Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 296
Filtrar
1.
ACS Appl Mater Interfaces ; 16(24): 30755-30765, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38847111

RESUMEN

In recent years, enveloped micro-nanobubbles have garnered significant attention in research due to their commendable stability, biocompatibility, and other notable properties. Currently, the preparation methods of enveloped micro-nanobubbles have limitations such as complicated preparation process, large bubble size, wide distribution range, low yield, etc. There exists an urgent demand to devise a simple and efficient method for the preparation of enveloped micro-nanobubbles, ensuring both high concentration and a uniform particle size distribution. Magnetic lipid bubbles (MLBs) are a multifunctional type of enveloped micro-nanobubble combining magnetic nanoparticles with lipid-coated bubbles. In this study, MLBs are prepared simply and efficiently by a magneto internal heat bubble generation process based on the interfacial self-assembly of iron oxide nanoparticles induced by the thermogenic effect in an alternating magnetic field. The mean hydrodynamic diameter of the MLBs obtained was 384.9 ± 8.5 nm, with a polydispersity index (PDI) of 0.248 ± 0.021, a zeta potential of -30.5 ± 1.0 mV, and a concentration of (7.92 ± 0.46) × 109 bubbles/mL. Electron microscopy results show that the MLBs have a regular spherical stable core-shell structure. The superparamagnetic iron oxide nanoparticles (SPIONs) and phospholipid layers adsorbed around the spherical gas nuclei of the MLBs, leading the particles to demonstrate commendable superparamagnetic and magnetic properties. In addition, the effects of process parameters on the morphology of MLBs, including phospholipid concentration, phospholipid proportiona, current intensity, magnetothermal time, and SPION concentration, were investigated and discussed to achieve controlled preparation of MLBs. In vitro imaging results reveal that the higher the concentration of MLBs loaded with iron oxide nanoparticles, the better the in vitro ultrasound (US) imaging and magnetic resonance imaging (MRI) results. This study proves that the magneto internal heat bubble generation process is a simple and efficient technique for preparing MLBs with high concentration, regular structure, and commendable properties. These findings lay a robust foundation for the mass production and application of enveloped micro-nanobubbles, particularly in biomedical fields and other related domains.


Asunto(s)
Fosfolípidos , Fosfolípidos/química , Tamaño de la Partícula , Nanopartículas Magnéticas de Óxido de Hierro/química , Nanopartículas de Magnetita/química , Gases/química , Microburbujas , Campos Magnéticos
2.
Adv Healthc Mater ; : e2400254, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38857027

RESUMEN

Lipid-lowering drugs, especially statins, are extensively utilized in clinical settings for the prevention of hyperlipidemia. Nevertheless, prolonged usage of current lipid-lowering medications is associated with significant adverse reactions. Therefore, it is imperative to develop novel therapeutic agents for lipid-lowering therapy. In this study, a chenodeoxycholic acid and lactobionic acid double-modified polyethyleneimine (PDL) nanocomposite as a gene delivery vehicle for lipid-lowering therapy by targeting the liver, are synthesized. Results from the in vitro experiments demonstrate that PDL exhibits superior transfection efficiency compared to polyethyleneimine in alpha mouse liver 12 (AML12) cells and effectively carries plasmids. Moreover, PDL can be internalized by AML12 cells and rapidly escape lysosomal entrapment. Intravenous administration of cyanine5.5 (Cy5.5)-conjugated PDL nanocomposites reveals their preferential accumulation in the liver compared to polyethyleneimine counterparts. Systemic delivery of low-density lipoprotein receptor plasmid-loaded PDL nanocomposites into mice leads to reduced levels of low-density lipoprotein cholesterol (LDL-C) and triglycerides (TC) in the bloodstream without any observed adverse effects on mouse health or well-being. Collectively, these findings suggest that low-density lipoprotein receptor plasmid-loaded PDL nanocomposites hold promise as potential therapeutics for lipid-lowering therapy.

3.
Biomater Adv ; 162: 213916, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38838618

RESUMEN

The Ti6Al4V (TC4) alloy, a prevalent biomedical material in orthopedics, still faces limitation of the insufficient osseointegration. To improve the bioactivity of TC4, introducing the electric environment onto the TC4 surface may be an effective way in the view of the necessity of endogenous electric microenvironment in bone regeneration. Herein, a Volta potential pattern was engendered on the TC4 surface via parallel laser patterning, so as to promote the osteogenic differentiation of cells. A 15 W laser successfully transformed the original α + ß dual phase towards radially distributed lath-like martensite phase in the laser treated region. The atomic lattice distortion between the heterogeneous microstructures of the laser treated and untreated regions leads to a significant Volta potential fluctuation on the TC4 surface. The Volta potential pattern as well as the laser-engraved microgrooves respectively induced mutually orthogonal cell alignments. The hBMSCs osteogenic differentiation was significantly enhanced on the laser treated TC4 surfaces in comparison to the surface without the laser treatment. Moreover, a drastic Volta potential gradient on the TC4 surface (treated with 15 W power and 400 µm interval) resulted in the most pronounced osteogenic differentiation tendency compared to other groups. Modulating the electric environment on the TC4 surface by manipulating the phase transformation may provide an effective way in evoking favorable cell response of bone regeneration, thereby improving the bioactivity of TC4 implant.


Asunto(s)
Aleaciones , Diferenciación Celular , Rayos Láser , Células Madre Mesenquimatosas , Osteogénesis , Propiedades de Superficie , Titanio , Osteogénesis/efectos de la radiación , Osteogénesis/fisiología , Aleaciones/química , Titanio/química , Humanos , Células Madre Mesenquimatosas/citología , Células Cultivadas
4.
Arch Gynecol Obstet ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753205

RESUMEN

PURPOSE: To evaluate the effect of intravenous infusion versus intramyometrial injection of oxytocin on hemoglobin levels in neonates with delayed umbilical cord clamping during cesarean section. METHODS: The multi-centre randomized controlled trial was performed at three hospitals from February to June 2023. Women with term singleton gestations scheduled for cesarean delivery were allocated to receive an intravenous infusion of 10 units of oxytocin or a myometrial injection of 10 units of oxytocin during the surgery. The primary outcome was neonatal hemoglobin at 48 to 96 h after birth. Secondary outcomes were side-effects of oxytocin, postpartum haemorrhage, phototherapy for jaundice, feeding at 1 month, maternal and neonatal morbidity and re-admissions. RESULTS: A total of 360 women were randomized (180 women in each group). The mean neonatal hemoglobin did not show a significant difference between the intravenous infusion group (194.3 ± 21.7 g/L) and the intramyometrial groups (195.2 ± 24.3 g/L) (p = 0.715). Secondary neonatal outcomes, involving phototherapy for jaundice, feeding at 1 month and neonatal intensive care unit admission were similar between the two groups. The maternal outcomes did not differ significantly between the two groups, except for a 200 mL higher intraoperative infusion volume observed in the intravenous group compared to the intramyometrial group. CONCLUSION: Among women undergoing elective cesarean delivery of term singleton pregnancies, there was no significant difference in neonatal hemoglobin at 48 to 96 h after birth between infants with delayed cord clamping, whether the oxytocin was administrated by intravenous infusion or intramyometrial injection. TRIAL REGISTRATION: Chinese Clinical trial registry: ChiCTR2300067953 (1 February 2023).

5.
J Mol Cell Cardiol ; 194: 16-31, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38821243

RESUMEN

BACKGROUND: Hypoxia-induced pulmonary artery hypertension (HPH) is a complication of chronic hypoxic lung disease and the third most common type of pulmonary artery hypertension (PAH). Epigenetic mechanisms play essential roles in the pathogenesis of HPH. N6-methyladenosine (m6A) is an important modified RNA nucleotide involved in a variety of biological processes and an important regulator of epigenetic processes. To date, the precise role of m6A and regulatory molecules in HPH remains unclear. METHODS: HPH model and pulmonary artery smooth muscle cells (PASMCs) were constructed from which m6A changes were observed and screened for AlkB homolog 5 (Alkbh5). Alkbh5 knock-in (KI) and knock-out (KO) mice were constructed to observe the effects on m6A and evaluate right ventricular systolic pressure (RVSP), left ventricular and septal weight [RV/(LV + S)], and pulmonary vascular remodeling in the context of HPH. Additionally, the effects of Alkbh5 knockdown using adenovirus were examined in vitro on m6A, specifically in PASMCs with regard to proliferation, migration and cytochrome P450 1A1 (Cyp1a1) mRNA stability. RESULTS: In both HPH mice lung tissues and hypoxic PASMCs, a decrease in m6A was observed, accompanied by a significant up-regulation of Alkbh5 expression. Loss of Alkbh5 attenuated the proliferation and migration of hypoxic PASMCs in vitro, with an associated increase in m6A modification. Furthermore, Alkbh5 KO mice exhibited reduced RVSP, RV/(LV + S), and attenuated vascular remodeling in HPH mice. Mechanistically, loss of Alkbh5 inhibited Cyp1a1 mRNA decay and increased its expression through an m6A-dependent post-transcriptional mechanism, which hindered the proliferation and migration of hypoxic PASMCs. CONCLUSION: The current study highlights the loss of Alkbh5 impedes the proliferation and migration of PASMCs by inhibiting post-transcriptional Cyp1a1 mRNA decay in an m6A-dependent manner.

6.
Natl Sci Rev ; 11(6): nwae100, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38707203

RESUMEN

Noise-induced hearing loss (NIHL) is a highly prevalent form of sensorineural hearing damage that has significant negative effects on individuals of all ages and there are no effective drugs approved by the US Food and Drug Administration. In this study, we unveil the potential of superparamagnetic iron oxide nanoparticle assembly (SPIOCA) to reshape the dysbiosis of gut microbiota for treating NIHL. This modulation inhibits intestinal inflammation and oxidative stress responses, protecting the integrity of the intestinal barrier. Consequently, it reduces the transportation of pathogens and inflammatory factors from the bloodstream to the cochlea. Additionally, gut microbiota-modulated SPIOCA-induced metabolic reprogramming in the gut-inner ear axis mainly depends on the regulation of the sphingolipid metabolic pathway, which further contributes to the restoration of hearing function. Our study confirms the role of the microbiota-gut-inner ear axis in NIHL and provides a novel alternative for the treatment of NIHL and other microbiota dysbiosis-related diseases.

7.
Science ; 383(6690): 1492-1498, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38547269

RESUMEN

Transient implantable piezoelectric materials are desirable for biosensing, drug delivery, tissue regeneration, and antimicrobial and tumor therapy. For use in the human body, they must show flexibility, biocompatibility, and biodegradability. These requirements are challenging for conventional inorganic piezoelectric oxides and piezoelectric polymers. We discovered high piezoelectricity in a molecular crystal HOCH2(CF2)3CH2OH [2,2,3,3,4,4-hexafluoropentane-1,5-diol (HFPD)] with a large piezoelectric coefficient d33 of ~138 picocoulombs per newton and piezoelectric voltage constant g33 of ~2450 × 10-3 volt-meters per newton under no poling conditions, which also exhibits good biocompatibility toward biological cells and desirable biodegradation and biosafety in physiological environments. HFPD can be composite with polyvinyl alcohol to form flexible piezoelectric films with a d33 of 34.3 picocoulombs per newton. Our material demonstrates the ability for molecular crystals to have attractive piezoelectric properties and should be of interest for applications in transient implantable electromechanical devices.


Asunto(s)
Materiales Biocompatibles , Compuestos Férricos , Polímeros , Biodegradación Ambiental , Polímeros/química , Polímeros/metabolismo , Alcohol Polivinílico/química , Alcohol Polivinílico/metabolismo , Materiales Biocompatibles/química , Materiales Biocompatibles/metabolismo , Electricidad , Animales , Ratas , Ratas Sprague-Dawley , Compuestos Férricos/química , Compuestos Férricos/metabolismo
8.
ACS Nano ; 18(10): 7644-7655, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38412252

RESUMEN

Engineering exosomes with nanomaterials usually leads to the damage of exosomal membrane and bioactive molecules. Here, pathological angiogenesis targeting exosomes with magnetic imaging, ferroptosis inducing, and immunotherapeutic properties is fabricated using a simple coincubation method with macrophages being the bioreactor. Extremely small iron oxide nanoparticle (ESIONPs) incorporated exosomes (ESIONPs@EXO) are acquired by sorting the secreted exosomes from M1-polarized macrophages induced by ESIONPs. ESIONPs@EXO suppress pathological angiogenesis in vitro and in vivo without toxicity. Furthermore, ESIONPs@EXO target pathological angiogenesis and exhibit an excellent T1-weighted contrast property for magnetic resonance imaging. Mechanistically, ESIONPs@EXO induce ferroptosis and exhibit immunotherapeutic ability toward pathological angiogenesis. These findings demonstrate that a pure biological method engineered ESIONPs@EXO using macrophages shows potential for targeted pathological angiogenesis therapy.


Asunto(s)
Exosomas , Humanos , Angiogénesis , Macrófagos , Neovascularización Patológica/terapia , Nanopartículas Magnéticas de Óxido de Hierro
9.
Adv Sci (Weinh) ; 11(17): e2308298, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38368274

RESUMEN

Atherosclerosis, a multifaceted chronic inflammatory disease, has a profound impact on cardiovascular health. However, the critical limitations of atherosclerosis management include the delayed detection of advanced stages, the intricate assessment of plaque stability, and the absence of efficacious therapeutic strategies. Nanotheranostic based on nanotechnology offers a novel paradigm for addressing these challenges by amalgamating advanced imaging capabilities with targeted therapeutic interventions. Meanwhile, iron oxide nanoparticles have emerged as compelling candidates for theranostic applications in atherosclerosis due to their magnetic resonance imaging capability and biosafety. This review delineates the current state and prospects of iron oxide nanoparticle-based nanotheranostics in the realm of atherosclerosis, including pivotal aspects of atherosclerosis development, the pertinent targeting strategies involved in disease pathogenesis, and the diagnostic and therapeutic roles of iron oxide nanoparticles. Furthermore, this review provides a comprehensive overview of theranostic nanomedicine approaches employing iron oxide nanoparticles, encompassing chemical therapy, physical stimulation therapy, and biological therapy. Finally, this review proposes and discusses the challenges and prospects associated with translating these innovative strategies into clinically viable anti-atherosclerosis interventions. In conclusion, this review offers new insights into the future of atherosclerosis theranostic, showcasing the remarkable potential of iron oxide-based nanoparticles as versatile tools in the battle against atherosclerosis.


Asunto(s)
Aterosclerosis , Nanopartículas Magnéticas de Óxido de Hierro , Nanomedicina Teranóstica , Nanomedicina Teranóstica/métodos , Aterosclerosis/terapia , Humanos , Nanopartículas Magnéticas de Óxido de Hierro/química , Animales , Compuestos Férricos/química , Compuestos Férricos/uso terapéutico , Nanopartículas/uso terapéutico , Nanopartículas/química
10.
Comput Biol Med ; 171: 108087, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38364658

RESUMEN

Thyroid nodule classification and segmentation in ultrasound images are crucial for computer-aided diagnosis; however, they face limitations owing to insufficient labeled data. In this study, we proposed a multi-view contrastive self-supervised method to improve thyroid nodule classification and segmentation performance with limited manual labels. Our method aligns the transverse and longitudinal views of the same nodule, thereby enabling the model to focus more on the nodule area. We designed an adaptive loss function that eliminates the limitations of the paired data. Additionally, we adopted a two-stage pre-training to exploit the pre-training on ImageNet and thyroid ultrasound images. Extensive experiments were conducted on a large-scale dataset collected from multiple centers. The results showed that the proposed method significantly improves nodule classification and segmentation performance with limited manual labels and outperforms state-of-the-art self-supervised methods. The two-stage pre-training also significantly exceeded ImageNet pre-training.


Asunto(s)
Nódulo Tiroideo , Humanos , Nódulo Tiroideo/diagnóstico por imagen , Diagnóstico por Computador , Ultrasonografía , Aprendizaje Automático Supervisado , Procesamiento de Imagen Asistido por Computador
11.
ACS Nano ; 18(4): 3073-3086, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38227475

RESUMEN

Mesenchymal stem cell (MSC)-based cardiac patches are envisioned to be a promising treatment option for patients with myocardial infarction. However, their therapeutic efficacy and duration are hampered due to their limited retention on the epicardium. We engineered a scaffold-free MSC sheet with an inherent ability to migrate into the infarcted myocardium, a strategy enabled by actively establishing a sustained intracellular hypoxic environment through the endocytosis of our FDA-approved ferumoxytol. This iron oxide nanoparticle stabilized hypoxia-induced factor-1α, triggering upregulation of the CXC chemokine receptor and subsequent MSC chemotaxis. Thus, MSCs integrated into 2/3 depth of the left ventricular anterior wall in a rat model of acute myocardial infarction and persisted for at least 28 days. This led to spatiotemporal delivery of paracrine factors by MSCs, enhancing cardiac regeneration and function. Ferumoxytol also facilitated the noninvasive MRI tracking of implanted MSCs. Our approach introduces a strategy for mobilizing MSC migration, holding promise for rapid clinical translation in myocardial infarction treatment.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Infarto del Miocardio , Ratas , Humanos , Animales , Óxido Ferrosoférrico , Ratas Sprague-Dawley , Corazón/diagnóstico por imagen , Infarto del Miocardio/tratamiento farmacológico , Miocardio
12.
Small ; 20(21): e2308247, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38174612

RESUMEN

Iron oxide nanoparticles are a kind of important biomedical nanomaterials. Although their industrial-scale production can be realized by the conventional coprecipitation method, the controllability of their size and morphology remains a huge challenge. In this study, a kind of synthetic polypeptide Mms6-28 which mimics the magnetosome protein Mms6 is used for the bioinspired synthesis of Fe3O4 nanoparticles (NPs). Magnetosomes-like Fe3O4 NPs with uniform size, cubooctahedral shape, and smooth crystal surfaces are synthesized via a partial oxidation process. The Mms6-28 polypeptides play an important role by binding with iron ions and forming nucleation templates and are also preferably attached to the [100] and [111] crystal planes to induce the formation of uniform cubooctahedral Fe3O4 NPs. The continuous release and oxidation of Fe2+ from pre-formed Fe2+-rich precursors within the Mms6-28-based template make the reaction much controllable. The study affords new insights into the bioinspired- and bio-synthesis mechanism of magnetosomes.


Asunto(s)
Magnetosomas , Magnetosomas/química , Nanopartículas de Magnetita/química , Oxidación-Reducción
13.
Adv Healthc Mater ; 13(6): e2302773, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37931150

RESUMEN

Ferumoxytol, approved by the U.S. Food and Drug Administration in 2009, is one of the intravenous iron oxide nanoparticles authorized for the treatment of iron deficiency in chronic kidney disease and end-stage renal disease. With its exceptional magnetic properties, catalytic activity, and immune activity, as well as good biocompatibility and safety, ferumoxytol has gained significant recognition in various biomedical diagnoses and treatments. Unlike most existing reviews on this topic, this review primarily focuses on the recent clinical and preclinical advances of ferumoxytol in disease treatment, spanning anemia, cancer, infectious inflammatory diseases, regenerative medicine application, magnetic stimulation for neural modulation, etc. Additionally, the newly discovered mechanisms associated with the biological effects of ferumoxytol are discussed, including its magnetic, catalytic, and immunomodulatory properties. Finally, the summary and future prospects concerning the treatment and application of ferumoxytol-based nanotherapeutics are presented.


Asunto(s)
Óxido Ferrosoférrico , Inmunomodulación , Estados Unidos , Óxido Ferrosoférrico/uso terapéutico , Administración Intravenosa , Catálisis , Medicina Regenerativa
14.
Nanoscale ; 15(44): 17839-17849, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37882243

RESUMEN

Realizing precise therapy for glioblastomas (GBMs), a kind of high-frequency malignant brain tumor, is of great importance in improving the overall survival (OS) of patients. With relentless efforts made in the past few years, a sponge medium has been introduced into concurrent tumor treating fields (TTFields) and radiotherapy to enhance therapy efficacy for GBMs, and some progresses have been witnessed. However, the specific physical and chemical characteristics of the sponge that can be used for GBMs have not been reported as far as we know. Therefore, this study aims to develop a simple yet robust method to select a candidate sponge medium and verify its safety in advanced concurrent TTFields and radiotherapy for GBMs through interdisciplinary investigation among materials science, medical physics, and clinical radiation oncology. Significantly, latex-free polyurethane (PU) sponges with a Hounsfield unit (HU) value lower than -750, which exhibit almost no negative influence on planning computed tomography (CT) imaging and radiotherapy dosimetry, are demonstrated to be available for concurrent TTFields and radiotherapy for GBMs. Moreover, in clinical research, the achieved clear CT images, negligible scalp toxicity, lower residual positioning errors, and high compliant rate of 82% over the selected representative sponge sample corroborate the availability and safety of PU sponges in practical applications for GBM treatment.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Oncología por Radiación , Humanos , Glioblastoma/diagnóstico por imagen , Glioblastoma/terapia , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/radioterapia
15.
Acta Biomater ; 172: 309-320, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37778484

RESUMEN

Here, we propose for the first time the evaluation of magnetosensitive clMagR/clCry4 as a magnetic resonance imaging (MRI) reporter gene that imparts sensitivity to endogenous contrast in eukaryotic organisms. Using a lentiviral vector, we introduced clMagR/clCry4 into C57BL/6 mice-derived bone marrow mesenchymal stem cells (mBMSCs), which could specifically bind with iron, significantly affected MRI transverse relaxation, and generated readily detectable contrast without adverse effects in vivo. Specifically, clMagR/clCry4 makes mBMSCs beneficial for enhancing the sensitivity of MRI-R2 for iron-bearing granules, in which cells recruit exogenous iron and convert these stores into an MRI-detectable contrast; this is not achievable with control cells. Additionally, Prussian blue staining was performed together with ultrathin cell slices to provide direct evidence of natural iron-bearing granules being detectable on MRI. Hence, it was inferred that the sensitivity of MRI detection should be correlated with clMagR/clCry4 and exogenous iron. Taken together, the clMagR/clCry4 has great potential as an MRI reporter gene. STATEMENT OF SIGNIFICANCE: In this study, we propose the evaluation of magnetosensitive clMagR/clCry4 as an MRI reporter gene, imparting detection sensitivity to eukaryotic mBMSCs for endogenous contrast. At this point, the clMagR and clCry4 were located within the cytoplasm and possibly influence each other. The clMagR/clCry4 makes mBMSCs beneficial for enhancing the sensitivity of MRI-R2 for iron-bearing granules, in which protein could specifically bind with iron and convert these stores into MRI-detectable contrast; this is not achieved by control cells. The viewpoint was speculated that the clMagR/clCry4 and exogenous iron were complementary to each other. Additionally, Prussian blue staining was performed together with TEM observations to provide direct evidence that the iron-bearing granules were sensitive to MRI.


Asunto(s)
Imagen por Resonancia Magnética , Células Madre Mesenquimatosas , Ratones , Animales , Ratones Endogámicos C57BL , Imagen por Resonancia Magnética/métodos , Medios de Contraste/farmacología , Hierro , Células Madre Mesenquimatosas/metabolismo
16.
Adv Healthc Mater ; 12(32): e2301232, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37709487

RESUMEN

Therapeutic cancer vaccines offer the greatest advantage of enhancing antigen-specific immunity against tumors, particularly for immunogenic tumors, such as melanoma. However, clinical responses remain unsatisfactory, primarily due to inadequate T cell priming and the development of acquired immune tolerance. A major obstacle lies in the inefficient uptake of antigen by peripheral dendritic cells (DCs) and their migration to lymph nodes for antigen presentation. In this context, the magnetic delivery of antigen-loaded magnetic liposomes (Ag-MLs) to actively target lymph node, is proposed. These magnetic responsive liposomes contain soluble mouse melanoma lysate and iron oxide nanoparticles in the core, along with the immunostimulatory adjuvant CpG-1826 incorporated into the lipid bilayer. When applied through magnetic targeting in the mouse melanoma model, Ag-MLs accumulate significantly in the target lymph nodes. This accumulation results in increased population of active DCs in lymph nodes and cytotoxic T lymphocytes (CTLs) within tumors, correlating with effective tumor growth inhibition. Overall, this study demonstrates the potential of magnetic targeting as an effective strategy for delivering cancer vaccines and activating the immune response, offering a novel platform for cancer immunotherapies.


Asunto(s)
Vacunas contra el Cáncer , Melanoma , Ratones , Animales , Liposomas/farmacología , Células Dendríticas , Vacunas contra el Cáncer/farmacología , Melanoma/patología , Ganglios Linfáticos/patología , Fenómenos Magnéticos , Ratones Endogámicos C57BL
17.
Med Rev (2021) ; 3(2): 105-122, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37724082

RESUMEN

Macrophage polarization is an essential process involved in immune regulation. In response to different microenvironmental stimulation, macrophages polarize into cells with different phenotypes and functions, most typically M1 (pro-inflammatory) and M2 (anti-inflammatory) macrophages. Iron-based nanoparticles have been widely explored and reported to regulate macrophage polarization for various biomedical applications. However, the influence factors and modulation mechanisms behind are complicated and not clear. In this review, we systemically summarized different iron-based nanoparticles that regulate macrophage polarization and function and discussed the influence factors and mechanisms underlying the modulation process. This review aims to deepen the understanding of the modulation of macrophage polarization by iron-based nanoparticles and expects to provide evidence and guidance for subsequent design and application of iron-based nanoparticles with specific macrophage modulation functions.

18.
Mediators Inflamm ; 2023: 5513245, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37621767

RESUMEN

Background: Ferroptosis, a newly discovered mode of cell death, emerges as a new target for atherosclerosis (AS). Long noncoding RNAs (lncRNAs) are involved in the regulation of ferroptosis. In our previous study, lnc-MRGPRF-6:1 was highly expressed in patients with coronary atherosclerotic disease (CAD) and closely associated with macrophage-mediated inflammation in AS. In the present study, we aim to investigate the role of lnc-MRGPRF-6:1 in oxidized-low-density lipoprotein (ox-LDL)-induced macrophage ferroptosis in AS. Methods: Firstly, ox-LDL-treated macrophages were used to simulate macrophage injury in AS. Then, ferroptosis-related biomarkers and mitochondrial morphology were detected and observed in ox-LDL-treated macrophages. Subsequently, we constructed lnc-MRGPRF-6:1 knockdown and overexpression of THP-1-derived macrophages and investigated the role of lnc-MRGPRF-6:1 in ox-LDL-induced ferroptosis. Then human monocytes were isolated successfully and were used to explore the role of lnc-MRGPRF-6:1 in macrophage ferroptosis. Likely, we constructed lnc-MRGPRF-6:1 knockdown and overexpression of human monocyte-derived macrophages and detected the expression levels of ferroptosis-related biomarkers. Then, transcriptome sequencing, literature searching, and following quantitative real-time polymerase chain reaction and western blot were implemented to explore specific signaling pathway in the process. It was demonstrated that lnc-MRGPRF-6:1 may regulate ox-LDL-induced macrophage ferroptosis through glutathione peroxidase 4 (GPX4). Eventually, the correlation between lnc-MRGPRF-6:1 and GPX4 was measured in monocyte-derived macrophages of CAD patients and controls. Results: The ox-LDL-induced injury in macrophages was involved in ferroptosis. The knockdown of lnc-MRGPRF-6:1 could alleviate ox-LDL-induced ferroptosis in macrophages. Meanwhile, the overexpression of lnc-MRGPRF-6:1 could intensify ox-LDL-induced ferroptosis. Furthermore, the knockdown of lnc-MRGPRF-6:1 could alleviate the decrease of GPX4 induced by RAS-selective lethal compounds 3 (RSL-3). These indicated that lnc-MRGPRF-6:1 may suppress GPX4 to induce macrophage ferroptosis. Eventually, lnc-MRGPRF-6:1 was highly expressed in the monocyte-derived macrophages of CAD patients and was negatively correlated with the expression of GPX4. Conclusion: lnc-MRGPRF-6:1 can promote ox-LDL-induced macrophage ferroptosis through inhibiting GPX4.


Asunto(s)
Aterosclerosis , Enfermedad de la Arteria Coronaria , Ferroptosis , ARN Largo no Codificante , Humanos , Enfermedad de la Arteria Coronaria/genética , Lipoproteínas LDL/farmacología , Macrófagos , Monocitos , ARN Largo no Codificante/genética
19.
Adv Healthc Mater ; 12(28): e2301407, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37591196

RESUMEN

Vascular inflammation is an early manifestation and common pathophysiological basis of numerous cardiovascular and cerebrovascular diseases. However, effective surveillance methods are lacking. In this study, sulfur hexafluoride (SF6 )-loaded polylactic acid-co-glycolic acid (PLGA) nanobubbles (NBs) with a surface assembly of cyclodextrin (CD) and sphingosine-1-phosphate (S1P) (S1P@CD-PLGA NBs) are designed. The characterization results show that S1P@CD-PLGA NBs with diameters of ≈200 nm have good stability, biosafety, and ultrasound imaging-enhancement effects. When interacting with inflammatory vascular endothelial cells, S1P molecules encapsulated in cyclodextrin cavities exhibit a rapid, excellent, and stable targeting effect owing to their specific interaction with the highly expressed S1P receptor 1 (S1PR1) on the inflammatory vascular endothelial cells. Particularly, the S1P-S1PR1 interaction further activates the downstream signaling pathway of S1PR1 to reduce the expression of tumor necrosis factor-α (TNF-α) to protect endothelial cells. Furthermore, mouse models of carotid endothelial injuries and mesenteric thrombosis demonstrate that S1P@CD-PLGA NBs have excellent capabilities for in vivo targeting imaging. In summary, this study proposes a new strategy of using S1P to target inflammatory vascular endothelial cells while reducing the expression of TNF-α, which has the potential to be utilized in the targeted surveillance and treatment of vascular inflammatory diseases.


Asunto(s)
Ciclodextrinas , Células Endoteliales , Ratones , Animales , Receptores de Esfingosina-1-Fosfato , Factor de Necrosis Tumoral alfa
20.
ACS Nano ; 17(15): 14555-14571, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37350440

RESUMEN

Persistent inflammation within atherosclerotic plaques is a crucial factor contributing to plaque vulnerability and rupture. It has become increasingly evident that the proinflammatory microenvironment of the plaque, characterized by heightened monocyte recruitment, oxidative stress, and impaired clearance of apoptotic cells, plays a significant role in perpetuating inflammation and impeding its resolution. Consequently, targeting and eliminating these proinflammatory features within the plaque microenvironment have emerged as a promising therapeutic approach to restore inflammation resolution and mitigate the progression of atherosclerosis. While recent advancements in nanotherapeutics have demonstrated promising results in targeting individual proinflammatory characteristics, the development of an effective therapeutic strategy capable of simultaneously addressing multiple proinflammatory features remains a challenge. In this study, we developed a multifunctional nanozyme based on Prussian blue, termed PBNZ@PP-Man, to simultaneously target and eliminate various proinflammatory factors within the plaque microenvironment. Through systematic investigations, we have elucidated the antiatherosclerotic mechanisms of PBNZ@PP-Man. Our results demonstrate that PBNZ@PP-Man possesses the ability to accumulate within atherosclerotic plaques and effectively eliminate multiple proinflammatory factors, leading to inflammation resolution. Specifically, PBNZ@PP-Man suppresses monocyte recruitment, scavenges reactive oxygen species, and enhances efferocytosis. Notably, PBNZ@PP-Man exhibits a much stronger efficacy to resolve the proinflammatory plaque microenvironment and attenuate atherosclerosis in comparison to the approach that merely eliminates one single risky factor in the plaque. It significantly enhances the inflammation resolution capabilities of macrophages and attenuates atherosclerosis. These results collectively underscore the importance of modulating the proinflammatory plaque microenvironment as a complementary strategy for resolving inflammation in atherosclerosis.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/tratamiento farmacológico , Aterosclerosis/tratamiento farmacológico , Macrófagos , Fagocitosis , Inflamación/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA