Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Eur J Haematol ; 112(5): 788-793, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38311570

RESUMEN

OBJECTIVE: Preventing severe COVID-19 remains a priority globally, particularly in the immunocompromised population. As shown in healthy individuals, immunity against SARS-CoV-2 can be yielded by previous infection, vaccination, or both (hybrid immunity). The objective of this observation study was to investigate hybrid immunity in patients with chronic lymphocytic leukemia (CLL). METHODS/RESULTS: Blood samples of six patients with CLL were collected 55 days after fourth COVID-19 vaccination. All patients had a SARS-CoV-2 infection within 12 months before the second booster (fourth vaccination). SARS-CoV-2 spike receptor binding domain (RBD)-specific IgG antibodies were detectable in 6/6 (100.0%) CLL patients after four compared to 4/6 (66.7%) after three vaccinations. The median number of SARS-CoV-2 spike-specific T cells after repeated booster vaccination plus infection was 166 spot-forming cells (SFC) per million peripheral blood mononuclear cells. Overall, 5/5 (100%) studied patients showed a detectable increase in T cell activity. CONCLUSION: Our data reveal an increase of cellular and humoral immune response in CLL patients after fourth COVID-19 vaccination combined with SARS-CoV-2 infection, even in those undergoing B cell-depleting treatment. Patients with prior vaccination failure now show a specific IgG response. Future research should explore the duration and effectiveness of hybrid immunity considering various factors like past infection and vaccination rates, types and numbers of doses, and emerging variants.


Asunto(s)
COVID-19 , Leucemia Linfocítica Crónica de Células B , Humanos , SARS-CoV-2 , Leucemia Linfocítica Crónica de Células B/complicaciones , Leucemia Linfocítica Crónica de Células B/terapia , Vacunas contra la COVID-19 , Leucocitos Mononucleares , Inmunoglobulina G , Complicaciones Posoperatorias , Vacunación , Inmunidad Adaptativa , Anticuerpos Antivirales
2.
Immunity ; 56(11): 2602-2620.e10, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37967532

RESUMEN

Human cytomegalovirus (HCMV) can cause severe diseases in fetuses, newborns, and immunocompromised individuals. Currently, no vaccines are approved, and treatment options are limited. Here, we analyzed the human B cell response of four HCMV top neutralizers from a cohort of 9,000 individuals. By single-cell analyses of memory B cells targeting the pentameric and trimeric HCMV surface complexes, we identified vulnerable sites on the shared gH/gL subunits as well as complex-specific subunits UL128/130/131A and gO. Using high-resolution cryogenic electron microscopy, we revealed the structural basis of the neutralization mechanisms of antibodies targeting various binding sites. Moreover, we identified highly potent antibodies that neutralized a broad spectrum of HCMV strains, including primary clinical isolates, that outperform known antibodies used in clinical trials. Our study provides a deep understanding of the mechanisms of HCMV neutralization and identifies promising antibody candidates to prevent and treat HCMV infection.


Asunto(s)
Citomegalovirus , Proteínas del Envoltorio Viral , Recién Nacido , Humanos , Glicoproteínas de Membrana , Anticuerpos Neutralizantes , Células B de Memoria , Anticuerpos Antivirales , Análisis de la Célula Individual
3.
Clin Infect Dis ; 76(3): 408-415, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36189631

RESUMEN

BACKGROUND: Monoclonal antibodies (mAbs) that target severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are predominantly less effective against Omicron variants. Immunocompromised patients often experience prolonged viral shedding, resulting in an increased risk of viral escape. METHODS: In an observational, prospective cohort, 57 patients infected with Omicron variants who received sotrovimab alone or in combination with remdesivir were followed. The study end points were a decrease in SARS-CoV-2 RNA <106 copies/mL in nasopharyngeal swabs at day 21 and the emergence of escape mutations at days 7, 14, and 21 after sotrovimab administration. All SARS-CoV-2 samples were analyzed using whole-genome sequencing. Individual variants within the quasispecies were subsequently quantified and further characterized using a pseudovirus neutralization assay. RESULTS: The majority of patients (43 of 57, 75.4%) were immunodeficient, predominantly due to immunosuppression after organ transplantation or hematologic malignancies. Infections by Omicron/BA.1 comprised 82.5%, while 17.5% were infected by Omicron/BA.2. Twenty-one days after sotrovimab administration, 12 of 43 (27.9%) immunodeficient patients had prolonged viral shedding compared with 1 of 14 (7.1%) immunocompetent patients (P = .011). Viral spike protein mutations, some specific for Omicron (e.g., P337S and/or E340D/V), emerged in 14 of 43 (32.6%) immunodeficient patients, substantially reducing sensitivity to sotrovimab in a pseudovirus neutralization assay. Combination therapy with remdesivir significantly reduced emergence of escape variants. CONCLUSIONS: Immunocompromised patients face a considerable risk of prolonged viral shedding and emergence of escape mutations after early therapy with sotrovimab. These findings underscore the importance of careful monitoring and the need for dedicated clinical trials in this patient population.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Huésped Inmunocomprometido , Estudios Prospectivos , ARN Viral , SARS-CoV-2/genética
6.
EMBO Mol Med ; 13(8): e14150, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34133077

RESUMEN

Innate immunity triggers responsible for viral control or hyperinflammation in COVID-19 are largely unknown. Here we show that the SARS-CoV-2 spike protein (S-protein) primes inflammasome formation and release of mature interleukin-1ß (IL-1ß) in macrophages derived from COVID-19 patients but not in macrophages from healthy SARS-CoV-2 naïve individuals. Furthermore, longitudinal analyses reveal robust S-protein-driven inflammasome activation in macrophages isolated from convalescent COVID-19 patients, which correlates with distinct epigenetic and gene expression signatures suggesting innate immune memory after recovery from COVID-19. Importantly, we show that S-protein-driven IL-1ß secretion from patient-derived macrophages requires non-specific monocyte pre-activation in vivo to trigger NLRP3-inflammasome signaling. Our findings reveal that SARS-CoV-2 infection causes profound and long-lived reprogramming of macrophages resulting in augmented immunogenicity of the SARS-CoV-2 S-protein, a major vaccine antigen and potent driver of adaptive and innate immune signaling.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Humanos , Inmunidad Innata , Inflamasomas , Interleucina-1beta , Macrófagos , Proteína con Dominio Pirina 3 de la Familia NLR/genética , SARS-CoV-2
7.
Front Immunol ; 12: 798276, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34987520

RESUMEN

Effects of initiation of programmed-death-protein 1 (PD1) blockade during active SARS-CoV-2 infection on antiviral immunity, COVID-19 course, and underlying malignancy are unclear. We report on the management of a male in his early 40s presenting with highly symptomatic metastatic lung cancer and active COVID-19 pneumonia. After treatment initiation with pembrolizumab, carboplatin, and pemetrexed, the respiratory situation initially worsened and high-dose corticosteroids were initiated due to suspected pneumonitis. After improvement and SARS-CoV-2 clearance, anti-cancer treatment was resumed without pembrolizumab. Immunological analyses with comparison to otherwise healthy SARS-CoV-2-infected ambulatory patients revealed a strong humoral immune response with higher levels of SARS-CoV-2-reactive IgG and neutralizing serum activity. Additionally, sustained increase of Tfh as well as activated CD4+ and CD8+ T cells was observed. Sequential CT scans showed regression of tumor lesions and marked improvement of the pulmonary situation, with no signs of pneumonitis after pembrolizumab re-challenge as maintenance. At the latest follow-up, the patient is ambulatory and in ongoing partial remission on pembrolizumab. In conclusion, anti-PD1 initiation during active COVID-19 pneumonia was feasible and cellular and humoral immune responses to SARS-CoV-2 appeared enhanced in our hospitalized patient. However, distinguishing COVID-19-associated changes from anti-PD1-associated immune-related pneumonitis posed a considerable clinical, radiographic, and immunologic challenge.


Asunto(s)
Corticoesteroides/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , SARS-CoV-2/efectos de los fármacos , Adulto , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/virología , COVID-19/complicaciones , COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/inmunología , Carcinoma de Pulmón de Células no Pequeñas/complicaciones , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Humanos , Inmunidad Humoral/efectos de los fármacos , Inmunidad Humoral/inmunología , Neoplasias Pulmonares/complicaciones , Neoplasias Pulmonares/inmunología , Masculino , Metástasis de la Neoplasia , Neumonía/inmunología , Neumonía/prevención & control , Neumonía/virología , SARS-CoV-2/inmunología
9.
Nat Med ; 26(2): 222-227, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32015556

RESUMEN

Combination antiretroviral therapy (ART) is highly effective in controlling human immunodeficiency virus (HIV)-1 but requires lifelong medication due to the existence of a latent viral reservoir1,2. Potent broadly neutralizing antibodies (bNAbs) represent a potential alternative or adjuvant to ART. In addition to suppressing viremia, bNAbs may have T cell immunomodulatory effects as seen for other forms of immunotherapy3. However, this has not been established in individuals who are infected with HIV-1. Here, we document increased HIV-1 Gag-specific CD8+ T cell responses in the peripheral blood of all nine study participants who were infected with HIV-1 with suppressed blood viremia, while receiving bNAb therapy during ART interruption4. Increased CD4+ T cell responses were detected in eight individuals. The increased T cell responses were due both to newly detectable reactivity to HIV-1 Gag epitopes and the expansion of pre-existing measurable responses. These data demonstrate that bNAb therapy during ART interruption is associated with enhanced HIV-1-specific T cell responses. Whether these augmented T cell responses can contribute to bNAb-mediated viral control remains to be determined.


Asunto(s)
Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/terapia , Inmunoterapia/métodos , Linfocitos T/inmunología , Adulto , Anticuerpos Neutralizantes/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/virología , Epítopos/inmunología , Femenino , Productos del Gen gag/metabolismo , Infecciones por VIH/virología , VIH-1 , Humanos , Sistema Inmunológico , Interferón gamma/inmunología , Masculino , Persona de Mediana Edad , Linfocitos T/virología , Viremia
10.
Vaccines (Basel) ; 8(1)2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31906351

RESUMEN

The human antibody repertoire is generated by the recombination of different gene segments as well as by processes of somatic mutation. Together these mechanisms result in a tremendous diversity of antibodies that are able to combat various pathogens including viruses and bacteria, or malignant cells. In this review, we summarize the opportunities and challenges that are associated with the analyses of the B cell receptor repertoire and the antigen-specific B cell response. We will discuss how recent advances have increased our understanding of the antibody response and how repertoire analyses can be exploited to inform on vaccine strategies, particularly against HIV-1.

11.
J Virol ; 87(15): 8535-44, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23720722

RESUMEN

The development of an effective vaccine preventing HIV-1 infection remains elusive. Thus, the development of novel approaches capable of preventing HIV-1 transmission is of paramount importance. However, this is partly hindered by the lack of an easily accessible small-animal model to rapidly measure viral entry. Here, we report the generation of a human CD4- and human CCR5-expressing transgenic luciferase reporter mouse that facilitates measurement of peritoneal and genitomucosal HIV-1 pseudovirus entry in vivo. We show that antibodies and antiretrovirals mediate preexposure protection in this mouse model and that the serum antibody concentration required for protection from cervicovaginal infection is comparable to that required to protect macaques. Our results suggest that this system represents a model for the preclinical evaluation of prophylactic or vaccine candidates. It further supports the idea that broadly neutralizing antibodies should be evaluated for use as preexposure prophylaxis in clinical trials.


Asunto(s)
Antirretrovirales/administración & dosificación , Quimioprevención/métodos , Transmisión de Enfermedad Infecciosa/prevención & control , Anticuerpos Anti-VIH/administración & dosificación , Infecciones por VIH/prevención & control , Animales , Antígenos CD4/biosíntesis , Antígenos CD4/genética , Modelos Animales de Enfermedad , Femenino , Genes Reporteros , Luciferasas/análisis , Luciferasas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores CCR5/biosíntesis , Receptores CCR5/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA