution to accommodate the emergence of adenylate cyclases and thus the signaling molecule 3',5'-cAMP. Altogether this further indicates that S. aureus does not produce 3',5'-cAMP, which would otherwise competitively inhibit an essential enzyme.


Asunto(s)
AMP Cíclico/metabolismo , Escherichia coli/enzimología , Evolución Molecular , S-Adenosilmetionina/metabolismo , Staphylococcus aureus/enzimología , ARNt Metiltransferasas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Escherichia coli/crecimiento & desarrollo , Humanos , Cinética , Metilación , Modelos Moleculares , Filogenia , Conformación Proteica , Homología de Secuencia de Aminoácido , Staphylococcus aureus/crecimiento & desarrollo , Especificidad por Sustrato , ARNt Metiltransferasas/química
9.
J Biol Chem ; 291(53): 26970-26986, 2016 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-27834680

RESUMEN

Nucleotide signaling networks are key to facilitate alterations in gene expression, protein function, and enzyme activity in response to diverse stimuli. Cyclic di-adenosine monophosphate (c-di-AMP) is an important secondary messenger molecule produced by the human pathogen Staphylococcus aureus and is involved in regulating a number of physiological processes including potassium transport. S. aureus must ensure tight control over its cellular levels as both high levels of the dinucleotide and its absence result in a number of detrimental phenotypes. Here we show that in addition to the membrane-bound Asp-His-His and Asp-His-His-associated (DHH/DHHA1) domain-containing phosphodiesterase (PDE) GdpP, S. aureus produces a second cytoplasmic DHH/DHHA1 PDE Pde2. Although capable of hydrolyzing c-di-AMP, Pde2 preferentially converts linear 5'-phosphadenylyl-adenosine (pApA) to AMP. Using a pde2 mutant strain, pApA was detected for the first time in S. aureus, leading us to speculate that this dinucleotide may have a regulatory role under certain conditions. Moreover, pApA is involved in a feedback inhibition loop that limits GdpP-dependent c-di-AMP hydrolysis. Another protein linked to the regulation of c-di-AMP levels in bacteria is the predicted regulator protein YbbR. Here, it is shown that a ybbR mutant S. aureus strain has increased acid sensitivity that can be bypassed by the acquisition of mutations in a number of genes, including the gene coding for the diadenylate cyclase DacA. We further show that c-di-AMP levels are slightly elevated in the ybbR suppressor strains tested as compared with the wild-type strain. With this, we not only identified a new role for YbbR in acid stress resistance in S. aureus but also provide further insight into how c-di-AMP levels impact acid tolerance in this organism.


Asunto(s)
Ácidos/metabolismo , Proteínas Bacterianas/metabolismo , Fosfatos de Dinucleósidos/metabolismo , Staphylococcus aureus/metabolismo , Proteínas Bacterianas/genética , Dipéptidos/química , Dipéptidos/genética , Dipéptidos/metabolismo , Regulación Bacteriana de la Expresión Génica , Humanos , Hidrólisis , Mutación/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Sistemas de Mensajero Secundario , Transducción de Señal , Staphylococcus aureus/genética , Staphylococcus aureus/crecimiento & desarrollo , Estrés Fisiológico
10.
Sci Signal ; 9(441): ra81, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27531650

RESUMEN

Staphylococcus aureus is an important opportunistic human pathogen that is highly resistant to osmotic stresses. To survive an increase in osmolarity, bacteria immediately take up potassium ions and small organic compounds known as compatible solutes. The second messenger cyclic diadenosine monophosphate (c-di-AMP) reduces the ability of bacteria to withstand osmotic stress by binding to and inhibiting several proteins that promote potassium uptake. We identified OpuCA, the adenosine triphosphatase (ATPase) component of an uptake system for the compatible solute carnitine, as a c-di-AMP target protein in S aureus and found that the LAC*ΔgdpP strain of S aureus, which overproduces c-di-AMP, showed reduced carnitine uptake. The paired cystathionine-ß-synthase (CBS) domains of OpuCA bound to c-di-AMP, and a crystal structure revealed a putative binding pocket for c-di-AMP in the cleft between the two CBS domains. Thus, c-di-AMP inhibits osmoprotection through multiple mechanisms.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Proteínas Bacterianas , Presión Osmótica , Sistemas de Mensajero Secundario , Staphylococcus aureus , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Carnitina/metabolismo , Cristalografía por Rayos X , Fosfatos de Dinucleósidos/química , Fosfatos de Dinucleósidos/metabolismo , Dominios Proteicos , Staphylococcus aureus/química , Staphylococcus aureus/metabolismo
11.
J Bacteriol ; 198(1): 98-110, 2016 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-26195599

RESUMEN

UNLABELLED: Nucleotide signaling molecules are important intracellular messengers that regulate a wide range of biological functions. The human pathogen Staphylococcus aureus produces the signaling nucleotide cyclic di-AMP (c-di-AMP). This molecule is common among Gram-positive bacteria and in many organisms is essential for survival under standard laboratory growth conditions. In this study, we investigated the interaction of c-di-AMP with the S. aureus KdpD protein. The sensor kinase KdpD forms a two-component signaling system with the response regulator KdpE and regulates the expression of the kdpDE genes and the kdpFABC operon coding for the Kdp potassium transporter components. Here we show that the S. aureus KdpD protein binds c-di-AMP specifically and with an affinity in the micromolar range through its universal stress protein (USP) domain. This domain is located within the N-terminal cytoplasmic region of KdpD, and amino acids of a conserved SXS-X20-FTAXY motif are important for this binding. We further show that KdpD2, a second KdpD protein found in some S. aureus strains, also binds c-di-AMP, and our bioinformatics analysis indicates that a subclass of KdpD proteins in c-di-AMP-producing bacteria has evolved to bind this signaling nucleotide. Finally, we show that c-di-AMP binding to KdpD inhibits the upregulation of the kdpFABC operon under salt stress, thus indicating that c-di-AMP is a negative regulator of potassium uptake in S. aureus. IMPORTANCE: Staphylococcus aureus is an important human pathogen and a major cause of food poisoning in Western countries. A common method for food preservation is the use of salt to drive dehydration. This study sheds light on the regulation of potassium uptake in Staphylococcus aureus, an important aspect of this bacterium's ability to tolerate high levels of salt. We show that the signaling nucleotide c-di-AMP binds to a regulatory component of the Kdp potassium uptake system and that this binding has an inhibitory effect on the expression of the kdp genes encoding a potassium transporter. c-di-AMP binds to the USP domain of KdpD, thus providing for the first time evidence for the ability of such a domain to bind a cyclic dinucleotide.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Fosfatos de Dinucleósidos/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Potasio/metabolismo , Proteínas Quinasas/metabolismo , Staphylococcus aureus/enzimología , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Fosfatos de Dinucleósidos/genética , Regulación hacia Abajo , Filogenia , Unión Proteica , Proteínas Quinasas/genética , Estructura Terciaria de Proteína , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
12.
J Biol Chem ; 290(9): 5826-39, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25575594

RESUMEN

Nucleotide-signaling pathways are found in all kingdoms of life and are utilized to coordinate a rapid response to external stimuli. The stringent response alarmones guanosine tetra- (ppGpp) and pentaphosphate (pppGpp) control a global response allowing cells to adapt to starvation conditions such as amino acid depletion. One more recently discovered signaling nucleotide is the secondary messenger cyclic diadenosine monophosphate (c-di-AMP). Here, we demonstrate that this signaling nucleotide is essential for the growth of Staphylococcus aureus, and its increased production during late growth phases indicates that c-di-AMP controls processes that are important for the survival of cells in stationary phase. By examining the transcriptional profile of cells with high levels of c-di-AMP, we reveal a significant overlap with a stringent response transcription signature. Examination of the intracellular nucleotide levels under stress conditions provides further evidence that high levels of c-di-AMP lead to an activation of the stringent response through a RelA/SpoT homologue (RSH) enzyme-dependent increase in the (p)ppGpp levels. This activation is shown to be indirect as c-di-AMP does not interact directly with the RSH protein. Our data extend this interconnection further by showing that the S. aureus c-di-AMP phosphodiesterase enzyme GdpP is inhibited in a dose-dependent manner by ppGpp, which itself is not a substrate for this enzyme. Altogether, these findings add a new layer of complexity to our understanding of nucleotide signaling in bacteria as they highlight intricate interconnections between different nucleotide-signaling networks.


Asunto(s)
Fosfatos de Dinucleósidos/metabolismo , Guanosina Pentafosfato/metabolismo , Guanosina Tetrafosfato/metabolismo , Transducción de Señal , Staphylococcus aureus/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Western Blotting , División Celular/genética , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Viabilidad Microbiana/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Staphylococcus aureus/genética , Staphylococcus aureus/crecimiento & desarrollo
13.
Nat Rev Microbiol ; 11(8): 513-24, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23812326

RESUMEN

Nucleotide signalling molecules contribute to the regulation of cellular pathways in all forms of life. In recent years, the discovery of new signalling molecules in bacteria and archaea, as well as the elucidation of the pathways they regulate, has brought insights into signalling mechanisms not only in bacterial and archaeal cells but also in eukaryotic host cells. Here, we provide an overview of the synthesis and regulation of cyclic di-AMP (c-di-AMP), one of the latest cyclic nucleotide second messengers to be discovered in bacteria. We also discuss the currently known receptor proteins and pathways that are directly or indirectly controlled by c-di-AMP, the domain structure of the enzymes involved in its production and degradation, and the recognition of c-di-AMP by the eukaryotic host.


Asunto(s)
Proteínas Portadoras/metabolismo , Fosfatos de Dinucleósidos/metabolismo , Regulación Bacteriana de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Liasas de Fósforo-Oxígeno/metabolismo , Transducción de Señal , Bacterias/genética , Bacterias/metabolismo , Proteínas Portadoras/genética , Pared Celular/genética , Pared Celular/metabolismo , Fosfatos de Dinucleósidos/genética , Células Eucariotas/metabolismo , Células Eucariotas/microbiología , Interacciones Huésped-Patógeno , Péptidos y Proteínas de Señalización Intracelular/genética , Liasas de Fósforo-Oxígeno/clasificación , Liasas de Fósforo-Oxígeno/genética , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteolisis , Transcripción Genética
14.
Proc Natl Acad Sci U S A ; 110(22): 9084-9, 2013 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-23671116

RESUMEN

Nucleotide signaling molecules are important messengers in key pathways that allow cellular responses to changing environments. Canonical secondary signaling molecules act through specific receptor proteins by direct binding to alter their activity. Cyclic diadenosine monophosphate (c-di-AMP) is an essential signaling molecule in bacteria that has only recently been discovered. Here we report on the identification of four Staphylococcus aureus c-di-AMP receptor proteins that are also widely distributed among other bacteria. Using an affinity pull-down assay we identified the potassium transporter-gating component KtrA as a c-di-AMP receptor protein, and it was further shown that this protein, together with c-di-AMP, enables S. aureus to grow in low potassium conditions. We defined the c-di-AMP binding activity within KtrA to the RCK_C (regulator of conductance of K(+)) domain. This domain is also found in a second S. aureus protein, a predicted cation/proton antiporter, CpaA, which as we show here also directly binds c-di-AMP. Because RCK_C domains are found in proteinaceous channels, transporters, and antiporters from all kingdoms of life, these findings have broad implications for the regulation of different pathways through nucleotide-dependent signaling. Using a genome-wide nucleotide protein interaction screen we further identified the histidine kinase protein KdpD that in many bacteria is also involved in the regulation of potassium transport and a PII-like signal transduction protein, which we renamed PstA, as c-di-AMP binding proteins. With the identification of these widely distributed c-di-AMP receptor proteins we link the c-di-AMP signaling network to a central metabolic process in bacteria.


Asunto(s)
Fosfatos de Dinucleósidos/metabolismo , Activación del Canal Iónico/fisiología , Bombas Iónicas/metabolismo , Receptores de AMP Cíclico/metabolismo , Transducción de Señal/fisiología , Staphylococcus aureus/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/metabolismo , Electroforesis en Gel de Poliacrilamida , Activación del Canal Iónico/genética , Espectrometría de Masas , Pruebas de Sensibilidad Microbiana , Cloruro de Potasio , Mapeo de Interacción de Proteínas , Proteínas Quinasas/metabolismo
15.
PLoS Pathog ; 7(9): e1002217, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21909268

RESUMEN

The cell wall is a vital and multi-functional part of bacterial cells. For Staphylococcus aureus, an important human bacterial pathogen, surface proteins and cell wall polymers are essential for adhesion, colonization and during the infection process. One such cell wall polymer, lipoteichoic acid (LTA), is crucial for normal bacterial growth and cell division. Upon depletion of this polymer bacteria increase in size and a misplacement of division septa and eventual cell lysis is observed. In this work, we describe the isolation and characterization of LTA-deficient S. aureus suppressor strains that regained the ability to grow almost normally in the absence of this cell wall polymer. Using a whole genome sequencing approach, compensatory mutations were identified and revealed that mutations within one gene, gdpP (GGDEF domain protein containing phosphodiesterase), allow both laboratory and clinical isolates of S. aureus to grow without LTA. It was determined that GdpP has phosphodiesterase activity in vitro and uses the cyclic dinucleotide c-di-AMP as a substrate. Furthermore, we show for the first time that c-di-AMP is produced in S. aureus presumably by the S. aureus DacA protein, which has diadenylate cyclase activity. We also demonstrate that GdpP functions in vivo as a c-di-AMP-specific phosphodiesterase, as intracellular c-di-AMP levels increase drastically in gdpP deletion strains and in an LTA-deficient suppressor strain. An increased amount of cross-linked peptidoglycan was observed in the gdpP mutant strain, a cell wall alteration that could help bacteria compensate for the lack of LTA. Lastly, microscopic analysis of wild-type and gdpP mutant strains revealed a 13-22% reduction in the cell size of bacteria with increased c-di-AMP levels. Taken together, these data suggest a function for this novel secondary messenger in controlling cell size of S. aureus and in helping bacteria to cope with extreme membrane and cell wall stress.


Asunto(s)
Lipopolisacáridos/deficiencia , Hidrolasas Diéster Fosfóricas/genética , Liasas de Fósforo-Oxígeno/genética , Sistemas de Mensajero Secundario/genética , Staphylococcus aureus/crecimiento & desarrollo , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Tamaño de la Célula , Pared Celular/química , Pared Celular/efectos de los fármacos , Fosfatos de Dinucleósidos/metabolismo , Fosfatos de Dinucleósidos/fisiología , Staphylococcus aureus Resistente a Meticilina , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Hidrolasas Diéster Fosfóricas/fisiología , Liasas de Fósforo-Oxígeno/fisiología , Staphylococcus aureus/genética , Ácidos Teicoicos
16.
J Bacteriol ; 185(21): 6295-307, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14563864

RESUMEN

In this study, we investigated the requirement of the Listeria monocytogenes broad-range phospholipase C (PC-PLC) during infection of human epithelial cells. L. monocytogenes is a facultative intracellular bacterial pathogen of humans and a variety of animal species. After entering a host cell, L. monocytogenes is initially surrounded by a membrane-bound vacuole. Bacteria promote their escape from this vacuole, grow within the host cell cytosol, and spread from cell to cell via actin-based motility. Most infection studies with L. monocytogenes have been performed with mouse cells or an in vivo mouse model of infection. In all mouse-derived cells tested, the pore-forming cytolysin listeriolysin O (LLO) is absolutely required for lysis of primary vacuoles formed during host cell entry. However, L. monocytogenes can escape from primary vacuoles in the absence of LLO during infection of human epithelial cell lines Henle 407, HEp-2, and HeLa. Previous studies have shown that the broad-range phospholipase C, PC-PLC, promotes lysis of Henle 407 cell primary vacuoles in the absence of LLO. Here, we have shown that PC-PLC is also required for lysis of HEp-2 and HeLa cell primary vacuoles in the absence of LLO expression. Furthermore, our results indicated that the amount of PC-PLC activity is critical for the efficiency of vacuolar lysis. In an LLO-negative derivative of L. monocytogenes strain 10403S, expression of PC-PLC has to increase before or upon entry into human epithelial cells, compared to expression in broth culture, to allow bacterial escape from primary vacuoles. Using a system for inducible PC-PLC expression in L. monocytogenes, we provide evidence that phospholipase activity can be increased by elevated expression of PC-PLC or Mpl, the enzyme required for proteolytic activation of PC-PLC. Lastly, by using the inducible PC-PLC expression system, we demonstrate that, in the absence of LLO, PC-PLC activity is not only required for lysis of primary vacuoles in human epithelial cells but is also necessary for efficient cell-to-cell spread. We speculate that the additional requirement for PC-PLC activity is for lysis of secondary double-membrane vacuoles formed during cell-to-cell spread.


Asunto(s)
Proteínas Bacterianas , Toxinas Bacterianas , Listeria monocytogenes/enzimología , Fosfolipasas de Tipo C/metabolismo , Línea Celular , Células Epiteliales/microbiología , Células Epiteliales/patología , Proteínas de Choque Térmico/deficiencia , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas Hemolisinas , Humanos , Metaloendopeptidasas/metabolismo , Movimiento , Vacuolas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA