Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros











Intervalo de año de publicación
1.
Sci Transl Med ; 15(699): eabo7728, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37285404

RESUMEN

Unlike solid organs, human airway epithelia derive their oxygen from inspired air rather than the vasculature. Many pulmonary diseases are associated with intraluminal airway obstruction caused by aspirated foreign bodies, virus infection, tumors, or mucus plugs intrinsic to airway disease, including cystic fibrosis (CF). Consistent with requirements for luminal O2, airway epithelia surrounding mucus plugs in chronic obstructive pulmonary disease (COPD) lungs are hypoxic. Despite these observations, the effects of chronic hypoxia (CH) on airway epithelial host defense functions relevant to pulmonary disease have not been investigated. Molecular characterization of resected human lungs from individuals with a spectrum of muco-obstructive lung diseases (MOLDs) or COVID-19 identified molecular features of chronic hypoxia, including increased EGLN3 expression, in epithelia lining mucus-obstructed airways. In vitro experiments using cultured chronically hypoxic airway epithelia revealed conversion to a glycolytic metabolic state with maintenance of cellular architecture. Chronically hypoxic airway epithelia unexpectedly exhibited increased MUC5B mucin production and increased transepithelial Na+ and fluid absorption mediated by HIF1α/HIF2α-dependent up-regulation of ß and γENaC (epithelial Na+ channel) subunit expression. The combination of increased Na+ absorption and MUC5B production generated hyperconcentrated mucus predicted to perpetuate obstruction. Single-cell and bulk RNA sequencing analyses of chronically hypoxic cultured airway epithelia revealed transcriptional changes involved in airway wall remodeling, destruction, and angiogenesis. These results were confirmed by RNA-in situ hybridization studies of lungs from individuals with MOLD. Our data suggest that chronic airway epithelial hypoxia may be central to the pathogenesis of persistent mucus accumulation in MOLDs and associated airway wall damage.


Asunto(s)
COVID-19 , Fibrosis Quística , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Pulmón/metabolismo , Moco/metabolismo , Hipoxia/metabolismo
2.
Curr Opin Pharmacol ; 64: 102235, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35576754

RESUMEN

Few human genetic diseases can rely on the availability of as many and as diverse animal models as cystic fibrosis (CF), a multiorgan syndrome caused by functional absence of cystic fibrosis transmembrane regulator (CFTR). The recent development of highly effective CFTR modulator drug therapies simultaneously highlighted the remarkable clinical improvement achievable with these treatments, the lack of therapeutic alternatives for non-responders, and the need to understand the kinetics of disease upon early life/chronic treatment. These advances have rekindled efforts to leverage animal models to address critical knowledge gaps in CF. This article provides a concise overview of the areas of interests for therapeutic intervention in the current CF landscape, focusing on the contributions of in vivo models to understand CF pathogenesis, identify therapeutic windows, and develop novel therapies for all CFTR mutations.


Asunto(s)
Fibrosis Quística , Animales , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Humanos , Modelos Animales , Mutación
3.
Life (Basel) ; 11(5)2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34064654

RESUMEN

Mucociliary clearance (MCC) is a dominant component of pulmonary host defense. In health, the periciliary layer (PCL) is optimally hydrated, thus acting as an efficient lubricant layer over which the mucus layer moves by ciliary force. Airway surface dehydration and production of hyperconcentrated mucus is a common feature of chronic obstructive lung diseases such as cystic fibrosis (CF) and chronic bronchitis (CB). Mucus hydration is driven by electrolyte transport activities, which in turn are regulated by airway epithelial purinergic receptors. The activity of these receptors is controlled by the extracellular concentrations of ATP and its metabolite adenosine. Vesicular and conducted pathways contribute to ATP release from airway epithelial cells. In this study, we review the evidence leading to the identification of major components of these pathways: (a) the vesicular nucleotide transporter VNUT (the product of the SLC17A9 gene), the ATP transporter mediating ATP storage in (and release from) mucin granules and secretory vesicles; and (b) the ATP conduit pannexin 1 expressed in non-mucous airway epithelial cells. We further illustrate that ablation of pannexin 1 reduces, at least in part, airway surface liquid (ASL) volume production, ciliary beating, and MCC rates.

5.
Am J Respir Crit Care Med ; 203(10): 1275-1289, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33321047

RESUMEN

Rationale: Identification of the specific cell types expressing CFTR (cystic fibrosis [CF] transmembrane conductance regulator) is required for precision medicine therapies for CF. However, a full characterization of CFTR expression in normal human airway epithelia is missing. Objectives: To identify the cell types that contribute to CFTR expression and function within the proximal-distal axis of the normal human lung. Methods: Single-cell RNA (scRNA) sequencing (scRNA-seq) was performed on freshly isolated human large and small airway epithelial cells. scRNA in situ hybridization (ISH) and single-cell qRT-PCR were performed for validation. In vitro culture systems correlated CFTR function with cell types. Lentiviruses were used for cell type-specific transduction of wild-type CFTR in CF cells. Measurements and Main Results: scRNA-seq identified secretory cells as dominating CFTR expression in normal human large and, particularly, small airway superficial epithelia, followed by basal cells. Ionocytes expressed the highest CFTR levels but were rare, whereas the expression in ciliated cells was infrequent and low. scRNA ISH and single-cell qRT-PCR confirmed the scRNA-seq findings. CF lungs exhibited distributions of CFTR and ionocytes similar to those of normal control subjects. CFTR mediated Cl- secretion in cultures tracked secretory cell, but not ionocyte, densities. Furthermore, the nucleotide-purinergic regulatory system that controls CFTR-mediated hydration was associated with secretory cells and not with ionocytes. Lentiviral transduction of wild-type CFTR produced CFTR-mediated Cl- secretion in CF airway secretory cells but not in ciliated cells. Conclusions: Secretory cells dominate CFTR expression and function in human airway superficial epithelia. CFTR therapies may need to restore CFTR function to multiple cell types, with a focus on secretory cells.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/metabolismo , Fibrosis Quística/patología , Células Epiteliales/metabolismo , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , Estudios de Casos y Controles , Técnicas de Cultivo de Célula , Humanos
6.
JCI Insight ; 6(1)2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33232302

RESUMEN

Existing animal models of cystic fibrosis (CF) have provided key insights into CF pathogenesis but have been limited by short lifespans, absence of key phenotypes, and/or high maintenance costs. Here, we report the CRISPR/Cas9-mediated generation of CF rabbits, a model with a relatively long lifespan and affordable maintenance and care costs. CF rabbits supplemented solely with oral osmotic laxative had a median survival of approximately 40 days and died of gastrointestinal disease, but therapeutic regimens directed toward restoring gastrointestinal transit extended median survival to approximately 80 days. Surrogate markers of exocrine pancreas disorders were found in CF rabbits with declining health. CFTR expression patterns in WT rabbit airways mimicked humans, with widespread distribution in nasal respiratory and olfactory epithelia, as well as proximal and distal lower airways. CF rabbits exhibited human CF-like abnormalities in the bioelectric properties of the nasal and tracheal epithelia. No spontaneous respiratory disease was detected in young CF rabbits. However, abnormal phenotypes were observed in surviving 1-year-old CF rabbits as compared with WT littermates, and these were especially evident in the nasal respiratory and olfactory epithelium. The CF rabbit model may serve as a useful tool for understanding gut and lung CF pathogenesis and for the practical development of CF therapeutics.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/antagonistas & inhibidores , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/genética , Animales , Sistemas CRISPR-Cas , Fibrosis Quística/patología , Fibrosis Quística/fisiopatología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Modelos Animales de Enfermedad , Femenino , Tracto Gastrointestinal/patología , Tracto Gastrointestinal/fisiopatología , Técnicas de Inactivación de Genes , Humanos , Masculino , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Conejos , Sistema Respiratorio/patología , Sistema Respiratorio/fisiopatología , Distribución Tisular , Transcriptoma
7.
Am J Hum Genet ; 104(2): 229-245, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30665704

RESUMEN

Primary ciliary dyskinesia (PCD) is a genetic disorder in which impaired ciliary function leads to chronic airway disease. Exome sequencing of a PCD subject identified an apparent homozygous frameshift variant, c.887_890delTAAG (p.Val296Glyfs∗13), in exon 5; this frameshift introduces a stop codon in amino acid 308 of the growth arrest-specific protein 2-like 2 (GAS2L2). Further genetic screening of unrelated PCD subjects identified a second proband with a compound heterozygous variant carrying the identical frameshift variant and a large deletion (c.867_∗343+1207del; p.?) starting in exon 5. Both individuals had clinical features of PCD but normal ciliary axoneme structure. In this research, using human nasal cells, mouse models, and X.laevis embryos, we show that GAS2L2 is abundant at the apical surface of ciliated cells, where it localizes with basal bodies, basal feet, rootlets, and actin filaments. Cultured GAS2L2-deficient nasal epithelial cells from one of the affected individuals showed defects in ciliary orientation and had an asynchronous and hyperkinetic (GAS2L2-deficient = 19.8 Hz versus control = 15.8 Hz) ciliary-beat pattern. These results were recapitulated in Gas2l2-/- mouse tracheal epithelial cell (mTEC) cultures and in X. laevis embryos treated with Gas2l2 morpholinos. In mice, the absence of Gas2l2 caused neonatal death, and the conditional deletion of Gas2l2 impaired mucociliary clearance (MCC) and led to mucus accumulation. These results show that a pathogenic variant in GAS2L2 causes a genetic defect in ciliary orientation and impairs MCC and results in PCD.


Asunto(s)
Cilios/patología , Trastornos de la Motilidad Ciliar/genética , Trastornos de la Motilidad Ciliar/fisiopatología , Proteínas de Microfilamentos/deficiencia , Proteínas Asociadas a Microtúbulos/deficiencia , Proteínas de Xenopus/deficiencia , Animales , Trastornos de la Motilidad Ciliar/patología , Modelos Animales de Enfermedad , Exones/genética , Femenino , Eliminación de Gen , Genes Letales , Humanos , Masculino , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/genética , Proteínas Asociadas a Microtúbulos/genética , Fenotipo , Rotación , Xenopus/embriología , Xenopus/genética , Proteínas de Xenopus/genética
8.
Am J Respir Crit Care Med ; 199(2): 171-180, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30212240

RESUMEN

RATIONALE: Airways obstruction with thick, adherent mucus is a pathophysiologic and clinical feature of muco-obstructive respiratory diseases, including chronic obstructive pulmonary disease, asthma, and cystic fibrosis (CF). Mucins, the dominant biopolymer in mucus, organize into complex polymeric networks via the formation of covalent disulfide bonds, which govern the viscoelastic properties of the mucus gel. For decades, inhaled N-acetylcysteine (NAC) has been used as a mucolytic to reduce mucin disulfide bonds with little, if any, therapeutic effects. Improvement of mucolytic therapy requires the identification of NAC deficiencies and the development of compounds that overcome them. OBJECTIVES: Elucidate the pharmacological limitations of NAC and test a novel mucin-reducing agent, P3001, in preclinical settings. METHODS: The study used biochemical (e.g., Western blotting, mass spectrometry) and biophysical assays (e.g., microrheology/macrorheology, spinnability, mucus velocity measurements) to test compound efficacy and toxicity in in vitro and in vivo models and patient sputa. MEASUREMENTS AND MAIN RESULTS: Dithiothreitol and P3001 were directly compared with NAC in vitro and both exhibited superior reducing activities. In vivo, P3001 significantly decreased lung mucus burden in ßENaC-overexpressing mice, whereas NAC did not (n = 6-24 mice per group). In NAC-treated CF subjects (n = 5), aerosolized NAC was rapidly cleared from the lungs and did not alter sputum biophysical properties. In contrast, P3001 acted faster and at lower concentrations than did NAC, and it was more effective than DNase in CF sputum ex vivo. CONCLUSIONS: These results suggest that reducing the viscoelasticity of airway mucus is an achievable therapeutic goal with P3001 class mucolytic agents.


Asunto(s)
Asma/tratamiento farmacológico , Fibrosis Quística/tratamiento farmacológico , Expectorantes/uso terapéutico , Depuración Mucociliar/efectos de los fármacos , Moco/efectos de los fármacos , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Acetilcisteína/uso terapéutico , Animales , Asma/fisiopatología , Fibrosis Quística/fisiopatología , Modelos Animales de Enfermedad , Ditiotreitol/uso terapéutico , Humanos , Técnicas In Vitro , Masculino , Ratones , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología
9.
Am J Respir Cell Mol Biol ; 59(3): 383-396, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29579396

RESUMEN

Understanding how expression of airway secretory mucins MUC5B and MUC5AC is regulated in health and disease is important to elucidating the pathogenesis of mucoobstructive respiratory diseases. The transcription factor SPDEF (sterile α-motif pointed domain epithelial specific transcription factor) is a key regulator of MUC5AC, but its role in regulating MUC5B in health and in mucoobstructive lung diseases is unknown. Characterization of Spdef-deficient mice upper and lower airways demonstrated region-specific, Spdef-dependent regulation of basal Muc5b expression. Neonatal Spdef-deficient mice exhibited reductions in BAL Muc5ac and Muc5b. Adult Spdef-deficient mice partially phenocopied Muc5b-deficient mice as they exhibited reduced Muc5b in nasopharyngeal and airway epithelia but not in olfactory Bowman glands, 75% incidence of nasopharyngeal hair/mucus plugs, and mild bacterial otitis media, without defective mucociliary clearance in the nasopharynx. In contrast, tracheal mucociliary clearance was reduced in Spdef-deficient mice in the absence of lung disease. To evaluate the role of Spdef in the development and persistence of Muc5b-predominant mucoobstructive lung disease, Spdef-deficient mice were crossed with Scnn1b-transgenic (Scnn1b-Tg) mice, which exhibit airway surface dehydration-induced airway mucus obstruction and inflammation. Spdef-deficient Scnn1b-Tg mice exhibited reduced Muc5ac, but not Muc5b, expression and BAL content. Airway mucus obstruction was not decreased in Spdef-deficient Scnn1b-Tg mice, consistent with Muc5b-dominant Scnn1b disease, but increased airway neutrophilia was observed compared with Spdef-sufficient Scnn1b-Tg mice. Collectively, these results indicate that Spdef regulates baseline Muc5b expression in respiratory epithelia but does not contribute to Muc5b regulation in a mouse model of Muc5b-predominant mucus obstruction caused by airway dehydration.


Asunto(s)
Enfermedades Pulmonares/metabolismo , Mucina 5B/metabolismo , Depuración Mucociliar/fisiología , Proteínas Proto-Oncogénicas c-ets/genética , Animales , Canales Epiteliales de Sodio/genética , Enfermedades Pulmonares/genética , Ratones Transgénicos , Mucina 5B/genética
10.
Mucosal Immunol ; 10(2): 395-407, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27435107

RESUMEN

Airway diseases, including cigarette smoke-induced chronic bronchitis, cystic fibrosis, and primary ciliary dyskinesia are associated with decreased mucociliary clearance (MCC). However, it is not known whether a simple reduction in MCC or concentration-dependent mucus adhesion to airway surfaces dominates disease pathogenesis or whether decreasing the concentration of secreted mucins may be therapeutic. To address these questions, Scnn1b-Tg mice, which exhibit airway mucus dehydration/adhesion, were compared and crossed with Muc5b- and Muc5ac-deficient mice. Absence of Muc5b caused a 90% reduction in MCC, whereas Scnn1b-Tg mice exhibited an ∼50% reduction. However, the degree of MCC reduction did not correlate with bronchitic airway pathology, which was observed only in Scnn1b-Tg mice. Ablation of Muc5b significantly reduced the extent of mucus plugging in Scnn1b-Tg mice. However, complete absence of Muc5b in Scnn1b-Tg mice was associated with increased airway inflammation, suggesting that Muc5b is required to maintain immune homeostasis. Loss of Muc5ac had few phenotypic consequences in Scnn1b-Tg mice. These data suggest that: (i) mucus hyperconcentration dominates over MCC reduction alone to produce bronchitic airway pathology; (ii) Muc5b is the dominant contributor to the Scnn1b-Tg phenotype; and (iii) therapies that limit mucin secretion may reduce plugging, but complete Muc5b removal from airway surfaces may be detrimental.


Asunto(s)
Bronquios/fisiología , Bronquitis Crónica/inmunología , Fibrosis Quística/inmunología , Síndrome de Kartagener/inmunología , Mucina 5AC/metabolismo , Mucina 5B/metabolismo , Depuración Mucociliar , Obstrucción de las Vías Aéreas/genética , Animales , Bronquios/patología , Canales Epiteliales de Sodio/genética , Homeostasis , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mucina 5AC/genética , Mucina 5B/genética , Depuración Mucociliar/genética , Fumar/efectos adversos
11.
Nature ; 505(7483): 412-6, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24317696

RESUMEN

Respiratory surfaces are exposed to billions of particulates and pathogens daily. A protective mucus barrier traps and eliminates them through mucociliary clearance (MCC). However, excessive mucus contributes to transient respiratory infections and to the pathogenesis of numerous respiratory diseases. MUC5AC and MUC5B are evolutionarily conserved genes that encode structurally related mucin glycoproteins, the principal macromolecules in airway mucus. Genetic variants are linked to diverse lung diseases, but specific roles for MUC5AC and MUC5B in MCC, and the lasting effects of their inhibition, are unknown. Here we show that mouse Muc5b (but not Muc5ac) is required for MCC, for controlling infections in the airways and middle ear, and for maintaining immune homeostasis in mouse lungs, whereas Muc5ac is dispensable. Muc5b deficiency caused materials to accumulate in upper and lower airways. This defect led to chronic infection by multiple bacterial species, including Staphylococcus aureus, and to inflammation that failed to resolve normally. Apoptotic macrophages accumulated, phagocytosis was impaired, and interleukin-23 (IL-23) production was reduced in Muc5b(-/-) mice. By contrast, in mice that transgenically overexpress Muc5b, macrophage functions improved. Existing dogma defines mucous phenotypes in asthma and chronic obstructive pulmonary disease (COPD) as driven by increased MUC5AC, with MUC5B levels either unaffected or increased in expectorated sputum. However, in many patients, MUC5B production at airway surfaces decreases by as much as 90%. By distinguishing a specific role for Muc5b in MCC, and by determining its impact on bacterial infections and inflammation in mice, our results provide a refined framework for designing targeted therapies to control mucin secretion and restore MCC.


Asunto(s)
Pulmón/inmunología , Mucina 5B/metabolismo , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/metabolismo , Animales , Asma/inmunología , Asma/metabolismo , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/microbiología , Cilios/fisiología , Oído Medio/inmunología , Oído Medio/microbiología , Femenino , Inflamación/patología , Pulmón/metabolismo , Pulmón/microbiología , Macrófagos/inmunología , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Biológicos , Mucina 5AC/deficiencia , Mucina 5AC/metabolismo , Mucina 5B/deficiencia , Mucina 5B/genética , Fagocitosis , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Enfermedad Pulmonar Obstructiva Crónica/microbiología , Staphylococcus aureus/inmunología , Análisis de Supervivencia
12.
Am J Physiol Lung Cell Mol Physiol ; 304(7): L469-80, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23377346

RESUMEN

Airway surface hydration depends on the balance between transepithelial Na(+) absorption and Cl(-) secretion. In adult mice, absence of functional cystic fibrosis transmembrane conductance regulator (Cftr) fails to recapitulate human cystic fibrosis (CF) lung disease. In contrast, overexpression of the epithelial Na(+) channel ß subunit in transgenic mice (ßENaC-Tg) produces unregulated Na(+) hyperabsorption and results in CF-like airway surface dehydration, mucus obstruction, inflammation, and increased neonatal mortality. To investigate whether the combination of airway Na(+) hyperabsorption and absent Cftr-mediated Cl(-) secretion resulted in more severe lung pathology, we generated double-mutant ΔF508 CF/ßENaC-Tg mice. Survival of ΔF508 CF/ßENaC-Tg mice was reduced compared with ßENaC-Tg or ΔF508 CF mice. Absence of functional Cftr did not affect endogenous or transgenic ENaC currents but produced reduced basal components of Cl(-) secretion and tracheal cartilaginous defects in both ΔF508 CF and ΔF508 CF/ßENaC-Tg mice. Neonatal ΔF508 CF/ßENaC-Tg mice exhibited higher neutrophilic pulmonary inflammation and club cell (Clara cell) necrosis compared with ßENaC-Tg littermates. Neonatal ΔF508 CF/ßENaC-Tg mice also exhibited spontaneous bacterial infections, but the bacterial burden was similar to that of ßENaC-Tg littermates. Adult ΔF508 CF/ßENaC-Tg mice exhibited pathological changes associated with eosinophilic crystalline pneumonia, a phenotype not observed in age-matched ßENaC-Tg mice. Collectively, these data suggest that the combined abnormalities in Na(+) absorption and Cl(-) secretion produce more severe lung disease than either defect alone. Airway cartilage abnormalities, airway cell necrosis, and exaggerated neutrophil infiltration likely interact with defective mucus clearance caused by ßENaC overexpression and absent CFTR-mediated Cl(-) secretion to produce the increased neonatal mortality observed in ΔF508 CF/ßENaC-Tg mice.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Canales Epiteliales de Sodio/metabolismo , Pulmón/metabolismo , Eosinofilia Pulmonar/metabolismo , Sodio/metabolismo , Absorción/genética , Animales , Cloruros/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Canales Epiteliales de Sodio/genética , Humanos , Transporte Iónico/genética , Pulmón/patología , Ratones , Ratones Transgénicos , Necrosis , Infiltración Neutrófila/genética , Neutrófilos/metabolismo , Neutrófilos/patología , Neumonía/genética , Neumonía/metabolismo , Neumonía/patología , Eosinofilia Pulmonar/genética , Eosinofilia Pulmonar/patología
13.
Am J Physiol Cell Physiol ; 303(7): C767-80, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-22814399

RESUMEN

Active ion transport and coupled osmotic water flow are essential to maintain ocular surface health. We investigated regional differences in the ion transport activities of the rat conjunctivas and compared these activities with those of cornea and lacrimal gland. The epithelial sodium channel (ENaC), sodium/glucose cotransporter 1 (Slc5a1), transmembrane protein 16 (Tmem16a, b, f, and g), cystic fibrosis transmembrane conductance regulator (Cftr), and mucin (Muc4, 5ac, and 5b) mRNA expression was characterized by RT-PCR. ENaC proteins were measured by Western blot. Prespecified regions (palpebral, fornical, and bulbar) of freshly isolated conjunctival tissues and cell cultures were studied electrophysiologically with Ussing chambers. The transepithelial electrical potential difference (PD) of the ocular surface was also measured in vivo. The effect of amiloride and UTP on the tear volume was evaluated in lacrimal gland excised rats. All selected genes were detected but with different expression patterns. We detected αENaC protein in all tissues, ßENaC in palpebral and fornical conjunctiva, and γENaC in all tissues except lacrimal glands. Electrophysiological studies of conjunctival tissues and cell cultures identified functional ENaC, SLC5A1, CFTR, and TMEM16. Fornical conjunctiva exhibited the most active ion transport under basal conditions amongst conjunctival regions. PD measurements confirmed functional ENaC-mediated Na(+) transport on the ocular surface. Amiloride and UTP increased tear volume in lacrimal gland excised rats. This study demonstrated that the different regions of the conjunctiva exhibited a spectrum of ion transport activities. Understanding the specific functions of distinct regions of the conjunctiva may foster a better understanding of the physiology maintaining hydration of the ocular surface.


Asunto(s)
Conjuntiva/metabolismo , Canales Iónicos/metabolismo , Transporte Iónico/fisiología , Animales , Células Cultivadas , Femenino , Humanos , Masculino , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley , Xenopus laevis
14.
J Biol Chem ; 285(45): 34939-49, 2010 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-20801871

RESUMEN

A balance sheet describing the integrated homeostasis of secretion, absorption, and surface movement of liquids on pulmonary surfaces has remained elusive. It remains unclear whether the alveolus exhibits an intra-alveolar ion/liquid transport physiology or whether it secretes ions/liquid that may communicate with airway surfaces. Studies employing isolated human alveolar type II (AT2) cells were utilized to investigate this question. Human AT2 cells exhibited both epithelial Na(+) channel-mediated Na(+) absorption and cystic fibrosis transmembrane conductance regulator-mediated Cl(-) secretion, both significantly regulated by extracellular nucleotides. In addition, we observed in normal AT2 cells an absence of cystic fibrosis transmembrane conductance regulator regulation of epithelial Na(+) channel activity and an absence of expression/activity of reported calcium-activated chloride channels (TMEM16A, Bestrophin-1, ClC2, and SLC26A9), both features strikingly different from normal airway epithelial cells. Measurements of alveolar surface liquid volume revealed that normal AT2 cells: 1) achieved an extracellular nucleotide concentration-dependent steady state alveolar surface liquid height of ∼4 µm in vitro; 2) absorbed liquid when the lumen was flooded; and 3) secreted liquid when treated with UTP or forskolin or subjected to cyclic compressive stresses mimicking tidal breathing. Collectively, our studies suggest that human AT2 cells in vitro have the capacity to absorb or secrete liquid in response to local alveolar conditions.


Asunto(s)
Canales de Cloruro/metabolismo , Cloruros/metabolismo , Alveolos Pulmonares/metabolismo , Mucosa Respiratoria/metabolismo , Sodio/metabolismo , Uridina Trifosfato/farmacología , Células Cultivadas , Colforsina/farmacología , Humanos , Alveolos Pulmonares/citología , Mucosa Respiratoria/citología
15.
J Biol Chem ; 285(35): 26945-26955, 2010 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-20566636

RESUMEN

Studies in cystic fibrosis patients and mice overexpressing the epithelial Na(+) channel beta-subunit (betaENaC-Tg) suggest that raised airway Na(+) transport and airway surface liquid (ASL) depletion are central to the pathogenesis of cystic fibrosis lung disease. However, patients or mice with Liddle gain-of-function betaENaC mutations exhibit hypertension but no lung disease. To investigate this apparent paradox, we compared the airway phenotype (nasal versus tracheal) of Liddle with CFTR-null, betaENaC-Tg, and double mutant mice. In mouse nasal epithelium, the region that functionally mimics human airways, high levels of CFTR expression inhibited Liddle epithelial Nat channel (ENaC) hyperfunction. Conversely, in mouse trachea, low levels of CFTR failed to suppress Liddle ENaC hyperfunction. Indeed, Na(+) transport measured in Ussing chambers ("flooded" conditions) was raised in both Liddle and betaENaC-Tg mice. Because enhanced Na(+) transport did not correlate with lung disease in these mutant mice, measurements in tracheal cultures under physiologic "thin film" conditions and in vivo were performed. Regulation of ASL volume and ENaC-mediated Na(+) absorption were intact in Liddle but defective in betaENaC-Tg mice. We conclude that the capacity to regulate Na(+) transport and ASL volume, not absolute Na(+) transport rates in Ussing chambers, is the key physiologic function protecting airways from dehydration-induced lung disease.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Canales Epiteliales de Sodio/biosíntesis , Regulación de la Expresión Génica , Síndrome de Liddle/metabolismo , Mutación , Sodio/metabolismo , Animales , Fibrosis Quística/metabolismo , Fibrosis Quística/patología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Canales Epiteliales de Sodio/genética , Humanos , Transporte Iónico/genética , Síndrome de Liddle/patología , Ratones , Ratones Noqueados , Mucosa Nasal/metabolismo , Mucosa Nasal/patología , Técnicas de Cultivo de Órganos , Tráquea/metabolismo , Tráquea/patología
16.
Am J Respir Cell Mol Biol ; 43(1): 55-63, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19675306

RESUMEN

Studies of primary ciliary dyskinesia (PCD) have been hampered by the lack of a suitable animal model because disruption of essential ciliary genes in mice results in a high incidence of lethal hydrocephalus. To develop a viable mouse model for long-term studies of PCD, we have generated a transgenic mouse line in which two conserved exons of the mouse intermediate dynein chain gene, Dnaic1, are flanked by loxP sites (Dnaic1(flox/flox)). Dnaic1 is the murine homolog of human DNAI1, which is mutated in approximately 10% of human PCD cases. These mice have been crossed with mice expressing a tamoxifen-inducible Cre recombinase (CreER). Treatment of adult Dnaic1(flox/flox)/CreER(+/-) mice with tamoxifen results in an almost complete deletion of Dnaic1 with no evidence of hydrocephalus. Treated animals have reduced levels of full-length Dnaic1 mRNA, and electron micrographs of cilia demonstrate a loss of outer dynein arm structures. In treated Dnaic1(flox/flox)/CreER(+/-) animals, mucociliary clearance (MCC) was reduced over time. After approximately 3 months, no MCC was observed in the nasopharynx, whereas in the trachea, MCC was observed for up to 6 months, likely reflecting a difference in the turnover of ciliated cells in these tissues. All treated animals developed severe rhinosinusitis, demonstrating the importance of MCC to the health of the upper airways. However, no evidence of lung disease was observed up to 11 months after Dnaic1 deletion, suggesting that other mechanisms are able to compensate for the lack of MCC in the lower airways of mice. This model will be useful for the study of the pathogenesis and treatment of PCD.


Asunto(s)
Dineínas Axonemales/genética , Dineínas/genética , Eliminación de Gen , Síndrome de Kartagener/genética , Sinusitis/genética , Animales , Dineínas Axonemales/fisiología , Enfermedad Crónica , Células Epiteliales/citología , Hidrocefalia/genética , Integrasas/metabolismo , Ratones , Ratones Transgénicos , Microscopía Electrónica de Transmisión/métodos , Modelos Genéticos , Nasofaringe/metabolismo , Tráquea/metabolismo
17.
J Biol Chem ; 284(22): 14875-80, 2009 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-19363029

RESUMEN

For almost two decades, it has been postulated that calcium-activated Cl(-) channels (CaCCs) play a role in airway epithelial Cl(-) secretion, but until recently, the molecular identity of the airway CaCC(s) was unknown. Recent studies have unequivocally identified TMEM16A as a glandular epithelial CaCC. We have studied the airway bioelectrics of neonatal mice homozygous for a null allele of Tmem16a (Tmem16a(-/-)) to investigate the role of this channel in Cl(-) secretion in airway surface epithelium. When compared with wild-type tracheas, the Tmem16a(-/-) tracheas exhibited a >60% reduction in purinoceptor (UTP)-regulated CaCC activity. Other members of the Tmem16 gene family, including Tmem16f and Tmem16k, were also detected by reverse transcription-PCR in neonatal tracheal epithelium, suggesting that other family members could be considered as contributing to the small residual UTP response. TMEM16A, however, appeared to contribute little to unstimulated Cl(-) secretion, whereas studies with cystic fibrosis transmembrane conductance regulator (CFTR)-deficient mice and wild-type littermates revealed that unstimulated Cl(-) secretion reflected approximately 50% CFTR activity and approximately 50% non-Tmem16a activity. Interestingly, the tracheas of both the Tmem16a(-/-) and the CFTR(-/-) mice exhibited similar congenital cartilaginous defects that may reflect a common Cl(-) secretory defect mediated by the molecularly distinct Cl(-) channels. Importantly, the residual CaCC activity in Tmem16a(-/-) mice appeared inadequate for normal airway hydration because Tmem16a(-/-) tracheas exhibited significant, neonatal, lumenal mucus accumulation. Our data suggest that TMEM16A CaCC-mediated Cl(-) secretion appears to be necessary for normal airway surface liquid homeostasis.


Asunto(s)
Calcio/metabolismo , Canales de Cloruro/metabolismo , Tráquea/metabolismo , Animales , Animales Recién Nacidos , Anoctamina-1 , Canales de Cloruro/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Conductividad Eléctrica , Ratones , Mutación/genética , Tráquea/patología
18.
J Immunol ; 182(7): 4357-67, 2009 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-19299736

RESUMEN

Overexpression of the epithelial Na(+) channel beta subunit (Scnn1b gene, betaENaC protein) in transgenic (Tg) mouse airways dehydrates mucosal surfaces, producing mucus obstruction, inflammation, and neonatal mortality. Airway inflammation includes macrophage activation, neutrophil and eosinophil recruitment, and elevated KC, TNF-alpha, and chitinase levels. These changes recapitulate aspects of complex human obstructive airway diseases, but their molecular mechanisms are poorly understood. We used genetic and pharmacologic approaches to identify pathways relevant to the development of Scnn1b-Tg mouse lung pathology. Genetic deletion of TNF-alpha or its receptor, TNFR1, had no measurable effect on the phenotype. Deletion of IL-4Ralpha abolished transient mucous secretory cell (MuSC) abundance and eosinophilia normally observed in neonatal wild-type mice. Similarly, IL-4Ralpha deficiency decreased MuSC and eosinophils in neonatal Scnn1b-Tg mice, which correlated with improved neonatal survival. However, chronic lung pathology in adult Scnn1b-Tg mice was not affected by IL-4Ralpha status. Prednisolone treatment ablated eosinophilia and MuSC in adult Scnn1b-Tg mice, but did not decrease mucus plugging or neutrophilia. These studies demonstrate that: 1) normal neonatal mouse airway development entails an IL-4Ralpha-dependent, transient abundance of MuSC and eosinophils; 2) absence of IL-4Ralpha improved neonatal survival of Scnn1b-Tg mice, likely reflecting decreased formation of asphyxiating mucus plugs; and 3) in Scnn1b-Tg mice, neutrophilia, mucus obstruction, and airspace enlargement are IL-4Ralpha- and TNF-alpha-independent, and only MuSC and eosinophilia are sensitive to glucocorticoids. Thus, manipulation of multiple pathways will likely be required to treat the complex pathogenesis caused by airway surface dehydration.


Asunto(s)
Inmunidad Mucosa/fisiología , Receptores de Superficie Celular/metabolismo , Mucosa Respiratoria/fisiopatología , Transducción de Señal/fisiología , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Animales Recién Nacidos , Western Blotting , Líquido del Lavado Bronquioalveolar/química , Quimiocinas/análisis , Deshidratación/complicaciones , Modelos Animales de Enfermedad , Eosinofilia/tratamiento farmacológico , Eosinofilia/etiología , Canales Epiteliales de Sodio/genética , Glucocorticoides/uso terapéutico , Inmunidad Mucosa/efectos de los fármacos , Ratones , Ratones Transgénicos , Neutrófilos/inmunología , Prednisolona/uso terapéutico , Receptores de Superficie Celular/genética , Mucosa Respiratoria/crecimiento & desarrollo , Mucosa Respiratoria/metabolismo , Sistema Respiratorio/crecimiento & desarrollo , Sistema Respiratorio/inmunología , Sistema Respiratorio/metabolismo
19.
Am J Physiol Cell Physiol ; 293(2): C574-83, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17428842

RESUMEN

In normal nasal epithelium, the olfactory receptor neurons (ORNs) are continuously replaced through the differentiation of progenitor cells. The olfactory epithelium (OE) of the cystic fibrosis (CF) mouse appears normal at birth, yet by 6 mo of age, a marked dysmorphology of sustentacular cells and a dramatic reduction in olfactory receptor neurons are evident. Electroolfactograms revealed that the odor-evoked response in 30-day-old CF mice was reduced approximately 45%; in older CF mice, a approximately 70% reduction was observed compared with the wild type (WT) response. Consistent with studies of CF airway epithelia, Ussing chamber studies of OE isolated from CF mice showed a lack of forskolin-stimulated Cl(-) secretion and an approximately 12-fold increase in amiloride-sensitive sodium absorption compared with WT mice. We hypothesize that the marked hyperabsorption of Na(+), most likely by olfactory sustentacular cells, leads to desiccation of the surface layer in which the sensory cilia reside, followed by degeneration of the ORNs. The CF mouse thus provides a novel model to examine the mechanisms of disease-associated loss of olfactory function.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/metabolismo , Mucosa Olfatoria/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Receptores Odorantes/metabolismo , Olfato , Acetofenonas/farmacología , Adenilil Ciclasas/metabolismo , Envejecimiento/patología , Aldehídos/farmacología , Amilorida/farmacología , Animales , Cloruros/metabolismo , Colforsina/farmacología , AMP Cíclico/metabolismo , Fibrosis Quística/genética , Fibrosis Quística/patología , Fibrosis Quística/fisiopatología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/deficiencia , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Activadores de Enzimas/farmacología , Ratones , Ratones Endogámicos CFTR , Microscopía Electrónica de Rastreo , Odorantes , Mucosa Olfatoria/efectos de los fármacos , Mucosa Olfatoria/fisiopatología , Mucosa Olfatoria/ultraestructura , Neuronas Receptoras Olfatorias/efectos de los fármacos , Neuronas Receptoras Olfatorias/fisiopatología , Neuronas Receptoras Olfatorias/ultraestructura , Pentanoles/farmacología , ARN Mensajero/metabolismo , Receptores Odorantes/efectos de los fármacos , Olfato/efectos de los fármacos , Sodio/metabolismo , Bloqueadores de los Canales de Sodio/farmacología , Factores de Tiempo , Técnicas de Cultivo de Tejidos
20.
Am J Respir Cell Mol Biol ; 34(3): 355-63, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16284361

RESUMEN

Deletion of phenylalanine 508 (deltaF508) accounts for nearly 70% of all mutations that occur in the cystic fibrosis transmembrane conductance regulator (CFTR). The deltaF508 mutation is a class II processing mutation that results in very little or no mature CFTR protein reaching the apical membrane and thus no cAMP-mediated Cl- conductance. Therapeutic strategies have been developed to enhance processing of the defective deltaF508 CFTR molecule so that a functional cAMP-regulated Cl- channel targets to the apical membrane. Sarcoplasmic/endoplasmic reticulum calcium (SERCA) inhibitors, curcumin and thapsigargin, have been reported to effectively correct the CF ion transport defects observed in the deltaF508 CF mice. We investigated the effect of these compounds in human airway epithelial cells to determine if they could induce deltaF508 CFTR maturation, and Cl- secretion. We also used Baby Hamster Kidney cells, heterologously expressing deltaF508 CFTR, to determine if SERCA inhibitors could interfere with the interaction between calnexin and CFTR and thereby correct the deltaF508 CFTR misfolding defect. Finally, at the whole animal level, we tested the ability of curcumin and thapsigargin to (1) induce Cl- secretion and reduce hyperabsorption of Na+ in the nasal epithelia of the deltaF508 mouse in vivo, and (2) induce Cl- secretion in intestine (jejunum and distal colon) and the gallbladder of the deltaF508 CF mouse. We conclude that curcumin and thapsigargin failed to induce maturation of deltaF508 CFTR, or induce Cl- secretion, as measured by biochemical and electrophysiologic techniques in a variety of model systems ranging from cultured cells to in vivo studies.


Asunto(s)
ATPasas Transportadoras de Calcio/antagonistas & inhibidores , Curcumina/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/biosíntesis , Fibrosis Quística/metabolismo , Mucosa Respiratoria/efectos de los fármacos , Tapsigargina/farmacología , Animales , Bronquios/citología , Calnexina/metabolismo , Células Cultivadas , Cloruros/metabolismo , Cricetinae , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Vesícula Biliar/efectos de los fármacos , Vesícula Biliar/fisiología , Humanos , Intestinos/efectos de los fármacos , Intestinos/fisiología , Transporte Iónico , Ratones , Ratones Mutantes , Mutación , Pliegue de Proteína , Mucosa Respiratoria/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Sodio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA