Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38473751

RESUMEN

The diaphragm muscle is essential for breathing, and its dysfunctions can be fatal. Many disorders affect the diaphragm, including muscular dystrophies. Despite the clinical relevance of targeting the diaphragm, there have been few studies evaluating diaphragm function following a given experimental treatment, with most of these involving anti-inflammatory drugs or gene therapy. Cell-based therapeutic approaches have shown success promoting muscle regeneration in several mouse models of muscular dystrophy, but these have focused mainly on limb muscles. Here we show that transplantation of as few as 5000 satellite cells directly into the diaphragm results in consistent and robust myofiber engraftment in dystrophin- and fukutin-related protein-mutant dystrophic mice. Transplanted cells also seed the stem cell reservoir, as shown by the presence of donor-derived satellite cells. Force measurements showed enhanced diaphragm strength in engrafted muscles. These findings demonstrate the feasibility of cell transplantation to target the diseased diaphragm and improve its contractility.


Asunto(s)
Distrofia Muscular de Duchenne , Ratones , Animales , Distrofia Muscular de Duchenne/genética , Diafragma , Ratones Endogámicos mdx , Músculo Esquelético , Trasplante de Células
2.
J Comp Neurol ; 525(5): 1192-1205, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-27650492

RESUMEN

Cervical spinal hemisection at C2 (SH) removes premotor drive to phrenic motoneurons located in segments C3-C5 in rats. Spontaneous recovery of ipsilateral diaphragm muscle activity is associated with increased phrenic motoneuron expression of glutamatergic N-methyl-D-aspartate (NMDA) receptors and decreased expression of α-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid (AMPA) receptors. Glutamatergic receptor expression is regulated by tropomyosin-related kinase receptor subtype B (TrkB) signaling in various neuronal systems, and increased TrkB receptor expression in phrenic motoneurons enhances recovery post-SH. Accordingly, we hypothesize that recovery of ipsilateral diaphragm muscle activity post-SH, whether spontaneous or enhanced by adenoassociated virus (AAV)-mediated upregulation of TrkB receptor expression, is associated with increased expression of glutamatergic NMDA receptors in phrenic motoneurons. Adult male Sprague-Dawley rats underwent diaphragm electromyography electrode implantation and SH surgery. Rats were injected intrapleurally with AAV expressing TrkB or GFP 3 weeks before SH. At 14 days post-SH, the proportion of animals displaying recovery of ipsilateral diaphragm activity increased in AAV-TrkB-treated (9/9) compared with untreated (3/5) or AAV-GFP-treated (4/10; P < 0.027) animals. Phrenic motoneuron NMDA NR1 subunit mRNA expression was approximately fourfold greater in AAV-TrkB- vs. AAV-GFP-treated SH animals (P < 0.004) and in animals displaying recovery vs. those not recovering (P < 0.005). Phrenic motoneuron AMPA glutamate receptor 2 (GluR2) subunit mRNA expression decreased after SH, and, albeit increased in animals displaying recovery vs. those not recovering, levels remained lower than control. We conclude that increased phrenic motoneuron expression of glutamatergic NMDA receptors is associated with spontaneous recovery after SH and enhanced recovery after AAV-TrkB treatment. J. Comp. Neurol. 525:1192-1205, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Diafragma/inervación , Neuronas Motoras/metabolismo , Receptores de N-Metil-D-Aspartato/biosíntesis , Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/metabolismo , Animales , Modelos Animales de Enfermedad , Captura por Microdisección con Láser , Masculino , Nervio Frénico/metabolismo , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor trkB/metabolismo
3.
Exp Neurol ; 276: 31-40, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26607912

RESUMEN

Unilateral cervical spinal cord hemisection at C2 (C2SH) interrupts descending bulbospinal inputs to phrenic motoneurons, paralyzing the diaphragm muscle. Recovery after C2SH is enhanced by brain derived neurotrophic factor (BDNF) signaling via the tropomyosin-related kinase subtype B (TrkB) receptor in phrenic motoneurons. The role for gene therapy using adeno-associated virus (AAV)-mediated delivery of TrkB to phrenic motoneurons is not known. The present study determined the therapeutic efficacy of intrapleural delivery of AAV7 encoding for full-length TrkB (AAV-TrkB) to phrenic motoneurons 3 days post-C2SH. Diaphragm EMG was recorded chronically in male rats (n=26) up to 21 days post-C2SH. Absent ipsilateral diaphragm EMG activity was verified 3 days post-C2SH. A greater proportion of animals displayed recovery of ipsilateral diaphragm EMG activity during eupnea by 14 and 21 days post-SH after AAV-TrkB (10/15) compared to AAV-GFP treatment (2/11; p=0.031). Diaphragm EMG amplitude increased over time post-C2SH (p<0.001), and by 14 days post-C2SH, AAV-TrkB treated animals displaying recovery achieved 48% of the pre-injury values compared to 27% in AAV-GFP treated animals. Phrenic motoneuron mRNA expression of glutamatergic AMPA and NMDA receptors revealed a significant, positive correlation (r(2)=0.82), with increased motoneuron NMDA expression evident in animals treated with AAV-TrkB and that displayed recovery after C2SH. Overall, gene therapy using intrapleural delivery of AAV-TrkB to phrenic motoneurons is sufficient to promote recovery of diaphragm activity, adding a novel potential intervention that can be administered after upper cervical spinal cord injury to improve impaired respiratory function.


Asunto(s)
Terapia Genética/métodos , Glicoproteínas de Membrana/genética , Proteínas Tirosina Quinasas/genética , Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/terapia , Animales , Médula Cervical/patología , Vértebras Cervicales , Masculino , Glicoproteínas de Membrana/administración & dosificación , Proteínas Tirosina Quinasas/administración & dosificación , Ratas , Ratas Sprague-Dawley , Receptor trkB , Traumatismos de la Médula Espinal/patología
4.
J Neurotrauma ; 32(3): 185-93, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25093762

RESUMEN

Neurotrophins, such as brain-derived neurotrophic factor (BDNF), are important in modulating neuroplasticity and promoting recovery after spinal cord injury. Intrathecal delivery of BDNF enhances functional recovery following unilateral spinal cord hemisection (SH) at C2, a well-established model of incomplete cervical spinal cord injury. We hypothesized that localized delivery of BDNF-expressing mesenchymal stem cells (BDNF-MSCs) would promote functional recovery of rhythmic diaphragm activity after SH. In adult rats, bilateral diaphragm electromyographic (EMG) activity was chronically monitored to determine evidence of complete SH at 3 days post-injury, and recovery of rhythmic ipsilateral diaphragm EMG activity over time post-SH. Wild-type, bone marrow-derived MSCs (WT-MSCs) or BDNF-MSCs (2×10(5) cells) were injected intraspinally at C2 at the time of injury. At 14 days post-SH, green fluorescent protein (GFP) immunoreactivity confirmed MSCs presence in the cervical spinal cord. Functional recovery in SH animals injected with WT-MSCs was not different from untreated SH controls (n=10; overall, 20% at 7 days and 30% at 14 days). In contrast, functional recovery was observed in 29% and 100% of SH animals injected with BDNF-MSCs at 7 days and 14 days post-SH, respectively (n=7). In BDNF-MSCs treated SH animals at 14 days, root-mean-squared EMG amplitude was 63±16% of the pre-SH value compared with 12±9% in the control/WT-MSCs group. We conclude that localized delivery of BDNF-expressing MSCs enhances functional recovery of diaphragm muscle activity following cervical spinal cord injury. MSCs can be used to facilitate localized delivery of trophic factors such as BDNF in order to promote neuroplasticity following spinal cord injury.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/administración & dosificación , Trasplante de Células Madre Mesenquimatosas/métodos , Recuperación de la Función , Traumatismos de la Médula Espinal/patología , Animales , Vértebras Cervicales , Modelos Animales de Enfermedad , Inmunohistoquímica , Masculino , Microscopía Confocal , Ratas , Ratas Sprague-Dawley , Transducción Genética
5.
PLoS One ; 8(5): e64755, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23724091

RESUMEN

Progressive recovery of rhythmic phrenic activity occurs over time after a spinal cord hemisection involving unilateral transection of anterolateral funiculi at C2 (SH). Brain-derived neurotrophic factor (BDNF) acting through its full-length tropomyosin related kinase receptor subtype B (TrkB.FL) contributes to neuroplasticity after spinal cord injury, but the specific cellular substrates remain unclear. We hypothesized that selectively targeting increased TrkB.FL expression to phrenic motoneurons would be sufficient to enhance recovery of rhythmic phrenic activity after SH. Several adeno-associated virus (AAV) serotypes expressing GFP were screened to determine specificity for phrenic motoneuron transduction via intrapleural injection in adult rats. GFP expression was present in the cervical spinal cord 3 weeks after treatment with AAV serotypes 7, 8, and 9, but not with AAV2, 6, or rhesus-10. Overall, AAV7 produced the most consistent GFP expression in phrenic motoneurons. SH was performed 3 weeks after intrapleural injection of AAV7 expressing human TrkB.FL-FLAG or saline. Delivery of TrkB.FL-FLAG to phrenic motoneurons was confirmed by FLAG protein expression in the phrenic motor nucleus and human TrkB.FL mRNA expression in microdissected phrenic motoneurons. In all SH rats, absence of ipsilateral diaphragm EMG activity was confirmed at 3 days post-SH, verifying complete interruption of ipsilateral descending drive to phrenic motoneurons. At 14 days post-SH, all AAV7-TrkB.FL treated rats (n = 11) displayed recovery of ipsilateral diaphragm EMG activity compared to 3 out of 8 untreated SH rats (p<0.01). During eupnea, AAV7-TrkB.FL treated rats exhibited 73±7% of pre-SH root mean squared EMG vs. only 31±11% in untreated SH rats displaying recovery (p<0.01). This study provides direct evidence that increased TrkB.FL expression in phrenic motoneurons is sufficient to enhance recovery of ipsilateral rhythmic phrenic activity after SH, indicating that selectively targeting gene expression in spared motoneurons below the level of spinal cord injury may promote functional recovery.


Asunto(s)
Vértebras Cervicales/fisiopatología , Vértebras Cervicales/cirugía , Técnicas de Transferencia de Gen , Neuronas Motoras/metabolismo , Nervio Frénico/patología , Receptor trkB/metabolismo , Recuperación de la Función , Animales , Células del Asta Anterior/metabolismo , Células del Asta Anterior/patología , Transporte Biológico , Vértebras Cervicales/patología , Dependovirus/metabolismo , Diafragma/patología , Diafragma/fisiopatología , Electromiografía , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Masculino , Nervio Frénico/fisiopatología , Ratas , Ratas Sprague-Dawley
6.
Exp Neurol ; 247: 101-9, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23583688

RESUMEN

A C2 cervical spinal cord hemisection (SH) interrupts descending inspiratory-related drive to phrenic motoneurons located between C3 and C5 in rats, paralyzing the ipsilateral hemidiaphragm muscle. There is gradual recovery of rhythmic diaphragm muscle activity ipsilateral to cervical spinal cord injury over time, consistent with neuroplasticity and strengthening of spared, contralateral descending premotor input to phrenic motoneurons. Brain-derived neurotrophic factor (BDNF) signaling through the tropomyosin related kinase receptor subtype B (TrkB) plays an important role in neuroplasticity following spinal cord injury. We hypothesized that 1) increasing BDNF/TrkB signaling at the level of the phrenic motoneuron pool by intrathecal BDNF delivery enhances functional recovery of rhythmic diaphragm activity after SH, and 2) inhibiting BDNF/TrkB signaling by quenching endogenous neurotrophins with the soluble fusion protein TrkB-Fc or by knocking down TrkB receptor expression in phrenic motoneurons using intrapleurally-delivered siRNA impairs functional recovery after SH. Diaphragm EMG electrodes were implanted bilaterally to verify complete hemisection at the time of SH and 3days post-SH. After SH surgery in adult rats, an intrathecal catheter was placed at C4 to chronically infuse BDNF or TrkB-Fc using an implanted mini-osmotic pump. At 14days post-SH, all intrathecal BDNF treated rats (n=9) displayed recovery of ipsilateral hemidiaphragm EMG activity, compared to 3 out of 8 untreated SH rats (p<0.01). During eupnea, BDNF treated rats exhibited 76±17% of pre-SH root mean squared EMG vs. only 5±3% in untreated SH rats (p<0.01). In contrast, quenching endogenous BDNF with intrathecal TrkB-Fc treatment completely prevented functional recovery up to 14days post-SH (n=7). Immunoreactivity of the transcription factor cAMP response element-binding protein (CREB), a downstream effector of TrkB signaling, increased in phrenic motoneurons following BDNF treatment (n=6) compared to artificial cerebrospinal fluid treatment (n=6; p<0.001). Intrapleural injections of non-sense or TrkB siRNA were administered after SH to specifically target phrenic motoneurons. At 14days post-SH, none out of 9 TrkB siRNA treated rats displayed functional recovery compared to 5 out of 9 non-sense siRNA treated rats. These results indicate that BDNF/TrkB signaling in phrenic motoneuron pool plays a critical role in functional recovery after cervical spinal cord injury.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Neuronas Motoras/metabolismo , Receptor trkB/metabolismo , Recuperación de la Función/fisiología , Transducción de Señal/fisiología , Traumatismos de la Médula Espinal/tratamiento farmacológico , Análisis de Varianza , Animales , Factor Neurotrófico Derivado del Encéfalo/uso terapéutico , Proteína de Unión a CREB/metabolismo , Modelos Animales de Enfermedad , Electromiografía , Lateralidad Funcional/efectos de los fármacos , Lateralidad Funcional/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Neuronas Motoras/efectos de los fármacos , Músculo Esquelético/fisiopatología , ARN Interferente Pequeño/administración & dosificación , Ratas , Ratas Sprague-Dawley , Receptor trkB/uso terapéutico , Recuperación de la Función/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA