Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Clin Med ; 11(2)2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35054041

RESUMEN

Markers of JC polyomavirus (JCPyV) activity can be used to evaluate the risk of progressive multifocal leukoencephalopathy (PML) in treated multiple sclerosis (MS) patients. The presence of JCPyV DNA and microRNA (miR-J1-5p), the anti-JCV index and the sequence of the non-coding control region (NCCR) in urine and plasma were determined in 42 MS subjects before treatment (T0), 6 months (T6) and 12 months (T12) after natalizumab, ocrelizumab, fingolimod or dimethyl-fumarate administration and in 25 healthy controls (HC). The number of MS patients with viruria increased from 43% at T0 to 100% at T12, whereas it remained similar for the HC group (35-40%). Viremia first occurred 6 months after treatment in MS patients and increased after 12 months, whereas it was absent in HC. The viral load in urine and plasma from the MS cohort increased over time, mostly pronounced in natalizumab-treated patients, whereas it persisted in HC. The archetypal NCCR was detected in all positive urine, whereas mutations were observed in plasma-derived NCCRs resulting in a more neurotropic variant. The prevalence and miR-J1-5p copy number in MS urine and plasma dropped after treatment, whereas they remained similar in HC specimens. Viruria and miR-J1-5p expression did not correlate with anti-JCV index. In conclusion, analyzing JCPyV DNA and miR-J1-5p levels may allow monitoring JCPyV activity and predicting MS patients at risk of developing PML.

2.
Viruses ; 13(9)2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34578264

RESUMEN

BACKGROUND: Progressive multifocal leukoencephalopathy (PML) caused by the JC virus is the main limitation to the use of disease modifying therapies for treatment of multiple sclerosis (MS). METHODS: To assess the PML risk in course of ocrelizumab, urine and blood samples were collected from 42 MS patients at baseline (T0), at 6 (T2) and 12 months (T4) from the beginning of therapy. After JCPyV-DNA extraction, a quantitative-PCR (Q-PCR) was performed. Moreover, assessment of JCV-serostatus was obtained and arrangements' analysis of non-coding control region (NCCR) and of viral capsid protein 1 (VP1) was carried out. RESULTS: Q-PCR revealed JCPyV-DNA in urine at all selected time points, while JCPyV-DNA was detected in plasma at T4. From T0 to T4, JC viral load in urine was detected, increased in two logarithms and, significantly higher, compared to viremia. NCCR from urine was archetypal. Plasmatic NCCR displayed deletion, duplication, and point mutations. VP1 showed the S269F substitution involving the receptor-binding region. Anti-JCV index and IgM titer were found to statistically decrease during ocrelizumab treatment. CONCLUSIONS: Ocrelizumab in JCPyV-DNA positive patients is safe and did not determine PML cases. Combined monitoring of ocrelizumab's effects on JCPyV pathogenicity and on host immunity might offer a complete insight towards predicting PML risk.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Factores Inmunológicos/uso terapéutico , Virus JC/efectos de los fármacos , Leucoencefalopatía Multifocal Progresiva/etiología , Esclerosis Múltiple/tratamiento farmacológico , Carga Viral/efectos de los fármacos , Adulto , Proteínas de la Cápside/genética , ADN Viral/genética , Femenino , Humanos , Virus JC/clasificación , Virus JC/genética , Virus JC/patogenicidad , Leucoencefalopatía Multifocal Progresiva/sangre , Leucoencefalopatía Multifocal Progresiva/orina , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/sangre , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/orina , Filogenia , Medición de Riesgo , Viremia/tratamiento farmacológico
3.
Methods Enzymol ; 632: 283-294, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32000901

RESUMEN

Regulatory T cells (Tregs), expressing the transcription factor Foxp3, are defined as immunosuppressive cells able to modulate a variety of immune cells in order to avoid unwanted and excessive immune responses; however, in the tumor context, Treg function contribute to inhibit immune surveillance, thus promoting cancer progression. In tumor microenvironment, where the availability of metabolic resources is strongly limited, Tregs are expanded and may exploit different metabolic routes to achieve a metabolic advantage, prevailing over effector cells. In this context an important role of lipid metabolism has been described thanks to the possibility to evaluate the intracellular lipid content selectively in tumor-infiltrating Tregs (TUM-Tregs). Taking into account the heterogeneous and complex build of tumor mass, we set-up a combined protocol that optimizes tumor-infiltrating lymphocytes (TIL) extraction from the tissue through a Percoll density gradient, and assesses ex vivo the lipid load in whole TUM-Treg population, evaluating by flow cytometry the incorporation of an intensely fluorescent lipophilic fluorophore able to specifically stain neutral lipids. This method provides an important advantage compared to the traditional technique based on microscopy, whose lipid level evaluation is limited to a tissue section, and hence may not be representative of the entire population.


Asunto(s)
Citometría de Flujo/métodos , Lípidos/análisis , Linfocitos Infiltrantes de Tumor/química , Animales , Compuestos de Boro/análisis , Técnicas de Cultivo de Célula/métodos , Línea Celular Tumoral , Colorantes Fluorescentes/análisis , Metabolismo de los Lípidos , Linfocitos Infiltrantes de Tumor/metabolismo , Linfocitos Infiltrantes de Tumor/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Neoplasias/química , Neoplasias/metabolismo , Neoplasias/patología
4.
Neuroscience ; 439: 241-254, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31738884

RESUMEN

Dimethyl fumarate (DMF) is the only available approved drug for first line treatment of multiple sclerosis (MS), a lethal condition impairing central nervous system (CNS). To date, however, little is known of its mechanisms of action. Only recently, it has been suggested that DMF exerts neuroprotective effects acting as an immunomodulator and that it may alter the activation state of microglia cells, crucial in MS pathogenesis. However, DMF effects on microglia functions are still not well determined. Here, we examine the effects of DMF treatment on microglia functional activities, as phenotype, morphology, processes motility and rearrangement, migration, ATP response and iron uptake in mouse primary microglia culture and acute hippocampal slices. We found that DMF treatment reduces microglia motility, downregulating functional response to ATP, increases ferritin uptake and pushes microglia towards an anti-inflammatory phenotype, thus reducing its proinflammatory reactivity in response to tissue damage. These results highlight the effects of this compound on microglia functions and provide new insights on the mechanism of action of DMF in MS treatment.


Asunto(s)
Dimetilfumarato , Preparaciones Farmacéuticas , Animales , Encéfalo , Dimetilfumarato/farmacología , Homeostasis , Inmunosupresores/farmacología , Hierro , Ratones , Microglía
5.
Front Cell Neurosci ; 13: 41, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30853898

RESUMEN

Extracellular-released vesicles (EVs), such as microvesicles (MV) and exosomes (Exo) provide a new type of inter-cellular communication, directly transferring a ready to use box of information, consisting of proteins, lipids and nucleic acids. In the nervous system, EVs participate to neuron-glial cross-talk, a bidirectional communication important to preserve brain homeostasis and, when dysfunctional, involved in several CNS diseases. We investigated whether microglia-derived EVs could be used to transfer a protective phenotype to dysfunctional microglia in the context of a brain tumor. When MV, isolated from microglia stimulated with LPS/IFNγ were brain injected in glioma-bearing mice, we observed a phenotype switch of tumor associated myeloid cells (TAMs) and a reduction of tumor size. Our findings indicate that the MV cargo, which contains upregulated transcripts for several inflammation-related genes, can transfer information in the brain of glioma bearing mice modifying microglial gene expression, reducing neuronal death and glioma invasion, thus promoting the recovery of brain homeostasis.

6.
Sci Rep ; 8(1): 7654, 2018 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-29769580

RESUMEN

Glial cells actively maintain the homeostasis of brain parenchyma, regulating neuronal excitability and preserving the physiological composition of the extracellular milieu. Under pathological conditions, some functions of glial cells could be compromised, exacerbating the neurotoxic processes. We investigated if the homeostatic activities of astrocytes and microglia could be modulated by the voltage-gated K+ channel Kv1.3. To this end we used in vitro and in vivo systems to model cell-to-cell interactions in tumoral conditions, using a specific inhibitor of Kv1.3 channels, 5-(4-phenoxybutoxy) psoralen (PAP-1). We demonstrated that PAP-1 increases astrocytic glutamate uptake, reduces glioma-induced neurotoxicity, and decreases microglial migration and phagocytosis. We also found in a tumor blood brain barrier model that Kv1.3 activity is required for its integrity. The crucial role of Kv1.3 channels as modulators of glial cell activity was confirmed in a mouse model of glioma, where PAP-1 treatment reduces tumor volume only in the presence of active glutamate transporters GLT-1. In the same mouse model, PAP-1 reduces astrogliosis and microglial infiltration. PAP-1 also reduces tumor cell invasion. All these findings point to Kv1.3 channels as potential targets to re-instruct glial cells toward their homeostatic functions, in the context of brain tumors.


Asunto(s)
Astrocitos/patología , Glioma/patología , Homeostasis , Canal de Potasio Kv1.3/metabolismo , Potasio/metabolismo , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Movimiento Celular , Células Cultivadas , Glioma/tratamiento farmacológico , Glioma/metabolismo , Ácido Glutámico/metabolismo , Canal de Potasio Kv1.3/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Bloqueadores de los Canales de Potasio/farmacología
7.
Oncotarget ; 8(18): 29574-29599, 2017 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-28418837

RESUMEN

Glioblastoma cells feature mammalian target of rapamycin (mTOR) up-regulation which relates to a variety of effects such as: lower survival, higher infiltration, high stemness and radio- and chemo-resistance. Recently, it was demonstrated that mTOR may produce a gene shift leading to altered protein expression. Therefore, in the present study we administered different doses of the mTOR inhibitor rapamycin to explore whether the transcription of specific genes are modified. By using a variety of methods we demonstrate that rapamycin stimulates gene transcription related to neuronal differentiation while inhibiting stemness related genes such as nestin. In these experimental conditions, cell phenotype shifts towards a pyramidal neuron-like shape owing long branches. Rapamycin suppressed cell migration when exposed to fetal bovine serum (FBS) while increasing the cell adhesion protein phospho-FAK (pFAK). The present study improves our awareness of basic mechanisms which relate mTOR activity to the biology of glioblastoma cells. These findings apply to a variety of effects which can be induced by mTOR regulation in the brain. In fact, the ability to promote neuronal differentiation might be viewed as a novel therapeutic pathway to approach neuronal regeneration.


Asunto(s)
Antígenos Nucleares/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/genética , Proteínas del Tejido Nervioso/genética , Nestina/genética , Tubulina (Proteína)/genética , Antígenos Nucleares/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Endopeptidasas , Gelatinasas/metabolismo , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Glioblastoma/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Nestina/metabolismo , Serina Endopeptidasas/metabolismo , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Tubulina (Proteína)/metabolismo
8.
J Neurosci ; 37(14): 3926-3939, 2017 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-28292827

RESUMEN

Oleandrin is a glycoside that inhibits the ubiquitous enzyme Na+/K+-ATPase. In addition to its known effects on cardiac muscle, recent in vitro and in vivo evidence highlighted its potential for anticancer properties. Here, we evaluated for the first time the effect of oleandrin on brain tumors. To this aim, mice were transplanted with human or murine glioma and analyzed for tumor progression upon oleandrin treatment. In both systems, oleandrin impaired glioma development, reduced tumor size, and inhibited cell proliferation. We demonstrated that oleandrin does the following: (1) enhances the brain-derived neurotrophic factor (BDNF) level in the brain; (2) reduces both microglia/macrophage infiltration and CD68 immunoreactivity in the tumor mass; (3) decreases astrogliosis in peritumoral area; and (4) reduces glioma cell infiltration in healthy parenchyma. In BDNF-deficient mice (bdnftm1Jae/J) and in glioma cells silenced for TrkB receptor expression, oleandrin was not effective, indicating a crucial role for BDNF in oleandrin's protective and antitumor functions. In addition, we found that oleandrin increases survival of temozolomide-treated mice. These results encourage the development of oleandrin as possible coadjuvant agent in clinical trials of glioma treatment.SIGNIFICANCE STATEMENT In this work, we paved the road for a new therapeutic approach for the treatment of brain tumors, demonstrating the potential of using the cardioactive glycoside oleandrin as a coadjuvant drug to standard chemotherapeutics such as temozolomide. In murine models of glioma, we demonstrated that oleandrin significantly increased mouse survival and reduced tumor growth both directly on tumor cells and indirectly by promoting an antitumor brain microenvironment with a key protective role played by the neurotrophin brain-derived neurotrophic factor.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Cardenólidos/uso terapéutico , Glicósidos Cardíacos/uso terapéutico , Glioma/tratamiento farmacológico , Carga Tumoral/efectos de los fármacos , Animales , Neoplasias Encefálicas/patología , Cardenólidos/farmacología , Glicósidos Cardíacos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Glioma/patología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones SCID , Ratones Transgénicos , Carga Tumoral/fisiología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
9.
Oncotarget ; 7(21): 30781-96, 2016 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-27096953

RESUMEN

Malignant gliomas are among the most frequent and aggressive cerebral tumors, characterized by high proliferative and invasive indexes. Standard therapy for patients, after surgery and radiotherapy, consists of temozolomide (TMZ), a methylating agent that blocks tumor cell proliferation. Currently, there are no therapies aimed at reducing tumor cell invasion. Ion channels are candidate molecular targets involved in glioma cell migration and infiltration into the brain parenchyma. In this paper we demonstrate that: i) blockade of the calcium-activated potassium channel KCa3.1 with TRAM-34 has co-adjuvant effects with TMZ, reducing GL261 glioma cell migration, invasion and colony forming activity, increasing apoptosis, and forcing cells to pass the G2/M cell cycle phase, likely through cdc2 de-phosphorylation; ii) KCa3.1 silencing potentiates the inhibitory effect of TMZ on glioma cell viability; iii) the combination of TMZ/TRAM-34 attenuates the toxic effects of glioma conditioned medium on neuronal cultures, through a microglia dependent mechanism since the effect is abolished by clodronate-induced microglia killing; iv) TMZ/TRAM-34 co-treatment increases the number of apoptotic tumor cells, and the mean survival time in a syngeneic mouse glioma model (C57BL6 mice implanted with GL261 cells); v) TMZ/TRAM-34 co-treatment reduces cell viability of GBM cells and cancer stem cells (CSC) freshly isolated from patients.Taken together, these data suggest a new therapeutic approach for malignant glioma, targeting both glioma cell proliferating and migration, and demonstrate that TMZ/TRAM-34 co-treatment affects both glioma cells and infiltrating microglia, resulting in an overall reduction of tumor cell progression.


Asunto(s)
Antineoplásicos Alquilantes/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Dacarbazina/análogos & derivados , Glioma/tratamiento farmacológico , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/antagonistas & inhibidores , Pirazoles/farmacología , Animales , Apoptosis/efectos de los fármacos , Neoplasias Encefálicas/mortalidad , Proteína Quinasa CDC2/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Dacarbazina/farmacología , Dacarbazina/uso terapéutico , Sinergismo Farmacológico , Quimioterapia Combinada , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Glioma/mortalidad , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/genética , Estimación de Kaplan-Meier , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/mortalidad , Células Madre Neoplásicas/efectos de los fármacos , Fosforilación , Cultivo Primario de Células , Pirazoles/uso terapéutico , Temozolomida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA