Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Virol ; 97(10): e0063723, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37750723

RESUMEN

IMPORTANCE: Kaposi's sarcoma-associated herpesvirus (KSHV) is a human herpesvirus associated with several human cancers, typically in patients with compromised immune systems. Herpesviruses establish lifelong infections in hosts in part due to the two phases of infection: the dormant and active phases. Effective antiviral treatments to prevent the production of new viruses are needed to treat KSHV. A detailed microscopy-based investigation of the molecular interactions between viral protein and viral DNA revealed how protein-protein interactions play a role in DNA-binding specificity. This analysis will lead to a more in-depth understanding of KSHV DNA replication and serve as the basis for anti-viral therapies that disrupt and prevent the protein-DNA interactions, thereby decreasing spread to new hosts.


Asunto(s)
ADN Viral , Herpesvirus Humano 8 , Microscopía Electrónica , Multimerización de Proteína , Transactivadores , Humanos , Sitios de Unión , ADN Viral/química , ADN Viral/metabolismo , ADN Viral/ultraestructura , Herpesvirus Humano 8/química , Herpesvirus Humano 8/metabolismo , Herpesvirus Humano 8/ultraestructura , Unión Proteica , Mapas de Interacción de Proteínas , Especificidad por Sustrato , Transactivadores/química , Transactivadores/metabolismo , Transactivadores/ultraestructura , Replicación Viral/genética , Sarcoma de Kaposi/virología
2.
bioRxiv ; 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37205529

RESUMEN

Molecular interactions between viral DNA and viral-encoded protein are a prerequisite for successful herpesvirus replication and production of new infectious virions. Here, we examined how the essential Kaposi's sarcoma-associated herpesvirus (KSHV) protein, RTA, binds to viral DNA using transmission electron microscopy (TEM). Previous studies using gel-based approaches to characterize RTA binding are important for studying the predominant form(s) of RTA within a population and identifying the DNA sequences that RTA binds with high affinity. However, using TEM we were able to examine individual protein-DNA complexes and capture the various oligomeric states of RTA when bound to DNA. Hundreds of images of individual DNA and protein molecules were collected and then quantified to map the DNA binding positions of RTA bound to the two KSHV lytic origins of replication encoded within the KSHV genome. The relative size of RTA or RTA bound to DNA were then compared to protein standards to determine whether RTA complexed with DNA was monomeric, dimeric, or formed larger oligomeric structures. We successfully analyzed a highly heterogenous dataset and identified new binding sites for RTA. This provides direct evidence that RTA forms dimers and high order multimers when bound to KSHV origin of replication DNA sequences. This work expands our understanding of RTA binding, and demonstrates the importance of employing methodologies that can characterize highly heterogenic populations of proteins. Importance: Kaposi's sarcoma-associated herpesvirus (KSHV) is a human herpesvirus associated with several human cancers, typically in patients with compromised immune systems. Herpesviruses establish lifelong infections in hosts in part due to the two phases of infection: the dormant and active phases. Effective antiviral treatments to prevent the production of new viruses are needed to treat KSHV. A detailed microscopy-based investigation of the molecular interactions between viral protein and viral DNA revealed how protein-protein interactions play a role in DNA binding specificity. This analysis will lead to a more in depth understanding of KSHV DNA replication and serve as the basis for anti-viral therapies that disrupt and prevent the protein-DNA interactions, thereby decreasing spread to new hosts.

3.
ACS Nano ; 16(5): 7309-7322, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35504018

RESUMEN

An abdominal aortic aneurysm (AAA) is a localized dilation of the aorta located in the abdomen that poses a severe risk of death when ruptured. The cause of AAA is not fully understood, but degradation of medial elastin due to elastolytic matrix metalloproteinases is a key step leading to aortic dilation. Current therapeutic interventions are limited to surgical repair to prevent catastrophic rupture. Here, we report the development of injectable supramolecular nanofibers using peptide amphiphile molecules designed to localize to AAA by targeting fragmented elastin, matrix metalloproteinase 2 (MMP-2), and membrane type 1 matrix metalloproteinase. We designed four targeting peptide sequences from X-ray crystallographic data and incorporated them into PA molecules via solid phase peptide synthesis. After coassembling targeted and diluent PAs at different molar ratios, we assessed their ability to form nanofibers using transmission electron microscopy and to localize to AAA in male and female Sprague-Dawley rats using light sheet fluorescence microscopy. We found that three formulations of the PA nanofibers were able to localize to AAA tissue, but the MMP-2 targeting PA substantially outperformed the other nanofibers. Additionally, we demonstrated that the MMP-2 targeting PA nanofibers had an optimal dose of 5 mg (∼12 mg/kg). Our results show that there was not a significant difference in targeting between male and female Sprague-Dawley rats. Given the ability of the MMP-2 targeting PA nanofiber to localize to AAA tissue, future studies will investigate potential diagnostic and targeted drug delivery applications for AAA.


Asunto(s)
Aneurisma de la Aorta Abdominal , Nanofibras , Ratas , Animales , Masculino , Femenino , Metaloproteinasa 2 de la Matriz/metabolismo , Aneurisma de la Aorta Abdominal/tratamiento farmacológico , Elastina , Nanofibras/química , Ratas Sprague-Dawley , Péptidos/metabolismo , Aorta Abdominal/metabolismo
4.
ACS Bio Med Chem Au ; 2(2): 140-149, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35480227

RESUMEN

Extracellular vesicles (EVs), or exosomes, play a pivotal role in tumor growth and metastasis, such as in the case of Kaposi Sarcoma. By loading tumor-derived EVs with chemotherapeutic drugs, we noted that their pro-tumor/pro-angiogenic phenotype was converted into an anti-tumor phenotype in vivo. Drug concentration in EVs was significantly higher than in clinically approved liposome formulation, as retention was facilitated by the presence of miRNAs inside the natural EVs. This demonstrates a new mechanism by which to increase the payload capacity of nanoparticles. By exploiting the targeting preferences of tumor-derived EVs, chemotherapeutics can be directed to specifically poison the cells and the microenvironment that enables metastasis.

5.
Atmos Pollut Res ; 11(9): 1481-1486, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33100835

RESUMEN

Piston powered aircraft burning leaded gasoline contribute ~70% of the lead in the atmosphere in the US. The physical size, composition, and structure of aircraft exhaust particles containing lead dibromide are poorly understood and heretofore have not been examined directly by electron microscopy (EM), in particular when captured from an aircraft in flight. To accomplish this, exhaust samples were trapped on EM supports within 10-15 ms of exiting the aircraft exhaust pipe. High angle annular detector dark field scanning EM revealed irregular particles with a mean diameter of 13 nm consisting of a 4 nm microcrystal of lead dibromide surrounded by a halo of hydrocarbons. In contrast, exhaust particles from an automobile burning leaded fuel averaged 35 nm in diameter and contained 5-10, 4 nm lead beads. Of significant concern, the smaller aircraft particles could penetrate mucosal barriers in the lung and be readily taken up by epithelial cells.

6.
Proc Natl Acad Sci U S A ; 117(25): 14127-14138, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32522879

RESUMEN

Xeroderma pigmentosum group G (XPG) protein is both a functional partner in multiple DNA damage responses (DDR) and a pathway coordinator and structure-specific endonuclease in nucleotide excision repair (NER). Different mutations in the XPG gene ERCC5 lead to either of two distinct human diseases: Cancer-prone xeroderma pigmentosum (XP-G) or the fatal neurodevelopmental disorder Cockayne syndrome (XP-G/CS). To address the enigmatic structural mechanism for these differing disease phenotypes and for XPG's role in multiple DDRs, here we determined the crystal structure of human XPG catalytic domain (XPGcat), revealing XPG-specific features for its activities and regulation. Furthermore, XPG DNA binding elements conserved with FEN1 superfamily members enable insights on DNA interactions. Notably, all but one of the known pathogenic point mutations map to XPGcat, and both XP-G and XP-G/CS mutations destabilize XPG and reduce its cellular protein levels. Mapping the distinct mutation classes provides structure-based predictions for disease phenotypes: Residues mutated in XP-G are positioned to reduce local stability and NER activity, whereas residues mutated in XP-G/CS have implied long-range structural defects that would likely disrupt stability of the whole protein, and thus interfere with its functional interactions. Combined data from crystallography, biochemistry, small angle X-ray scattering, and electron microscopy unveil an XPG homodimer that binds, unstacks, and sculpts duplex DNA at internal unpaired regions (bubbles) into strongly bent structures, and suggest how XPG complexes may bind both NER bubble junctions and replication forks. Collective results support XPG scaffolding and DNA sculpting functions in multiple DDR processes to maintain genome stability.


Asunto(s)
Síndrome de Cockayne/genética , Proteínas de Unión al ADN/química , Endonucleasas/química , Proteínas Nucleares/química , Mutación Puntual , Factores de Transcripción/química , Xerodermia Pigmentosa/genética , Sitios de Unión , Secuencia Conservada , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo , Estabilidad de Enzimas , Humanos , Simulación de Dinámica Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenotipo , Unión Proteica , Pliegue de Proteína , Multimerización de Proteína , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Sci Rep ; 10(1): 5575, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32221313

RESUMEN

Formaldehyde (FA) is a simple biological aldehyde that is produced inside cells by several processes such as demethylation of DNA and proteins, amino acid metabolism, lipid peroxidation and one carbon metabolism (1-C). Although accumulation of excess FA in cells is known to be cytotoxic, it is unknown if an increase in FA level might be associated with mitochondrial dysfunction. We choose to use primary human fibroblasts cells in culture (foreskin, FSK) as a physiological model to gain insight into whether an increase in the level of FA might affect cellular physiology, especially with regard to the mitochondrial compartment. FSK cells were exposed to increasing concentrations of FA, and different cellular parameters were studied. Elevation in intracellular FA level was achieved and was found to be cytotoxic by virtue of both apoptosis and necrosis and was accompanied by both G2/M arrest and reduction in the time spent in S phase. A gene expression assessment by microarray analysis revealed FA affected FSK cells by altering expression of many genes including genes involved in mitochondrial function and electron transport. We were surprised to observe increased DNA double-strand breaks (DSBs) in mitochondria after exposure to FA, as revealed by accumulation of γH2A.X and 53BP1 at mitochondrial DNA foci. This was associated with mitochondrial structural rearrangements, loss of mitochondrial membrane potential and activation of mitophagy. Collectively, these results indicate that an increase in the cellular level of FA can trigger mitochondrial DNA double-strand breaks and dysfunction.


Asunto(s)
Daño del ADN/genética , Fibroblastos/metabolismo , Formaldehído/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Apoptosis/genética , Ciclo Celular/genética , Línea Celular , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , ADN Mitocondrial/genética , Humanos , Potencial de la Membrana Mitocondrial/genética , Especies Reactivas de Oxígeno/metabolismo
8.
PLoS Pathog ; 15(2): e1007536, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30716130

RESUMEN

Extracellular signaling is a mechanism that higher eukaryotes have evolved to facilitate organismal homeostasis. Recent years have seen an emerging interest in the role of secreted microvesicles, termed extracellular vesicles (EV) or exosomes in this signaling network. EV contents can be modified by the cell in response to stimuli, allowing them to relay information to neighboring cells, influencing their physiology. Here we show that the tumor virus Kaposi's Sarcoma-associated herpesvirus (KSHV) hijacks this signaling pathway to induce cell proliferation, migration, and transcriptome reprogramming in cells not infected with the virus. KSHV-EV activates the canonical MEK/ERK pathway, while not alerting innate immune regulators, allowing the virus to exert these changes without cellular pathogen recognition. Collectively, we propose that KSHV establishes a niche favorable for viral spread and cell transformation through cell-derived vesicles, all while avoiding detection.


Asunto(s)
Reprogramación Celular/fisiología , Vesículas Extracelulares/fisiología , Herpesvirus Humano 8/metabolismo , Movimiento Celular , Proliferación Celular , Transformación Celular Neoplásica/metabolismo , Reprogramación Celular/genética , Células Endoteliales/fisiología , Herpesvirus Humano 8/genética , Interacciones Huésped-Patógeno , Células Endoteliales de la Vena Umbilical Humana , Humanos , Linfoma/genética , Linfoma/metabolismo , Sarcoma de Kaposi/metabolismo , Sarcoma de Kaposi/virología , Transducción de Señal , Transcriptoma/genética , Proteínas Virales , Latencia del Virus
9.
Proc Natl Acad Sci U S A ; 115(18): 4661-4665, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29666246

RESUMEN

Aberrant accumulation of misfolded Cu, Zn superoxide dismutase (SOD1) is a hallmark of SOD1-associated amyotrophic lateral sclerosis (ALS), an invariably fatal neurodegenerative disease. While recent discovery of nonnative trimeric SOD1-associated neurotoxicity has suggested a potential pathway for motor neuron impairment, it is yet unknown whether large, insoluble aggregates are cytotoxic. Here we designed SOD1 mutations that specifically stabilize either the fibrillar form or the trimeric state of SOD1. The designed mutants display elevated populations of fibrils or trimers correspondingly, as demonstrated by gel filtration chromatography and electron microscopy. The trimer-stabilizing mutant, G147P, promoted cell death, even more potently in comparison with the aggressive ALS-associated mutants A4V and G93A. In contrast, the fibril-stabilizing mutants, N53I and D101I, positively impacted the survival of motor neuron-like cells. Hence, we conclude the SOD1 oligomer and not the mature form of aggregated fibril is critical for the neurotoxic effects in the model of ALS. The formation of large aggregates is in competition with trimer formation, suggesting that aggregation may be a protective mechanism against formation of toxic oligomeric intermediates.


Asunto(s)
Esclerosis Amiotrófica Lateral/enzimología , Modelos Biológicos , Agregación Patológica de Proteínas/enzimología , Superóxido Dismutasa-1/metabolismo , Superóxido Dismutasa/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Línea Celular Tumoral , Supervivencia Celular , Humanos , Agregación Patológica de Proteínas/genética , Superóxido Dismutasa/genética , Superóxido Dismutasa-1/genética
10.
mBio ; 9(1)2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29437924

RESUMEN

Extracellular vesicles (EVs) or exosomes have been implicated in the pathophysiology of infections and cancer. The negative regulatory factor (Nef) encoded by simian immunodeficiency virus (SIV) and human immunodeficiency virus (HIV) plays a critical role in the progression to AIDS and impairs endosomal trafficking. Whether HIV-1 Nef can be loaded into EVs has been the subject of controversy, and nothing is known about the connection between SIV Nef and EVs. We find that both SIV and HIV-1 Nef proteins are present in affinity-purified EVs derived from cultured cells, as well as in EVs from SIV-infected macaques. Nef-positive EVs were functional, i.e., capable of membrane fusion and depositing their content into recipient cells. The EVs were able to transfer Nef into recipient cells. This suggests that Nef readily enters the exosome biogenesis pathway, whereas HIV virions are assembled at the plasma membrane. It suggests a novel mechanism by which lentiviruses can influence uninfected and uninfectable, i.e., CD4-negative, cells.IMPORTANCE Extracellular vesicles (EVs) transfer biologically active materials from one cell to another, either within the adjacent microenvironment or further removed. EVs also package viral RNAs, microRNAs, and proteins, which contributes to the pathophysiology of infection. In this report, we show that both human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) incorporate the virus-encoded Nef protein into EVs, including EVs circulating in the blood of SIV-infected macaques and that this presents a novel mechanism of Nef transfer to naive and even otherwise non-infectable cells. Nef is dispensable for viral replication but essential for AIDS progression in vivo Demonstrating that Nef incorporation into EVs is conserved across species implicates EVs as novel mediators of the pathophysiology of HIV. It could help explain the biological effects that HIV has on CD4-negative cells and EVs could become biomarkers of disease progression.


Asunto(s)
Exosomas/metabolismo , Productos del Gen nef/metabolismo , VIH-1/fisiología , Virus de la Inmunodeficiencia de los Simios/fisiología , Animales , Células Cultivadas , Humanos , Macaca , Transporte de Proteínas
11.
Mol Cell ; 69(1): 9-23.e6, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29290614

RESUMEN

How mtDNA replication is terminated and the newly formed genomes are separated remain unknown. We here demonstrate that the mitochondrial isoform of topoisomerase 3α (Top3α) fulfills this function, acting independently of its nuclear role as a component of the Holliday junction-resolving BLM-Top3α-RMI1-RMI2 (BTR) complex. Our data indicate that mtDNA replication termination occurs via a hemicatenane formed at the origin of H-strand replication and that Top3α is essential for resolving this structure. Decatenation is a prerequisite for separation of the segregating unit of mtDNA, the nucleoid, within the mitochondrial network. The importance of this process is highlighted in a patient with mitochondrial disease caused by biallelic pathogenic variants in TOP3A, characterized by muscle-restricted mtDNA deletions and chronic progressive external ophthalmoplegia (CPEO) plus syndrome. Our work establishes Top3α as an essential component of the mtDNA replication machinery and as the first component of the mtDNA separation machinery.


Asunto(s)
Segregación Cromosómica/genética , Replicación del ADN/genética , ADN-Topoisomerasas de Tipo I/metabolismo , ADN Mitocondrial/biosíntesis , Dinámicas Mitocondriales/genética , Línea Celular Tumoral , ADN Mitocondrial/genética , Células HeLa , Humanos , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Oftalmoplejía Externa Progresiva Crónica/genética
12.
JCI Insight ; 2(6): e89752, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28352653

RESUMEN

In cystic fibrosis (CF), airway mucus becomes thick and viscous, and its clearance from the airways is impaired. The gel-forming mucins undergo an ordered "unpacking/maturation" process after granular release that requires an optimum postsecretory environment, including hydration and pH. We hypothesized that this unpacking process is compromised in the CF lung due to abnormal transepithelial fluid transport that reduces airway surface hydration and alters ionic composition. Using human tracheobronchial epithelial cells derived from non-CF and CF donors and mucus samples from human subjects and domestic pigs, we investigated the process of postsecretory mucin unfolding/maturation, how these processes are defective in CF airways, and the probable mechanism underlying defective unfolding. First, we found that mucins released into a normal lung environment transform from a compact granular form to a linear form. Second, we demonstrated that this maturation process is defective in the CF airway environment. Finally, we demonstrated that independent of HCO3- and pH levels, airway surface dehydration was the major determinant of this abnormal unfolding process. This defective unfolding/maturation process after granular release suggests that the CF extracellular environment is ion/water depleted and likely contributes to abnormal mucus properties in CF airways prior to infection and inflammation.


Asunto(s)
Bronquios/metabolismo , Fibrosis Quística/metabolismo , Mucina 5B/metabolismo , Tráquea/metabolismo , Amilorida/análogos & derivados , Amilorida/farmacología , Animales , Bronquios/efectos de los fármacos , Bronquios/patología , Bumetanida/farmacología , Células Cultivadas , Humanos , Técnicas In Vitro , Porcinos , Tráquea/efectos de los fármacos , Tráquea/patología
13.
Cell Rep ; 11(11): 1749-59, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-26051933

RESUMEN

MicroDNAs are <400-base extrachromosomal circles found in mammalian cells. Tens of thousands of microDNAs have been found in all tissue types, including sperm. MicroDNAs arise preferentially from areas with high gene density, GC content, and exon density from promoters with activating chromatin modifications and in sperm from the 5'-UTR of full-length LINE-1 elements, but are depleted from lamin-associated heterochromatin. Analysis of microDNAs from a set of human cancer cell lines revealed lineage-specific patterns of microDNA origins. A survey of microDNAs from chicken cells defective in various DNA repair proteins reveals that homologous recombination and non-homologous end joining repair pathways are not required for microDNA production. Deletion of the MSH3 DNA mismatch repair protein results in a significant decrease in microDNA abundance, specifically from non-CpG genomic regions. Thus, microDNAs arise as part of normal cellular physiology­either from DNA breaks associated with RNA metabolism or from replication slippage followed by mismatch repair.


Asunto(s)
Reparación de la Incompatibilidad de ADN , ADN Circular , Transcripción Genética , Animales , Composición de Base , Línea Celular Tumoral , Pollos , Cromatina/genética , Islas de CpG , Humanos , Elementos de Nucleótido Esparcido Largo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína 3 Homóloga de MutS , Proteínas/genética , Proteínas/metabolismo
14.
Proc Natl Acad Sci U S A ; 110(46): 18472-7, 2013 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-24187148

RESUMEN

A problem in understanding eukaryotic DNA mismatch repair (MMR) mechanisms is linking insights into MMR mechanisms from genetics and cell-biology studies with those from biochemical studies of MMR proteins and reconstituted MMR reactions. This type of analysis has proven difficult because reconstitution approaches have been most successful for human MMR whereas analysis of MMR in vivo has been most advanced in the yeast Saccharomyces cerevisiae. Here, we describe the reconstitution of MMR reactions using purified S. cerevisiae proteins and mispair-containing DNA substrates. A mixture of MutS homolog 2 (Msh2)-MutS homolog 6, Exonuclease 1, replication protein A, replication factor C-Δ1N, proliferating cell nuclear antigen and DNA polymerase δ was found to repair substrates containing TG, CC, +1 (+T), +2 (+GC), and +4 (+ACGA) mispairs and either a 5' or 3' strand interruption with different efficiencies. The Msh2-MutS homolog 3 mispair recognition protein could substitute for the Msh2-Msh6 mispair recognition protein and showed a different specificity of repair of the different mispairs whereas addition of MutL homolog 1-postmeiotic segregation 1 had no affect on MMR. Repair was catalytic, with as many as 11 substrates repaired per molecule of Exo1. Repair of the substrates containing either a 5' or 3' strand interruption occurred by mispair binding-dependent 5' excision and subsequent resynthesis with excision tracts of up to ~2.9 kb occurring during the repair of the substrate with a 3' strand interruption. The availability of this reconstituted MMR reaction now makes possible detailed biochemical studies of the wealth of mutations identified that affect S. cerevisiae MMR.


Asunto(s)
Reparación de la Incompatibilidad de ADN/genética , ADN de Hongos/metabolismo , Inestabilidad Genómica/genética , Complejos Multiproteicos/metabolismo , Proteína 2 Homóloga a MutS/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Catálisis , ADN Polimerasa III/metabolismo , Cartilla de ADN/genética , ADN de Hongos/genética , Exodesoxirribonucleasas/metabolismo , Microscopía Electrónica de Transmisión , Complejos Multiproteicos/genética , Proteína 2 Homóloga a MutS/genética , Reacción en Cadena de la Polimerasa , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteína de Replicación A/metabolismo
15.
J Biol Chem ; 288(41): 29724-35, 2013 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-24005675

RESUMEN

In the 1960s, I developed methods for directly visualizing DNA and DNA-protein complexes using an electron microscope. This made it possible to examine the shape of DNA and to visualize proteins as they fold and loop DNA. Early applications included the first visualization of true nucleosomes and linkers and the demonstration that repeating tracts of adenines can cause a curvature in DNA. The binding of DNA repair proteins, including p53 and BRCA2, has been visualized at three- and four-way junctions in DNA. The trombone model of DNA replication was directly verified, and the looping of DNA at telomeres was discovered.


Asunto(s)
Proteínas de Unión al ADN/ultraestructura , ADN/ultraestructura , Microscopía Electrónica/métodos , Nucleosomas/ultraestructura , Proteína BRCA2/metabolismo , Proteína BRCA2/ultraestructura , ADN/química , ADN/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Conformación de Ácido Nucleico , Nucleosomas/genética , Nucleosomas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/ultraestructura
16.
Proc Natl Acad Sci U S A ; 110(31): E2925-33, 2013 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-23818640

RESUMEN

The human gamma herpesviruses, Kaposi sarcoma-associated virus (KSHV) and EBV, are associated with multiple cancers. Recent evidence suggests that EBV and possibly other viruses can manipulate the tumor microenvironment through the secretion of specific viral and cellular components into exosomes, small endocytically derived vesicles that are released from cells. Exosomes produced by EBV-infected nasopharyngeal carcinoma cells contain high levels of the viral oncogene latent membrane protein 1 and viral microRNAs that activate critical signaling pathways in recipient cells. In this study, to determine the effects of EBV and KSHV on exosome content, quantitative proteomics techniques were performed on exosomes purified from 11 B-cell lines that are uninfected, infected with EBV or with KSHV, or infected with both viruses. Using mass spectrometry, 871 proteins were identified, of which ∼360 were unique to the viral exosomes. Analysis by 2D difference gel electrophoresis and spectral counting identified multiple significant changes compared with the uninfected control cells and between viral groups. These data predict that both EBV and KSHV exosomes likely modulate cell death and survival, ribosome function, protein synthesis, and mammalian target of rapamycin signaling. Distinct viral-specific effects on exosomes suggest that KSHV exosomes would affect cellular metabolism, whereas EBV exosomes would activate cellular signaling mediated through integrins, actin, IFN, and NFκB. The changes in exosome content identified in this study suggest ways that these oncogenic viruses modulate the tumor microenvironment and may provide diagnostic markers specific for EBV and KSHV associated malignancies.


Asunto(s)
Linfocitos B/metabolismo , Infecciones por Virus de Epstein-Barr/metabolismo , Exosomas/metabolismo , Herpesvirus Humano 4/metabolismo , Herpesvirus Humano 8/metabolismo , Proteínas de Neoplasias/metabolismo , Sarcoma de Kaposi/metabolismo , Linfocitos B/patología , Muerte Celular , Línea Celular Transformada , Línea Celular Tumoral , Supervivencia Celular , Infecciones por Virus de Epstein-Barr/diagnóstico , Infecciones por Virus de Epstein-Barr/patología , Infecciones por Virus de Epstein-Barr/virología , Exosomas/patología , Exosomas/virología , Humanos , Biosíntesis de Proteínas , Sarcoma de Kaposi/diagnóstico , Sarcoma de Kaposi/patología , Sarcoma de Kaposi/virología , Transducción de Señal
17.
J Virol ; 87(6): 2994-3002, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23269804

RESUMEN

We describe biophysical and ultrastructural differences in genome release from adeno-associated virus (AAV) capsids packaging wild-type DNA, recombinant single-stranded DNA (ssDNA), or dimeric, self-complementary DNA (scDNA) genomes. Atomic force microscopy and electron microscopy (EM) revealed that AAV particles release packaged genomes and undergo marked changes in capsid morphology upon heating in physiological buffer (pH 7.2). When different AAV capsids packaging ss/scDNA varying in length from 72 to 123% of wild-type DNA (3.4 to 5.8 kb) were incrementally heated, the proportion of uncoated AAV capsids decreased with genome length as observed by EM. Genome release was further characterized by a fluorimetric assay, which demonstrated that acidic pH and high osmotic pressure suppress genome release from AAV particles. In addition, fluorimetric analysis corroborated an inverse correlation between packaged genome length and the temperature needed to induce uncoating. Surprisingly, scAAV vectors required significantly higher temperatures to uncoat than their ssDNA-packaging counterparts. However, externalization of VP1 N termini appears to be unaffected by packaged genome length or self-complementarity. Further analysis by tungsten-shadowing EM revealed striking differences in the morphologies of ssDNA and scDNA genomes upon release from intact capsids. Computational modeling and molecular dynamics simulations suggest that the unusual thermal stability of scAAV vectors might arise from partial base pairing and optimal organization of packaged scDNA. Our work further defines the biophysical mechanisms underlying adeno-associated virus uncoating and genome release.


Asunto(s)
Cápside/ultraestructura , ADN Viral/metabolismo , Dependovirus/fisiología , Dependovirus/ultraestructura , Desencapsidación Viral , Cápside/efectos de la radiación , ADN Viral/genética , Dependovirus/efectos de la radiación , Fluorometría , Calor , Concentración de Iones de Hidrógeno , Microscopía de Fuerza Atómica , Microscopía Electrónica , Presión Osmótica
18.
Sci Rep ; 2: 640, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22962634

RESUMEN

SIRT1, a NAD(+)-dependent protein deacetylase, is an important regulator in cellular stress response and energy metabolism. While the list of SIRT1 substrates is growing, how the activity of SIRT1 is regulated remains unclear. We have previously reported that SIRT1 is activated by phosphorylation at a conserved Thr522 residue in response to environmental stress. Here we demonstrate that phosphorylation of Thr522 activates SIRT1 through modulation of its oligomeric status. We provide evidence that nonphosphorylated SIRT1 protein is aggregation-prone in vitro and in cultured cells. Conversely, phosphorylated SIRT1 protein is largely in the monomeric state and more active. Our findings reveal a novel mechanism for environmental regulation of SIRT1 activity, which may have important implications in understanding the molecular mechanism of stress response, cell survival, and aging.


Asunto(s)
Sirtuina 1/química , Animales , Supervivencia Celular , Activación Enzimática , Células HEK293 , Respuesta al Choque Térmico , Humanos , Ratones , Fosforilación , Multimerización de Proteína , Procesamiento Proteico-Postraduccional , Estructura Cuaternaria de Proteína , Sirtuina 1/metabolismo , Sirtuina 1/ultraestructura , Proteína p53 Supresora de Tumor/química
19.
J Biol Chem ; 287(38): 32206-15, 2012 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-22815473

RESUMEN

Double-stranded regions of the telomeres are recognized by proteins containing Myb-like domains conferring specificity toward telomeric repeats. Although biochemical and structural studies revealed basic molecular principles involved in DNA binding, relatively little is known about evolutionary pathways leading to various types of Myb domain-containing proteins in divergent species of eukaryotes. Recently we identified a novel type of telomere-binding protein YlTay1p from the yeast Yarrowia lipolytica containing two Myb domains (Myb1, Myb2) very similar to the Myb domain of mammalian TRF1 and TRF2. In this study we prepared mutant versions of YlTay1p lacking Myb1, Myb2, or both Myb domains and found that YlTay1p carrying either Myb domain exhibits preferential affinity to both Y. lipolytica (GGGTTAGTCA)(n) and human (TTAGGG)(n) telomeric sequences. Quantitative measurements of the protein binding to telomeric DNA revealed that the presence of both Myb domains is required for a high affinity of YlTay1p to either telomeric repeat. Additionally, we performed detailed thermodynamic analysis of the YlTay1p interaction with its cognate telomeric DNA, which is to our knowledge the first energetic description of a full-length telomeric-protein binding to DNA. Interestingly, when compared with human TRF1 and TRF2 proteins, YlTay1p exhibited higher affinity not only for Y. lipolytica telomeres but also for human telomeric sequences. The duplication of the Myb domain region in YlTay1p thus produces a synergistic effect on its affinity toward the cognate telomeric sequence, alleviating the need for homodimerization observed in TRF-like proteins possessing a single Myb domain.


Asunto(s)
Proteínas Fúngicas/química , Proteínas Proto-Oncogénicas c-myb/química , Proteína 1 de Unión a Repeticiones Teloméricas/química , Yarrowia/metabolismo , Secuencia de Aminoácidos , Anisotropía , Biofisica/métodos , Calorimetría/métodos , Mapeo Cromosómico , Evolución Molecular , Proteínas Fúngicas/metabolismo , Humanos , Cinética , Microscopía Fluorescente/métodos , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Telómero/ultraestructura , Termodinámica
20.
Science ; 336(6077): 82-6, 2012 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-22403181

RESUMEN

We have identified tens of thousands of short extrachromosomal circular DNAs (microDNA) in mouse tissues as well as mouse and human cell lines. These microDNAs are 200 to 400 base pairs long, are derived from unique nonrepetitive sequence, and are enriched in the 5'-untranslated regions of genes, exons, and CpG islands. Chromosomal loci that are enriched sources of microDNA in the adult brain are somatically mosaic for microdeletions that appear to arise from the excision of microDNAs. Germline microdeletions identified by the "Thousand Genomes" project may also arise from the excision of microDNAs in the germline lineage. We have thus identified a previously unknown DNA entity in mammalian cells and provide evidence that their generation leaves behind deletions in different genomic loci.


Asunto(s)
Encéfalo/embriología , Deleción Cromosómica , Cromosomas Humanos/genética , Cromosomas de los Mamíferos/genética , ADN Circular , Regiones no Traducidas 5' , Animales , Emparejamiento Base , Secuencia de Bases , Química Encefálica , Línea Celular , Línea Celular Tumoral , Islas de CpG , Replicación del ADN , ADN Circular/análisis , ADN Circular/química , ADN Circular/aislamiento & purificación , ADN Circular/metabolismo , Exones , Células Germinativas/química , Corazón/embriología , Humanos , Hígado/química , Hígado/embriología , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Secuencias Repetitivas de Ácidos Nucleicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA