Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
Inorg Chem ; 63(9): 4028-4038, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38386423

RESUMEN

Herein, we report the preparation and characterization of the Group 13 metal complexes of a tripodal tris(nitroxide)-based ligand, designated (TriNOx3-)M (M = Al (1), Ga (2), In (3)). Complexes 1 and 2 both activate the O-H bond of a range of alcohols spanning a ∼10 pKa unit range via an element-ligand cooperative pathway to afford the zwitterionic complexes (HTriNOx2-)M-OR. Structures of these alcohol adduct products are discussed. We demonstrate that the thermodynamic and kinetic aspects of the reactions are both influenced by the identity of the metal, with 1 having higher reaction equilibrium constants and proceeding at a faster rate relative to 2 for any given alcohol. These parameters are also influenced by the pKa of the alcohol, with more acidic alcohols reacting both to more completion and faster than their less acidic counterparts. Possible mechanistic pathways for the O-H activation are discussed.

2.
Inorg Chem ; 57(16): 9622-9633, 2018 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-29553256

RESUMEN

The synthesis and full characterization of a series of neutral ligand α-diimine complexes of aluminum are reported. The compounds [Al(LAr)2Cl2)][AlCl4] [LAr = N, N'-bis(4-R-C6H4)-2,3-dimethyl-1,4-diazabutadiene] are structurally analogous, as determined by multinuclear NMR spectroscopy and solid-state X-ray diffraction, across a range of electron-donating [R = Me (2), tBu (3), OMe (4), and NMe2 (5)] and electron-withdrawing [R = Cl (6), CF3 (7), and NO2 (8)] substituents in the aryl side arm of the ligand. UV-vis absorption spectroscopy and electrochemistry were used to access the optical and electrochemical properties, respectively, of the complexes. Both sets of properties are shown to be dependent on the R substituent. Density functional theory calculations performed on the [Al(LPh)2Cl2)][AlCl4] complex (1) indicate primarily ligand-based frontier orbitals and were used to help support our discussion of both the spectral and electrochemical data. We also report the reaction of the LPh ligand with both AlBr3 and AlI3 and demonstrate a different reactivity profile for the heavier halide relative to the lighter members of the group.

3.
Inorg Chem ; 54(22): 10901-8, 2015 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26513133

RESUMEN

The aluminum complexes ((R)pyNO(-))2AlCl ((R)pyNO(-) = N-tert-butyl-N-(2-pyridyl)nitroxyl; R = H (1), CH3 (2), CF3 (3)) were prepared in 80-98% yield through the protonolysis reaction between the pyridyl hydroxylamine ligand precursors (R)pyNOH and dimethylaluminum chloride. Complex 1 was also prepared using a salt metathesis route in 92% yield. Complexes 1-3 were characterized using (1)H and (13)C NMR spectroscopies. Single-crystal X-ray diffraction analysis of the complexes revealed that 1-3 are isostructural, with the Al(III) cation in all cases being five coordinate with distorted square pyramidal geometries. The geometry of complex 1 was studied using DFT, which showed primarily ligand-based frontier molecular orbitals. Reaction of 1 with NaOt-Bu gave (pyNO(-))2AlOt-Bu (4), while reaction of 1 with AgBPh4 gave [(pyNO(-))2Al(THF)2][BPh4] (5) in 54% and 87% yields, respectively. Compounds 4 and 5 were both characterized using (1)H and (13)C NMR spectroscopies and compound 5 by X-ray diffraction. Complexes 1-5 were also characterized by UV-vis electronic absorption spectroscopy and electrochemistry. The cyclic voltammograms of the complexes show two separate oxidation process, the potentials of which are dependent on both the substitution pattern of the (R)pyNO(-) ligands and the anion that completes the aluminum coordination sphere. A correlation was determined between the chemical shift of the t-Bu of the (R)pyNO(-) ligand in the (1)H NMR spectroscopy and the potentials of the redox events for complexes 1-4.

4.
Inorg Chem ; 53(7): 3899-906, 2014 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-24660986

RESUMEN

The aluminum complexes (LMes(2-))AlCl(THF) (3) and (LDipp(-))AlCl2 (4) (LMes = N,N'-bis[2,4,6-trimethylphenyl]-2,3-dimethyl-1,4-diazabutadiene, LDipp = N,N'-bis[2,6-diisopropylphenyl]-2,3-dimethyl-1,4-diazabutadiene) were prepared by direct reduction of the ligands with sodium metal followed by salt metathesis with AlCl3. The (LMes(-))AlCl2 (5) complex was prepared through one-electron oxidative functionalization of 3 with either AgCl or CuCl. Complex 3 was characterized using (1)H and (13)C NMR spectoscopies. Single-crystal X-ray diffraction analysis of the complexes revealed that 3-5 are all four-coordinate, with 3 exhibiting a trigonal pyramidal geometry, while 4 and 5 exist between trigonal pyramidal and tetrahedral. Notable in the LMes complexes 3 and 5 is a systematic lengthening of the C-Nimido bonds and shortening of the C-C bond in the N-C-C-N backbone with increased electron density on the ligand. The geometries of the complexes 3 and 5 were optimized using DFT, which showed primarily ligand-based frontier orbitals, supporting the analysis of the solid-state structural data. The complexes 3-5 were also characterized by electrochemistry. The cyclic voltamogram of complex 3 showed an oxidation processes at -0.94 and -0.03 V versus ferrocene, while complexes 4 and 5 exhibit both reduction (-1.37 and -1.34 V, respectively) and oxidation (-0.62 and -0.73 V, respectively) features.

5.
J Am Chem Soc ; 130(51): 17537-51, 2008 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-19053455

RESUMEN

Migratory insertion of diphenyldiazomethane into both metal-carbon bonds of the bis(alkyl) and bis(aryl) complexes (C(5)Me(5))(2)AnR(2) yields the first f-element bis(hydrazonato) complexes (C(5)Me(5))(2)An[eta(2)-(N,N')-R-N-N=CPh(2)](2) [An = Th, R = CH(3) (18), PhCH(2) (15), Ph (16); An = U, R = CH(3) (17), PhCH(2) (14)], which have been characterized by a combination of spectroscopy, electrochemistry, and X-ray crystallography. The two hydrazonato ligands adopt an eta(2)-coordination mode leading to 20-electron (for Th) and 22-electron (for U) complexes that have no transition-metal analogues. In fact, reaction of (C(5)H(5))(2)Zr(CH(3))(2) or (C(5)Me(5))(2)Hf(CH(3))(2) with diphenyldiazomethane is limited to the formation of the corresponding mono(hydrazonato) complex (C(5)R(5))(2)M[eta(2)-(N,N')-CH(3)-N-N=CPh(2)](CH(3)) (M = Zr, R = H or M = Hf, R = CH(3)). The difference in the reactivities of the group 4 metal complexes and the actinides was used as a unique platform for investigating in depth the role of 5f orbitals on the reactivity and bonding in actinide organometallic complexes. The electronic structure of the (C(5)H(5))(2)M[eta(2)-(N,N')-CH(3)-N-N=CH(2)](2) (M = Zr, Th, U) model complexes was studied using density functional theory (DFT) calculations and compared to experimental structural, electrochemical, and spectroscopic results. Whereas transition-metal bis(cyclopentadienyl) complexes are known to stabilize three ligands in the metallocene girdle to form saturated (C(5)H(5))(2)ML(3) species, in a bis(hydrazonato) system, a fourth ligand is coordinated to the metal center to give (C(5)H(5))(2)ML(4). DFT calculations have shown that 5f orbitals in the actinide complexes play a crucial role in stabilizing this fourth ligand by stabilizing both the sigma and pi electrons of the two eta(2)-coordinated hydrazonato ligands. In contrast, the stabilization of the hydrazonato ligands was found to be significantly less effective for the putative bis(hydrazonato) zirconium(IV) complex, yielding a higher energy structure. However, the difference in the reactivities of the group 4 metal and actinide complexes does not arise on thermodynamic grounds but is primarily of kinetic origin. Unfavorable steric factors have been ruled out as the sole influence to explain these different behaviors, and electronic factors were shown to govern the reactivity. For the actinides, both the C(5)H(5) and more realistic C(5)Me(5) ligands have been taken into account in computing the energy surface. The reaction profile for the C(5)Me(5) system differs from that with the C(5)H(5) ligand by a uniform shift of approximately 5 kcal/mol in the relative energies of the transition state and products. The insertion of a second diazoalkane molecule into the sole metal-carbon bond in the mono(hydrazonato) complexes involves a high energy barrier (approximately 20 kcal/mol) for the zirconium(IV) system, whereas the actinides can facilitate the approach of the diazoalkane by coordination (formation of an adduct) and its insertion into the An-C bond with a very low barrier on the potential energy surface.

6.
Org Lett ; 8(6): 1229-32, 2006 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-16524310

RESUMEN

[reaction: see text] A highly enantioselective Meerwein-Schmidt-Ponndorf-Verley (MSPV) reduction of N-phosphinoyl ketimines by (BINOL)Al(III)/2-propanol is reported. Yields ranging between 79 and 85% with high enantiomeric excesses (93-98%) are observed for a wide range of structurally diverse ketimines. A [2.0.4] bicyclic chelation model is proposed to account for this high selectivity.

7.
J Am Chem Soc ; 126(45): 14796-803, 2004 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-15535705

RESUMEN

The mechanistic details of the Meerwein-Schmidt-Ponndorf-Verley (MSPV) reduction of ketones to the corresponding alcohols were investigated both experimentally and computationally. Density functional theory (DFT) was used to assess the energetics of several proposed pathways (direct hydrogen transfer, hydridic, and radical). Our results demonstrate that a direct hydrogen transfer mechanism involving a concerted six-membered ring transition state is the most favorable pathway for all calculated systems starting from a small model system and concluding with the experimentally investigated BINOLate/Al/(i)PrOH/MePhC=O system. Experimental values for the activation parameters of acetophenone reduction using the BINOLate/Al/(i)PrOH system (DeltaG# = 21.8 kcal/mol, DeltaH# = 18.5 kcal/mol, DeltaS# = -11.7 au) were determined on the basis of kinetic investigation of the reaction and are in good agreement with the computational findings for this system. Calculated and experimental kinetic isotope effects support the concerted mechanism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA