Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Intervalo de año de publicación
1.
EJNMMI Res ; 14(1): 26, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453813

RESUMEN

BACKGROUND: Glioblastoma is an extremely aggressive malignant tumor with a very poor prognosis. Due to the increased proliferation rate of glioblastoma, there is the development of hypoxic regions, characterized by an increased concentration of copper (Cu). Considering this, 64Cu has attracted attention as a possible theranostic radionuclide for glioblastoma. In particular, [64Cu]CuCl2 accumulates in glioblastoma, being considered a suitable agent for positron emission tomography. Here, we explore further the theranostic potential of [64Cu]CuCl2, by studying its therapeutic effects in advanced three-dimensional glioblastoma cellular models. First, we established spheroids from three glioblastoma (T98G, U373, and U87) and a non-tumoral astrocytic cell line. Then, we evaluated the therapeutic responses of spheroids to [64Cu]CuCl2 exposure by analyzing spheroids' growth, viability, and cells' proliferative capacity. Afterward, we studied possible mechanisms responsible for the therapeutic outcomes, including the uptake of 64Cu, the expression levels of a copper transporter (CTR1), the presence of a cancer stem cell population, and the production of reactive oxygen species (ROS). RESULTS: Results revealed that [64Cu]CuCl2 is able to significantly reduce spheroids' growth and viability, while also affecting cells' proliferation capacity. The uptake of 64Cu, the presence of cancer stem-like cells and the production of ROS were in accordance with the therapeutic response. However, expression levels of CTR1 were not in agreement with uptake levels, revealing that other mechanisms could be involved in the uptake of 64Cu. CONCLUSIONS: Overall, our results further support [64Cu]CuCl2 potential as a theranostic agent for glioblastoma, unveiling potential mechanisms that could be involved in the therapeutic response.

2.
J Inorg Biochem ; 240: 112091, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36527994

RESUMEN

Gallium and indium octahedral complexes with isoniazid derivative ligands were successfully prepared. The ligands, isonicotinoyl benzoylacetone (H2L1) and 4-chlorobenzoylacetone isonicotinoyl hydrazone (H2L2), and their respective coordination compounds with gallium and indium [GaL1(HL1)] (GaL1), [GaL2(HL2)] (GaL2), [InL1(HL1)] (InL1) and [InL2(HL2)] (InL2) were investigated by NMR, ESI-MS, UV-Vis, IR, single-crystal X-ray diffraction and elemental analysis. In vitro interaction studies with human serum albumin (HSA) evidenced a moderate affinity of all complexes with HSA through spontaneous hydrophobic interactions. The greatest suppression of HSA fluorescence was caused by GaL2 and InL2, which was associated to the higher lipophilicity of H2L2. In vitro interaction studies with CT-DNA indicated weak interactions of the biomolecule with all complexes. Cytotoxicity assays with MCF-7 (breast carcinoma), PC-3 (prostate carcinoma) and RWPE-1 (healthy human prostate epithelial) cell lines showed that complexes with H2L2 are more active and selective against MCF-7, with the greatest cytotoxicity observed for InL2 (IC50 = 10.34 ± 1.69 µM). H2L1 and H2L2 were labelled with gallium-67, and it was verified that 67GaL2 has a greater lipophilicity than 67GaL1, as well as higher stability in human serum or in the presence of apo-transferrin. Cellular uptake assays with 67GaL1 and 67GaL2 evidenced that the H2L2-containing radiocomplex has a higher accumulation in MCF-7 and PC-3 cells than the non-halogenated congener 67GaL1. The anti-Mycobacterium tuberculosis assays revealed that both ligands and metal complexes are potent growth inhibitors, with MIC90 (µg mL-1) values observed from 0.419 ± 0.05 to 1.378 ± 0.21.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Galio , Mycobacterium tuberculosis , Neoplasias , Tuberculosis , Masculino , Humanos , Isoniazida/farmacología , Indio/farmacología , Galio/farmacología , Galio/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Ligandos , Antineoplásicos/farmacología , Antineoplásicos/química
3.
J Mater Chem B ; 10(47): 9794-9815, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36373493

RESUMEN

Glioblastoma multiforme (GBM) is the most common and fatal primary brain tumor, and is highly resistant to conventional radiotherapy and chemotherapy. Therefore, the development of multidrug resistance and tumor recurrence are frequent. Given the poor survival with the current treatments, new therapeutic strategies are urgently needed. Radiotherapy (RT) is a common cancer treatment modality for GBM. However, there is still a need to improve RT efficiency, while reducing the severe side effects. Radiosensitizers can enhance the killing effect on tumor cells with less side effects on healthy tissues. Herein, we present our pioneering study on the highly stable and amphiphilic metallacarboranes, ferrabis(dicarbollides) ([o-FESAN]- and [8,8'-I2-o-FESAN]-), as potential radiosensitizers for GBM radiotherapy. We propose radiation methodologies that utilize secondary radiation emissions from iodine and iron, using ferrabis(dicarbollides) as iodine/iron donors, aiming to achieve a greater therapeutic effect than that of a conventional radiotherapy. As a proof-of-concept, we show that using 2D and 3D models of U87 cells, the cellular viability and survival were reduced using this treatment approach. We also tested for the first time the proton boron fusion reaction (PBFR) with ferrabis(dicarbollides), taking advantage of their high boron (11B) content. The results from the cellular damage response obtained suggest that proton boron fusion radiation therapy, when combined with boron-rich compounds, is a promising modality to fight against resistant tumors. Although these results are encouraging, more developments are needed to further explore ferrabis(dicarbollides) as radiosensitizers towards a positive impact on the therapeutic strategies for GBM.


Asunto(s)
Boro , Protones
4.
Antibiotics (Basel) ; 11(8)2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-36009879

RESUMEN

The cytotoxic activity of four sets of camphorimine complexes based on the Cu(I), Cu(II), Ag(I), and Au(I) metal sites were assessed against the cisplatin-sensitive A2780 and OVCAR3 ovarian cancer cells. The results showed that the gold complexes were ca. one order of magnitude more active than the silver complexes, which in turn were ca. one order of magnitude more active than the copper complexes. An important finding was that the cytotoxic activity of the Ag(I) and Au(I) camphorimine complexes was higher than that of cisplatin. Another relevant aspect was that the camphorimine complexes did not interact significantly with DNA, in contrast with cisplatin. The cytotoxic activity of the camphorimine complexes displayed a direct relationship with the cellular uptake by OVCAR3 cells, as ascertained by PIXE (particle-induced X-ray emission). The levels of ROS (reactive oxygen species) formation exhibited an inverse relationship with the reduction potentials for the complexes with the same metal, as assessed by cyclic voltammetry. In order to gain insight into the toxicity of the complexes, their cytotoxicity toward nontumoral cells (HDF and V79 fibroblasts) was evaluated. The in vivo cytotoxicity of complex 5 using the nematode Caenorhabditis elegans was also assessed. The silver camphorimine complexes displayed the highest selectivity coefficients (activity vs. toxicity).

5.
Int J Mol Sci ; 23(13)2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35806151

RESUMEN

The biological properties of sixteen structurally related monoanionic gold (III) bis(dithiolene/ diselenolene) complexes were evaluated. The complexes differ in the nature of the heteroatom connected to the gold atom (AuS for dithiolene, AuSe for diselenolene), the substituent on the nitrogen atom of the thiazoline ring (Me, Et, Pr, iPr and Bu), the nature of the exocyclic atom or group of atoms (O, S, Se, C(CN)2) and the counter-ion (Ph4P+ or Et4N+). The anticancer and antimicrobial activities of all the complexes were investigated, while the anti-HIV activity was evaluated only for selected complexes. Most complexes showed relevant anticancer activities against Cisplatin-sensitive and Cisplatin-resistant ovarian cancer cells A2780 and OVCAR8, respectively. After 48 h of incubation, the IC50 values ranged from 0.1-8 µM (A2780) and 0.8-29 µM (OVCAR8). The complexes with the Ph4P+ ([P]) counter-ion are in general more active than their Et4N+ ([N]) analogues, presenting IC50 values in the same order of magnitude or even lower than Auranofin. Studies in the zebrafish embryo model further showed that, despite their marked anticancer effect, the complexes with [P] counter-ion exhibited low in vivo toxicity. In general, the exocyclic exchange of sulfur by oxygen or ylidenemalononitrile (C(CN)2) enhanced the compounds toxicity. Most complexes containing the [P] counter ion exhibited exceptional antiplasmodial activity against the Plasmodium berghei parasite liver stages, with submicromolar IC50 values ranging from 400-700 nM. In contrast, antibacterial/fungi activities were highest for most complexes with the [N] counter-ion. Auranofin and two selected complexes [P][AuSBu(=S)] and [P][AuSEt(=S)] did not present anti-HIV activity in TZM-bl cells. Mechanistic studies for selected complexes support the idea that thioredoxin reductase, but not DNA, is a possible target for some of these complexes. The complexes [P] [AuSBu(=S)], [P] [AuSEt(=S)], [P] [AuSEt(=Se)] and [P] [AuSeiPr(=S)] displayed a strong quenching of the fluorescence intensity of human serum albumin (HSA), which indicates a strong interaction with this protein. Overall, the results highlight the promising biological activities of these complexes, warranting their further evaluation as future drug candidates with clinical applicability.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Animales , Antineoplásicos/farmacología , Auranofina , Línea Celular Tumoral , Cisplatino , Femenino , Oro/farmacología , Humanos , Pez Cebra
6.
Int J Mol Sci ; 23(13)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35806239

RESUMEN

Although 99mTc is not an ideal Auger electron (AE) emitter for Targeted Radionuclide Therapy (TRT) due to its relatively low Auger electron yield, it can be considered a readily available "model" radionuclide useful to validate the design of new classes of AE-emitting radioconjugates. With this in mind, we performed a detailed study of the radiobiological effects and mechanisms of cell death induced by the dual-targeted radioconjugates 99mTc-TPP-BBN and 99mTc-AO-BBN (TPP = triphenylphosphonium; AO = acridine orange; BBN = bombesin derivative) in human prostate cancer PC3 cells. 99mTc-TPP-BBN and 99mTc-AO-BBN caused a remarkably high reduction of the survival of PC3 cells when compared with the single-targeted congener 99mTc-BBN, leading to an augmented formation of γH2AX foci and micronuclei. 99mTc-TPP-BBN also caused a reduction of the mtDNA copy number, although it enhanced the ATP production by PC3 cells. These differences can be attributed to the augmented uptake of 99mTc-TPP-BBN in the mitochondria and enhanced uptake of 99mTc-AO-BBN in the nucleus, allowing the irradiation of these radiosensitive organelles with the short path-length AEs emitted by 99mTc. In particular, the results obtained for 99mTc-TPP-BBN reinforce the relevance of targeting the mitochondria to promote stronger radiobiological effects by AE-emitting radioconjugates.


Asunto(s)
Electrones , Neoplasias , Línea Celular Tumoral , Núcleo Celular/efectos de la radiación , Humanos , Masculino , Mitocondrias , Radioisótopos , Radiofármacos/farmacología , Tecnecio
7.
Cancers (Basel) ; 13(24)2021 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-34944987

RESUMEN

PURPOSE: The aim of our study was to assess if the sodium salt of cobaltabis(dicarbollide) and its di-iodinated derivative (Na[o-COSAN] and Na[8,8'-I2-o-COSAN]) could be promising agents for dual anti-cancer treatment (chemotherapy + BNCT) for GBM. METHODS: The biological activities of the small molecules were evaluated in vitro with glioblastoma cells lines U87 and T98G in 2D and 3D cell models and in vivo in the small model animal Caenorhabditis elegans (C. elegans) at the L4-stage and using the eggs. RESULTS: Our studies indicated that only spheroids from the U87 cell line have impaired growth after treatment with both compounds, suggesting an increased resistance from T98G spheroids, contrary to what was observed in the monolayer culture, which highlights the need to employ 3D models for future GBM studies. In vitro tests in U87 and T98G cells conclude that the amount of 10B inside the cells is enough for BNCT irradiation. BNCT becomes more effective on T98G after their incubation with Na[8,8'-I2-o-COSAN], whereas no apparent cell-killing effect was observed for untreated cells. CONCLUSIONS: These small molecules, particularly [8,8'-I2-o-COSAN]-, are serious candidates for BNCT now that the facilities of accelerator-based neutron sources are more accessible, providing an alternative treatment for resistant glioblastoma.

8.
Front Mol Biosci ; 7: 609172, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33335914

RESUMEN

Prostate cancer (PCa) is the second most common cancer type in men, and in advanced metastatic stages is considerable incurable. This justifies the need for efficient early diagnostic methods and novel therapies, particularly radiopharmaceuticals with the potential for simultaneous diagnosis and therapy (theranostics). We have previously demonstrated, using monolayer-cultured cells, that copper-64 chloride, a promising theranostic agent for PCa, has the potential to induce significant damage in cancer cells while having minimal side effects in healthy tissues. Here, we further explored this compound for its theranostic applications using more advanced PCa cellular models, specifically multicellular spheroids. Namely, we evaluated the cellular uptake of 64CuCl2 in three human PCa spheroids (derived from 22RV1, DU145, and LNCaP cells), and characterized the growth profile and viability of those spheroids as well as the clonogenic capacity of spheroid-derived cells after exposure to 64CuCl2. Furthermore, the populations of cancer stem cells (CSCs), known to be important for cancer resistance and recurrence, present in the spheroid models were also evaluated using two different markers (CD44 and CD117). 64CuCl2 was found to have significant detrimental effects in spheroids and spheroid-derived cells, being able to reduce their growth and impair the viability and reproductive ability of spheroids from both castration-resistant (22RV1 and DU145) and hormone-naïve PCa (LNCaP). Interestingly, resistance to 64CuCl2 treatment seemed to be related with the presence of a CSC population, since the most resistant spheroids, derived from the DU145 cell line, had the highest initial percentage of CSCs among the three cell lines under study. Altogether, these results clearly highlight the theranostic potential of 64CuCl2.

9.
Metallomics ; 12(6): 974-987, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32391537

RESUMEN

The anticancer, antimicrobial and antiplasmodial activities of six gold(iii) bis(dithiolene) complexes were studied. Complexes 1-6 showed relevant anticancer properties against A2780/A2780cisR ovarian cancer cells (IC50 values of 0.08-2 µM), also being able to overcome cisplatin resistance in A2780cisR cells. Complex 1 also exhibited significant antimicrobial activity against Staphylococcus aureus (minimum inhibitory concentration (MIC) values of 12.1 ± 3.9 µg mL-1) and both Candida glabrata and Candida albicans (MICs of 9.7 ± 2.7 and 19.9 ± 2.4 µg mL-1, respectively). In addition, all complexes displayed antiplasmodial activity against the Plasmodium berghei parasite liver stages, even exhibiting better results than the ones obtained using primaquine, an anti-malarial drug. Mechanistic studies support the idea that thioredoxin reductase, but not DNA, is a possible target of these complexes. Complex 1 is stable under biological conditions, which would be important if this compound is ever to be considered as a drug. Overall, the results obtained evidenced the promising biological activity of complex 1, which might have potential as a novel anticancer, antimicrobial and antiplasmodial agent to be used as an alternative to current therapeutics.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Antimaláricos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Oro/química , Antimaláricos/química , Línea Celular Tumoral , Femenino , Humanos , Pruebas de Sensibilidad Microbiana , Neoplasias Ováricas/metabolismo , Plasmodium berghei/efectos de los fármacos , Estudios Prospectivos , Espectrometría de Fluorescencia , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/metabolismo , Relación Estructura-Actividad , Reductasa de Tiorredoxina-Disulfuro/metabolismo
10.
RSC Adv ; 10(22): 12699-12710, 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35492123

RESUMEN

Gliomas are the most common type of primary brain tumors, presenting high mortality and recurrence rates that highlight the need for the development of more efficient therapies. In that context, we investigated iron(iii) (FeL) and copper(ii) (CuL) complexes containing the tetradentate ligand 2-{[(3-chloro-2-hydroxy-propyl)-pyridin-2-ylmethyl-amino]-methyl}-phenol (L) as potential antimetastatic compounds in glioma cells. These complexes were designed to act as mimetics of antioxidant metalloenzymes (catalases and superoxide dismutase) and thus interfere with the production of reactive oxygen species (ROS), important signaling molecules that have been linked to the induction of Epithelial-Mesenchymal Transition (EMT) in cancer cells, a process associated with cancer invasion and aggressiveness. The results obtained have revealed that, in vitro, both compounds act as superoxide dismutase or catalase mimetics, and this translated in glioma cells into a decrease in ROS levels in FeL-treated cells. In addition, both complexes were found to inhibit the migration of monolayer-grown H4 cells and lead to decreased expression of EMT markers. More importantly, this behavior was recapitulated in 3D spheroids models, where CuL in particular was found to completely inhibit the invasion ability of glioma cells, with or without cellular irradiation with X-rays, which is suggestive of these compounds' potential to be used in combination with radiotherapy. Overall, the results herein obtained describe the novel use of these complexes as agents that are able to interfere with regulation of EMT and the invasive behavior of glioma cells, an application that deserves to be further explored.

11.
J Inorg Biochem ; 202: 110904, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31671298

RESUMEN

The emergence of resistance to antimicrobial and anticancer drugs poses severe threats to public health worldwide, highlighting the need for more efficient treatments. Here, four monoanionic Au bisdithiolate complexes [Au(mnt)2]- (where mnt = 1,1-dicyanoethylene-2,2-dithiolate)(1), [Au(i-mnt)2]- (where i-mnt = 2,2-dicyanoethylene-1,1-dithiolate)(2), [Au(cdc)2]- (where cdc = cyanodithioimido carbonate)(3), and [Au(qdt)2]- (where qdt = quinoxaline-2,3-dithiolate)(4) were screened for their antimicrobial and antitumor activities. Complexes 3 and 4 showed antibacterial activity against Staphylococcus aureus [minimal inhibitory concentration (MIC) = 15.3 and 14.7 µg/mL, respectively]. Complex 3 also caused significant growth inhibition of Candida glabrata (MIC = 7.0 µg/mL). Concentrations of complexes 1-4 up to 125 µg/mL had no growth inhibition activity against Escherichia coli. The cytotoxic activity of complexes 1-4 was evaluated against the ovarian cancer cells A2780 and A2780cisR, sensitive and resistant to cisplatin, respectively. All compounds showed high cytotoxic activities against both tumoral cell lines, exhibiting IC50 values in the low micromolar range (0.9-5.5 µM) upon 48 h incubation. In contrast to complex 1, the complexes 2-4 induced a dose-dependent formation of reactive oxygen species (ROS), similar to the observed for the reference drugs auranofin and cisplatin. Opposite to 4, complexes 1-3 were able to activate caspase 3/7, suggesting the involvement of apoptosis in the mechanism of cell death. Contrasting with cisplatin, complexes 3, 4 and auranofin did not cause DNA damage. Combined, these data provide evidence that these monoanionic gold bisdithiolates, particularly complex 3, are potential lead compounds to further explore as therapeutic drugs.


Asunto(s)
Antiinfecciosos/farmacología , Antineoplásicos/farmacología , Oro/química , Compuestos Organometálicos/farmacología , Compuestos de Sulfhidrilo/química , Antiinfecciosos/química , Antineoplásicos/química , Apoptosis , Candida glabrata/efectos de los fármacos , Caspasa 3/metabolismo , Cisplatino/farmacología , Escherichia coli/efectos de los fármacos , Femenino , Humanos , Pruebas de Sensibilidad Microbiana , Compuestos Organometálicos/química , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Staphylococcus aureus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA