Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Chem Biol Interact ; 333: 109316, 2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33285127

RESUMEN

Streptomyces hygroscopicus UFPEDA 3370 was fermented in submerged cultivation and the biomass extract was partitioned, obtaining a fraction purified named EB1. After purification of EB1 fraction, nigericin free acid was obtained and identified. Nigericin presented cytotoxic activity against several cancer cell lines, being most active against HL-60 (human leukemia) and HCT-116 (human colon carcinoma) cell lines, presenting IC50 and (IS) values: 0.0014 µM, (30.0) and 0.0138 µM (3.0), respectively. On HCT-116, nigericin caused apoptosis and autophagy. In this study, nigericin was also screened both in vitro and in silico against a panel of cancer-related kinases. Nigericin was able to inhibit both JAK3 and GSK-3ß kinases in vitro and its binding affinities were mapped through the intermolecular interactions with each target in silico.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Colorrectales/patología , Nigericina/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Streptomyces/química , Antineoplásicos/química , Antineoplásicos/metabolismo , Apoptosis/efectos de los fármacos , Dominio Catalítico , Línea Celular Tumoral , Humanos , Janus Quinasa 3/antagonistas & inhibidores , Janus Quinasa 3/química , Janus Quinasa 3/metabolismo , Simulación del Acoplamiento Molecular , Nigericina/química , Nigericina/metabolismo , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/metabolismo
2.
Biochimie ; 166: 173-183, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30981871

RESUMEN

Formation of new blood vessels from preexisting ones, a process known as angiogenesis, is one of the limiting steps for success in treatment of ischemic disorders. Therefore, efforts to understanding and characterize new agents capable to stimulate neovascularization are a worldwide need. Crataeva tapia bark lectin (CrataBL) has been shown to have chemoattractant properties for endothelial cells through the stimulation of migration and invasiveness of human umbilical vein endothelial cells (HUVEC) because it is a positively charged protein with high affinity to glycosaminoglycan. In addition, CrataBL increased the production of chondroitin and heparan sulfate in endothelial cells. These findings orchestrated specific adhesion on collagen I and phosphorylation of tyrosine kinase receptors, represented by vascular endothelial growth factor receptor-2 (VEGFR-2) and fibroblast growth factor receptor (FGFR), whose downstream pathways trigger the angiogenic cascade increasing cell viability, cytoskeleton rearrangement, cell motility, and tube formation. Moreover, CrataBL inhibited the activity of matrix metalloproteases type 2 (MMP-2), a protein related to tissue remodeling. Likewise, CrataBL improved wound healing and increased the number of follicular structures in lesioned areas produced in the dorsum-cervical region of C57BL/6 mice. These outcomes altogether indicate that CrataBL is a pro-angiogenic and healing agent.


Asunto(s)
Inductores de la Angiogénesis/farmacología , Condroitín/metabolismo , Heparitina Sulfato/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Lectinas de Plantas/farmacología , Animales , Capparaceae/metabolismo , Movimiento Celular/efectos de los fármacos , Factores Quimiotácticos/farmacología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Cicatrización de Heridas/efectos de los fármacos
3.
Microb Pathog ; 131: 150-157, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30965089

RESUMEN

In this study, essential oil extracted from Syagrus coronata seeds (SCEO) was evaluated for antibacterial and antibiofilm activities against Staphylococcus aureus; in addition, Galleria mellonella model was used as an in vivo infection model. SCEO was mainly composed by fatty acids (89.79%) and sesquiterpenes (8.5%). The major components were octanoic acid, dodecanoic acid, decanoic acid and γ-eudesmol. SCEO showed bactericidal activity (minimal bactericidal concentration from 312 to 1250 µg/mL) against all tested S. aureus clinical isolates, which showed distinct biofilm-forming and multiple drug resistance phenotypes. SCEO weakly reduced biomass but remarkably decreased cell viability in pre-formed biofilms of S. aureus isolate UFPEDA-02 (ATCC-6538). Electron microscopy analysis showed that SCEO treatments decreased the number of bacterial cells (causing structural alterations) and lead to loss of the roughness in the multiple layers of the three-dimensional biofilm structure. In addition, overproduction of exopolymeric matrix was observed. SCEO at 31.2 mg/kg improved the survival of G. mellonela larvae inoculated with UFPEDA-02 isolate and reduced the bacterial load in hemolymph and melanization. In conclusion, SCEO is an antibacterial agent against S. aureus strains with different resistance phenotypes and able to disturb biofilm architecture. Our results show SCEO as a potential candidate to drug development.


Asunto(s)
Antibacterianos/farmacología , Arecaceae/química , Biopelículas/efectos de los fármacos , Lepidópteros/microbiología , Aceites Volátiles/farmacología , Extractos Vegetales/farmacología , Staphylococcus/efectos de los fármacos , Animales , Antibacterianos/química , Biopelículas/crecimiento & desarrollo , Brasil , Modelos Animales de Enfermedad , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Aceites Volátiles/química , Extractos Vegetales/química , Semillas/química , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo
4.
J Ethnopharmacol ; 233: 148-157, 2019 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-30658183

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Schinus terebinthifolia Raddi is a plant broadly used in folk medicine and the use of its leaf extract as an antitumor agent has been reported. AIM OF THE STUDY: To evaluate the antitumor potential and the toxicity of saline extract (SE) and lectin (SteLL) from S. terebinthifolia leaves in sarcoma 180-bearing mice. MATERIALS AND METHODS: Cytotoxicity to sarcoma 180 cells was tested in vitro, and antitumor assay was performed using Swiss female mice. The treatments (0.15 M NaCl, negative control; methotrexate 1.5 mg/kg, positive control; SE 100 mg/kg; SteLL 1 and 5 mg/kg) by intraperitoneal injections started on the 8th day after tumor inoculation and lasted 7 days. It was analyzed: tumor weight; number and gauge of tumor vessels; hematological and biochemical parameters; histopathological changes; and occurrence of micronuclei in bone marrow cells. RESULTS: SE and SteLL showed IC50 values (concentrations that reduced cell viability to 50%) of 301.65 and 8.30 µg/mL, respectively. The lectin was able to induce apoptosis. Treatments with the extract and lectin caused a 57.6-73.6% reduction in tumor weight, which was not significantly different from the reduction in the methotrexate group. Tumors of animals treated with SteLL at 5 mg/kg showed reduced number of secondary vessels while the gauge was lower in all treated groups. In the groups treated with SteLL, tumors showed reduced and slightly vascularized parenchyma, with necrosis in the center and at the periphery. No alterations in the blood levels of urea, creatine, and glucose were detected while serum AST level was moderately increased in the SE group. Histopathological analysis revealed vacuolization and steatosis in the liver of animals treated with the extract and lectin. In addition, the treatments with SE and SteLL resulted in the reduction of filtration space and alterations in tubular architecture in kidneys. In respect to hematological parameters, it was only detected increase in the number of monocytes in SE group. The extract and lectin did not induce the formation of micronuclei in the bone marrow cells. CONCLUSIONS: SE and SteLL had antitumor effect against sarcoma 180 without inducing hematological changes and genotoxic effects in mice; however, some degree of hepatic and renal toxicity was observed, suggesting the evaluation of drug delivery strategies in the future.


Asunto(s)
Anacardiaceae , Antineoplásicos/uso terapéutico , Extractos Vegetales/uso terapéutico , Lectinas de Plantas/uso terapéutico , Sarcoma 180/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Femenino , Riñón/efectos de los fármacos , Hígado/efectos de los fármacos , Ratones , Fitoterapia , Hojas de la Planta , Lectinas de Plantas/farmacología
5.
Int J Biol Macromol ; 98: 419-429, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28174088

RESUMEN

This work describes the isolation of a lectin (CasuL) from the leaf pinnulae of Calliandra surinamensis and the evaluation of its cytotoxic, antimicrobial and antibiofilm properties. Proteins from pinnulae extract were precipitated with ammonium sulphate (60% saturation) and submitted to Sephadex G-75 chromatography, which yielded isolated CasuL (purification factor: 113). Native CasuL is an acidic protein (pI 5.82) with a relative molecular mass of 48kDa. This lectin is also an oligomeric protein composed of three subunits and mass spectrometry revealed similarities with a Sorghum bicolor protein. CasuL did not undergo unfolding when heated but changes in conformation and hemagglutinating activity were detected at basic pH. CasuL did not reduce the viability of human peripheral blood mononuclear cells but was toxic to leukemic K562 cells (IC50 67.04±5.78µg/mL) and breast cancer T47D cells (IC50: 58.75±2.5µg/mL). CasuL (6.25-800µg/mL) only showed bacteriostatic effect but was able to reduce biofilm formation by Staphylococcus saprophyticcus and Staphylococcus aureus (non-resistant and oxacillin-resistant isolates). CasuL showed antifungal activity against Candida krusei causing alterations in cell morphology and damage to cell wall. In conclusion, the pinnulae of C. surinamensis leaves contain a thermo-stable lectin with biotechnological potential as cytotoxic, antibiofilm, and antifungal agent.


Asunto(s)
Antiinfecciosos/farmacología , Antineoplásicos/farmacología , Biopelículas/efectos de los fármacos , Fabaceae/química , Hojas de la Planta/química , Lectinas de Plantas/farmacología , Antiinfecciosos/química , Antiinfecciosos/aislamiento & purificación , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Candida/efectos de los fármacos , Candida/fisiología , Línea Celular Tumoral , Humanos , Pruebas de Sensibilidad Microbiana , Lectinas de Plantas/química , Lectinas de Plantas/aislamiento & purificación , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA