Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Biochim Biophys Acta Gen Subj ; 1867(12): 130489, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37827204

RESUMEN

BACKGROUND: Entamoeba histolytica, an intestinal parasitic protozoan that usually lives and multiplies within the human gut, is the causative agent of amoebiasis. To date, de novo glutathione biosynthesis and its associated enzymes have not been identified in the parasite. Cysteine has been proposed to be the main intracellular thiol. METHODS: Using bioinformatics tools to search for glutaredoxin homologs in the E. histolytica genome database, we identified a coding sequence for a putative Grx-like small protein (EhGLSP) in the E. histolytica HM-1:IMSS genome. We produced the recombinant protein and performed its biochemical characterization. RESULTS: Through in vitro experiments, we observed that recombinant EhGLSP could bind GSH and L-Cys as ligands. However, the protein exhibited very low GSH-dependent disulfide reductase activity. Interestingly, via UV-Vis spectroscopy and chemical analysis, we detected that recombinant EhGLSP (freshly purified from Escherichia coli cells by IMAC) was isolated together with a redox-labile [FeS] bio-inorganic complex, suggesting that this protein could have some function linked to the metabolism of this cofactor. Western blotting showed that EhGLSP protein levels were modulated in E. histolytica cells exposed to exogenous oxidative species and metronidazole, suggesting that this protein cooperates with the antioxidant mechanisms of this parasite. CONCLUSIONS AND GENERAL SIGNIFICANCE: Our findings support the existence of a new metabolic actor in this pathogen. To the best of our knowledge, this is the first report on this protein class in E. histolytica.


Asunto(s)
Entamoeba histolytica , Parásitos , Animales , Humanos , Entamoeba histolytica/genética , Entamoeba histolytica/metabolismo , Parásitos/metabolismo , Anaerobiosis , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Proteínas Protozoarias/metabolismo
2.
Biochimie ; 213: 190-204, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37423556

RESUMEN

Trypanosoma cruzi is the causal agent of Chagas Disease and is a unicellular parasite that infects a wide variety of mammalian hosts. The parasite exhibits auxotrophy by L-Met; consequently, it must be acquired from the extracellular environment of the host, either mammalian or invertebrate. Methionine (Met) oxidation produces a racemic mixture (R and S forms) of methionine sulfoxide (MetSO). Reduction of L-MetSO (free or protein-bound) to L-Met is catalyzed by methionine sulfoxide reductases (MSRs). Bioinformatics analyses identified the coding sequence for a free-R-MSR (fRMSR) enzyme in the genome of T. cruzi Dm28c. Structurally, this enzyme is a modular protein with a putative N-terminal GAF domain linked to a C-terminal TIP41 motif. We performed detailed biochemical and kinetic characterization of the GAF domain of fRMSR in combination with mutant versions of specific cysteine residues, namely, Cys12, Cys98, Cys108, and Cys132. The isolated recombinant GAF domain and full-length fRMSR exhibited specific catalytic activity for the reduction of free L-Met(R)SO (non-protein bound), using tryparedoxins as reducing partners. We demonstrated that this process involves two Cys residues, Cys98 and Cys132. Cys132 is the essential catalytic residue on which a sulfenic acid intermediate is formed. Cys98 is the resolutive Cys, which forms a disulfide bond with Cys132 as a catalytic step. Overall, our results provide new insights into redox metabolism in T. cruzi, contributing to previous knowledge of L-Met metabolism in this parasite.


Asunto(s)
Metionina Sulfóxido Reductasas , Trypanosoma cruzi , Metionina Sulfóxido Reductasas/genética , Metionina Sulfóxido Reductasas/química , Metionina Sulfóxido Reductasas/metabolismo , Trypanosoma cruzi/genética , Oxidación-Reducción , Cisteína/química , Metionina/metabolismo
3.
Biochimie ; 197: 144-159, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35217125

RESUMEN

Thiol redox proteins and low molecular mass thiols have essential functions in maintaining cellular redox balance in almost all living organisms. In the pathogenic bacterium Leptospira interrogans, several redox components have been described, namely, typical 2-Cys peroxiredoxin, a functional thioredoxin system, glutathione synthesis pathway, and methionine sulfoxide reductases. However, until now, information about proteins linked to GSH metabolism has not been reported in this pathogen. Glutaredoxins (Grxs) are GSH-dependent oxidoreductases that regulate and maintain the cellular redox state together with thioredoxins. This work deals with recombinant production at a high purity level, biochemical characterization, and detailed kinetic and structural study of the two Grxs (Lin1CGrx and Lin2CGrx) identified in L. interrogans serovar Copenhageni strain Fiocruz L1-130. Both recombinant LinGrxs exhibited the classical in vitro GSH-dependent 2-hydroxyethyl disulfide and dehydroascorbate reductase activity. Strikingly, we found that Lin2CGrx could serve as a substrate of methionine sulfoxide reductases A1 and B from L. interrogans. Distinctively, only recombinant Lin1CGrx contained a [2Fe2S] cluster confirming a homodimeric structure. The functionality of both LinGrxs was assessed by yeast complementation in null grx mutants, and both isoforms were able to rescue the mutant phenotype. Finally, our data suggest that protein glutathionylation as a post-translational modification process is present in L. interrogans. As a whole, our results support the occurrence of two new redox actors linked to GSH metabolism and iron homeostasis in L. interrogans.


Asunto(s)
Glutarredoxinas , Leptospira interrogans , Glutarredoxinas/química , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Glutatión/metabolismo , Leptospira interrogans/genética , Leptospira interrogans/metabolismo , Metionina Sulfóxido Reductasas/metabolismo , Oxidación-Reducción , Compuestos de Sulfhidrilo/química , Tiorredoxinas/metabolismo , Tolueno/análogos & derivados
4.
Free Radic Biol Med ; 143: 366-374, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31465831

RESUMEN

BACKGROUND: Glutathione (GSH) plays a role as a main antioxidant metabolite in all eukaryotes and many prokaryotes. Most of the organisms synthesize GSH by a pathway involving two enzymatic reactions, each one consuming one molecule of ATP. In a first step mediated by glutamate-cysteine ligase (GCL), the carboxylate of l-glutamic acid reacts with l-cysteine to form the dipeptide γ-glutamylcysteine (γ-GC). The second step involves the addition of glycine to the C-terminal of γ-GC catalyzed by glutathione synthetase (GS). In many bacteria, such as in the pathogen Leptospira interrogans, the main intracellular thiol has not yet been identified and the presence of GSH is not clear. METHODS: We performed the molecular cloning of the genes gshA and gshB from L. interrogans; which respectively code for GCL and GS. After heterologous expression of the cloned genes we recombinantly produced the respective proteins with high degree of purity. These enzymes were exhaustively characterized in their biochemical properties. In addition, we determined the contents of GSH and the activity of related enzymes (and proteins) in cell extracts of the bacterium. RESULTS: We functionally characterized GCL and GS, the two enzymes putatively involved in GSH synthesis in L. interrogans serovar Copenhageni. LinGCL showed higher substrate promiscuity (was active in presence of l-glutamic acid, l-cysteine and ATP, and also with GTP, l-aspartic acid and l-serine in lower proportion) unlike LinGS (which was only active with γ-GC, l-glycine and ATP). LinGCL is significantly inhibited by γ-GC and GSH, the respective intermediate and final product of the synthetic pathway. GSH showed inhibitory effect over LinGS but with a lower potency than LinGCL. Going further, we detected the presence of GSH in L. interrogans cells grown under basal conditions and also determined enzymatic activity of several GSH-dependent/related proteins in cell extracts. CONCLUSIONS: and General Significance. Our results contribute with novel insights concerning redox metabolism in L. interrogans, mainly supporting that GSH is part of the antioxidant defense in the bacterium.


Asunto(s)
Proteínas Bacterianas/metabolismo , Glutamato-Cisteína Ligasa/metabolismo , Glutatión Sintasa/metabolismo , Glutatión/metabolismo , Leptospira interrogans/metabolismo , Proteínas Bacterianas/genética , Clonación Molecular , Glutamato-Cisteína Ligasa/genética , Glutatión Sintasa/genética , Leptospira interrogans/genética , Leptospira interrogans/crecimiento & desarrollo , Oxidación-Reducción
5.
Biochimie ; 154: 176-186, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30223004

RESUMEN

Many oligo and polysaccharides (including paramylon) are critical in the Euglena gracilis life-cycle and they are synthesized by glycosyl transferases using UDP-glucose as a substrate. Herein, we report the molecular cloning of a gene putatively coding for a UDP-glucose pyrophosphorylase (EgrUDP-GlcPPase) in E. gracilis. After heterologous expression of the gene in Escherichia coli, the recombinant enzyme was characterized structural and functionally. Highly purified EgrUDP-GlcPPase exhibited a monomeric structure, able to catalyze synthesis of UDP-glucose with a Vmax of 3350 U.mg-1. Glucose-1P and UTP were the preferred substrates, although the enzyme also used (with lower catalytic efficiency) TTP, galactose-1P and mannose-1P. Oxidation by hydrogen peroxide inactivated the enzyme, an effect reversed by reduction with dithiothreitol or thioredoxin. The redox process would involve sulfenic acid formation, since no pair of the 7 cysteine residues is close enough in the 3D structure of the protein to form a disulfide bridge. Electrophoresis studies suggest that, after oxidation, the enzyme arranges in many enzymatically inactive structural conformations; which were also detected in vivo. Finally, confocal fluorescence microscopy provided evidence for a cytosolic (mainly in the flagellum) localization of the enzyme.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Euglena gracilis/enzimología , Glucanos/química , UTP-Glucosa-1-Fosfato Uridililtransferasa/química , Catálisis , Glucanos/metabolismo , Cinética , Dominios Proteicos , UTP-Glucosa-1-Fosfato Uridililtransferasa/metabolismo
6.
Free Radic Biol Med ; 97: 1-13, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27178006

RESUMEN

Low molecular mass thiols and antioxidant enzymes have essential functions to detoxify reactive oxygen and nitrogen species maintaining cellular redox balance. The metabolic pathways for redox homeostasis in pathogenic (Leptospira interrogans) and free-living (Leptospira biflexa) leptospires species were not functionally characterized. We performed biochemical studies on recombinantly produced proteins to in depth analyze kinetic and structural properties of thioredoxin reductase (LinTrxR) and thioredoxin (LinTrx) from L. interrogans, and two TrxRs (LbiTrxR1 and LbiTrxR2) from L. biflexa. All the TrxRs were characterized as homodimeric flavoproteins, with LinTrxR and LbiTrxR1 catalyzing the NADPH dependent reduction of LinTrx and DTNB. The thioredoxin system from L. interrogans was able to use glutathione disulfide, lipoamide disulfide, cystine and bis-γ-glutamyl cysteine and homologous peroxiredoxin as substrates. Classic TrxR activity of LinTrxR2 had not been evidenced in vitro, but recombinant Escherichia coli cells overexpressing LbiTrxR2 showed high tolerance to oxidative stress. The enzymatic systems herein characterized could play a key role for the maintenance of redox homeostasis and the function of defense mechanisms against reactive oxidant species in Leptospira spp. Our results contribute to the general knowledge about redox biochemistry in these bacteria, positioning TrxR as a critical molecular target for the development of new anti-leptospiral drugs.


Asunto(s)
Leptospirosis/metabolismo , Estrés Oxidativo/genética , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Tiorredoxinas/metabolismo , Antioxidantes/metabolismo , Ácido Ditionitrobenzoico/metabolismo , Escherichia coli/genética , Disulfuro de Glutatión/metabolismo , Humanos , Cinética , Leptospira interrogans/metabolismo , Leptospira interrogans/patogenicidad , Leptospirosis/microbiología , Oxidación-Reducción , Peroxirredoxinas/metabolismo , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Compuestos de Sulfhidrilo/química , Reductasa de Tiorredoxina-Disulfuro/química , Reductasa de Tiorredoxina-Disulfuro/genética , Tiorredoxinas/química , Tiorredoxinas/genética
7.
J Proteomics ; 120: 95-104, 2015 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-25765699

RESUMEN

Trypanosoma cruzi, the causative agent of Chagas disease, possesses two tryparedoxins (TcTXNI and TcTXNII), belonging to the thioredoxin superfamily. TXNs are oxidoreductases which mediate electron transfer between trypanothione and peroxiredoxins. This constitutes a difference with the host cells, in which these activities are mediated by thioredoxins. These differences make TXNs an attractive target for drug development. In a previous work we characterized TcTXNI, including the redox interactome. In this work we extend the study to TcTXNII. We demonstrate that TcTXNII is a transmembrane protein anchored to the surface of the mitochondria and endoplasmic reticulum, with a cytoplasmatic orientation of the redox domain. It would be expressed during the metacyclogenesis process. In order to continue with the characterization of the redox interactome of T. cruzi, we designed an active site mutant TcTXNII lacking the resolving cysteine, and through the expression of this mutant protein and incubation with T. cruzi proteins, heterodisulfide complexes were isolated by affinity chromatography and identified by mass spectrometry. This allowed us to identify sixteen TcTXNII interacting proteins, which are involved in a wide range of cellular processes, indicating the relevance of TcTXNII, and contributing to our understanding of the redox interactome of T. cruzi. BIOLOGICAL SIGNIFICANCE: T. cruzi, the causative agent of Chagas disease, constitutes a major sanitary problem in Latin America. The number of estimated infected persons is ca. 8 million, 28 million people are at risk of infection and ~20,000 deaths occur per year in endemic regions. No vaccines are available at present, and most drugs currently in use were developed decades ago and show variable efficacy with undesirable side effects. The parasite is able to live and prolipherate inside macrophage phagosomes, where it is exposed to cytotoxic reactive oxygen and nitrogen species, derived from macrophage activation. Therefore, T. cruzi antioxidant mechanisms constitute an active field of investigation, since they could provide the basis for a rational drug development. Peroxide detoxification in this parasite is achieved by ascorbate peroxidase and different thiol-dependent peroxidases. Among them, both mitochondrial and cytosolic tryparedoxin peroxidases, typical two-cysteine peroxiredoxins, were found to be important for hydrogen peroxide and peroxynitrite detoxification and their expression levels correlated with parasite infectivity and virulence. In trypanosomes tryparedoxins and not thioredoxins act as peroxiredoxin reductases, suggesting that these enzymes substitute thioredoxins in these parasites. T. cruzi possesses two tryparedoxin genes, TcTXNI and TcTXN II. Since thioredoxins are proteins with several targets actively participating of complex redox networks, we have previously investigated if this is the case also for TcTXNI, for which we described relevant partners (J Proteomics. 2011;74(9):1683-92). In this manuscript we investigated the interactions of TcTXNII. We have designed an active site mutant tryparedoxin II lacking the resolving cysteine and, through the expression of this mutant protein and its incubation with T. cruzi proteins, hetero disulfide complexes were isolated by affinity chromatography purification and identified by electrophoresis separation and MS identification. This allowed us to identify sixteen TcTXNII interacting proteins which are involved in different and relevant cellular processes. Moreover, we demonstrate that TcTXNII is a transmembrane protein anchored to the surface of the mitochondria and endoplasmic reticulum.


Asunto(s)
Metaboloma/fisiología , Mapeo de Interacción de Proteínas/métodos , Proteoma/metabolismo , Proteínas Protozoarias/metabolismo , Tiorredoxinas/metabolismo , Trypanosoma cruzi/metabolismo
8.
Biochim Biophys Acta ; 1850(1): 13-21, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25277548

RESUMEN

BACKGROUND: Mycobacterium tuberculosis is a pathogenic prokaryote adapted to survive in hostile environments. In this organism and other Gram-positive actinobacteria, the metabolic pathways of glycogen and trehalose are interconnected. RESULTS: In this work we show the production, purification and characterization of recombinant enzymes involved in the partitioning of glucose-1-phosphate between glycogen and trehalose in M. tuberculosis H37Rv, namely: ADP-glucose pyrophosphorylase, glycogen synthase, UDP-glucose pyrophosphorylase and trehalose-6-phosphate synthase. The substrate specificity, kinetic parameters and allosteric regulation of each enzyme were determined. ADP-glucose pyrophosphorylase was highly specific for ADP-glucose while trehalose-6-phosphate synthase used not only ADP-glucose but also UDP-glucose, albeit to a lesser extent. ADP-glucose pyrophosphorylase was allosterically activated primarily by phosphoenolpyruvate and glucose-6-phosphate, while the activity of trehalose-6-phosphate synthase was increased up to 2-fold by fructose-6-phosphate. None of the other two enzymes tested exhibited allosteric regulation. CONCLUSIONS: Results give information about how the glucose-1-phosphate/ADP-glucose node is controlled after kinetic and regulatory properties of key enzymes for mycobacteria metabolism. GENERAL SIGNIFICANCE: This work increases our understanding of oligo and polysaccharides metabolism in M. tuberculosis and reinforces the importance of the interconnection between glycogen and trehalose biosynthesis in this human pathogen.


Asunto(s)
Glucofosfatos/metabolismo , Glucógeno/biosíntesis , Redes y Vías Metabólicas , Mycobacterium tuberculosis/metabolismo , Trehalosa/biosíntesis , Regulación Alostérica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Glucosa-1-Fosfato Adenililtransferasa/genética , Glucosa-1-Fosfato Adenililtransferasa/metabolismo , Glucosa-6-Fosfato/metabolismo , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Glucógeno Sintasa/genética , Glucógeno Sintasa/metabolismo , Cinética , Modelos Biológicos , Mycobacterium tuberculosis/enzimología , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , UTP-Glucosa-1-Fosfato Uridililtransferasa/genética , UTP-Glucosa-1-Fosfato Uridililtransferasa/metabolismo
9.
Biochim Biophys Acta ; 1850(1): 88-96, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25316289

RESUMEN

BACKGROUND: Giardia lamblia is a pathogen of humans and other vertebrates. The synthesis of glycogen and of structural oligo and polysaccharides critically determine the parasite's capacity for survival and pathogenicity. These characteristics establish that UDP-glucose is a relevant metabolite, as it is a main substrate to initiate varied carbohydrate metabolic routes. RESULTS: Herein, we report the molecular cloning of the gene encoding UDP-glucose pyrophosphorylase from genomic DNA of G. lamblia, followed by its heterologous expression in Escherichia coli. The purified recombinant enzyme was characterized to have a monomeric structure. Glucose-1-phosphate and UTP were preferred substrates, but the enzyme also used galactose-1-phosphate and TTP. The catalytic efficiency to synthesize UDP-galactose was significant. Oxidation by physiological compounds (hydrogen peroxide and nitric oxide) inactivated the enzyme and the process was reverted after reduction by cysteine and thioredoxin. UDP-N-acetyl-glucosamine pyrophosphorylase, the other UTP-related enzyme in the parasite, neither used galactose-1-phosphate nor was affected by redox modification. CONCLUSIONS: Our results suggest that in G. lamblia the UDP-glucose pyrophosphorylase is regulated by oxido-reduction mechanism. The enzyme exhibits the ability to synthesize UDP-glucose and UDP-galactose and it plays a key role providing substrates to glycosyl transferases that produce oligo and polysaccharides. GENERAL SIGNIFICANCE: The characterization of the G. lamblia UDP-glucose pyrophosphorylase reinforces the view that in protozoa this enzyme is regulated by a redox mechanism. As well, we propose a new pathway for UDP-galactose production mediated by the promiscuous UDP-glucose pyrophosphorylase of this organism.


Asunto(s)
Galactosafosfatos/metabolismo , Giardia lamblia/enzimología , Proteínas Protozoarias/metabolismo , UTP-Glucosa-1-Fosfato Uridililtransferasa/metabolismo , Secuencia de Aminoácidos , Biocatálisis , Clonación Molecular , Cisteína/metabolismo , Electroforesis en Gel de Poliacrilamida , Escherichia coli/genética , Giardia lamblia/genética , Glucofosfatos/metabolismo , Cinética , Datos de Secuencia Molecular , Oxidación-Reducción , Proteínas Protozoarias/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Tiorredoxinas/metabolismo , Factores de Tiempo , UTP-Glucosa-1-Fosfato Uridililtransferasa/genética
10.
Free Radic Biol Med ; 77: 30-40, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25236736

RESUMEN

Little is known about the mechanisms by which Leptospira interrogans, the causative agent of leptospirosis, copes with oxidative stress at the time it establishes persistent infection within its human host. We report the molecular cloning of a gene encoding a 2-Cys peroxiredoxin (LinAhpC) from this bacterium. After bioinformatic analysis we found that LinAhpC contains the characteristic GGIG and YF motifs present in peroxiredoxins that are sensitive to overoxidation (mainly eukaryotic proteins). These motifs are absent in insensitive prokaryotic enzymes. Recombinant LinAhpC showed activity as a thioredoxin peroxidase with sensitivity to overoxidation by H2O2 (Chyp 1% ~30 µM at pH 7.0 and 30°C). So far, Anabaena 2-Cys peroxiredoxin, Helicobacter pylori AhpC, and LinAhpC are the only prokaryotic enzymes studied with these characteristics. The properties determined for LinAhpC suggest that the protein could be critical for the antioxidant defense capacity in L. interrogans.


Asunto(s)
Proteínas Bacterianas/química , Leptospira interrogans/enzimología , Peroxirredoxinas/química , Secuencia de Aminoácidos , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Escherichia coli , Concentración de Iones de Hidrógeno , Cinética , Datos de Secuencia Molecular , Oxidación-Reducción , Peroxirredoxinas/biosíntesis , Peroxirredoxinas/genética , Filogenia
11.
Biochimie ; 106: 56-67, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25110158

RESUMEN

In Trypanosoma cruzi, the modification of thiols by glutathionylation-deglutathionylation and its potential relation to protective, regulatory or signaling functions have been scarcely explored. Herein we characterize a dithiolic glutaredoxin (TcrGrx), a redox protein with deglutathionylating activity, having potential functionality to control intracellular homeostasis of protein and non-protein thiols. The catalytic mechanism followed by TcrGrx was found dependent on thiol concentration. Results suggest that TcrGrx operates as a dithiolic or a monothiolic Grx, depending on GSH concentration. TcrGrx functionality to mediate reduction of protein and non-protein disulfides was studied. TcrGrx showed a preference for glutathionylated substrates respect to protein disulfides. From in vivo assays involving TcrGrx overexpressing parasites, we observed the contribution of the protein to increase the general resistance against oxidative damage and intracellular replication of the amastigote stage. Also, studies performed with epimastigotes overexpressing TcrGrx strongly suggest the involvement of the protein in a cellular pathway connecting an apoptotic stimulus and apoptotic-like cell death. Novel information is presented about the participation of this glutaredoxin not only in redox metabolism but also in redox signaling pathways in T. cruzi. The influence of TcrGrx in several parasite physiological processes suggests novel insights about the protein involvement in redox signaling.


Asunto(s)
Glutarredoxinas/metabolismo , Redes y Vías Metabólicas , Proteínas Protozoarias/metabolismo , Tolueno/análogos & derivados , Trypanosoma cruzi/metabolismo , Apoptosis , Biocatálisis , Western Blotting , Citosol/enzimología , Glutarredoxinas/genética , Glutatión/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Oxidación-Reducción , Proteínas Protozoarias/genética , Especificidad por Sustrato , Tolueno/metabolismo , Trypanosoma cruzi/citología , Trypanosoma cruzi/genética
12.
Mol Microbiol ; 90(5): 1011-27, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24112771

RESUMEN

Streptococcus mutans is the leading cause of dental caries worldwide. The bacterium accumulates a glycogen-like internal polysaccharide, which mainly contributes to its carionegic capacity. S.mutans has two genes (glgC and glgD) respectively encoding putative ADP-glucose pyrophosphorylases (ADP-Glc PPase), a key enzyme for glycogen synthesis in most bacteria. Herein, we report the molecular cloning and recombinant expression of both genes (separately or together) followed by the characterization of the respective enzymes. When expressed individually GlgC had ADP-Glc PPase activity, whereas GlgD was inactive. Interestingly, the coexpressed GlgC/GlgD protein was one order of magnitude more active than GlgC alone. Kinetic characterization of GlgC and GlgC/GlgD pointed out remarkable differences between them. Fructose-1,6-bis-phosphate activated GlgC by twofold, but had no effect on GlgC/GlgD. Conversely, phospho-enol-pyruvate and inorganic salts inhibited GlgC/GlgD without affecting GlgC. However, in the presence of fructose-1,6-bis-phosphate GlgC acquired a GlgC/GlgD-like behaviour, becoming sensitive to the stated inhibitors. Results indicate that S. mutans ADP-Glc PPase is an allosteric regulatory enzyme exhibiting sensitivity to modulation by key intermediates of carbohydrates metabolism in the cell. The particular regulatory properties of the S.mutans enzyme agree with phylogenetic analysis, where GlgC and GlgD proteins found in other Firmicutes arrange in distinctive clusters.


Asunto(s)
Glucosa-1-Fosfato Adenililtransferasa/metabolismo , Polisacáridos Bacterianos/biosíntesis , Streptococcus mutans/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Clonación Molecular , Secuencia Conservada , Fructosafosfatos/metabolismo , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Glucosa-1-Fosfato Adenililtransferasa/química , Glucosa-1-Fosfato Adenililtransferasa/genética , Modelos Moleculares , Fosfoenolpiruvato/metabolismo , Filogenia , Conformación Proteica , Estructura Secundaria de Proteína , Sales (Química)/metabolismo , Streptococcus mutans/genética
13.
Free Radic Biol Med ; 63: 65-77, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23665397

RESUMEN

Tryparedoxins (TXNs) are multipurpose oxidoreductases from trypanosomatids that transfer reducing equivalents from trypanothione to various thiol proteins. In Trypanosoma cruzi, two genes coding for TXN-like proteins have been identified: TXNI, previously characterized as a cytoplasmic protein, and TXNII, a putative tail-anchored membrane protein. In this work, we performed a comparative functional characterization of T. cruzi TXNs. Particularly, we cloned the gene region coding for the soluble version of TXNII for its heterologous expression. The truncated recombinant protein (without its 22 C-terminal transmembrane amino acids) showed TXN activity. It was also able to transfer reducing equivalents from trypanothione, glutathione, or dihydrolipoamide to various acceptors, including methionine sulfoxide reductases and peroxiredoxins. The results support the occurrence and functionality of a second tryparedoxin, which appears as a new component in the redox scenario for T. cruzi.


Asunto(s)
Glutatión/metabolismo , Tiorredoxinas/genética , Trypanosoma cruzi/metabolismo , Secuencia de Aminoácidos , Clonación Molecular , Expresión Génica , Glutatión/análogos & derivados , Oxidación-Reducción , Proteína Disulfuro Reductasa (Glutatión) , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Homología de Secuencia de Aminoácido , Espermidina/análogos & derivados , Espermidina/metabolismo , Tiorredoxinas/metabolismo
14.
Int J Mol Sci ; 14(5): 9703-21, 2013 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-23648478

RESUMEN

In bacteria, glycogen or oligosaccharide accumulation involves glucose-1-phosphate partitioning into either ADP-glucose (ADP-Glc) or UDP-Glc. Their respective synthesis is catalyzed by allosterically regulated ADP-Glc pyrophosphorylase (EC 2.7.7.27, ADP-Glc PPase) or unregulated UDP-Glc PPase (EC 2.7.7.9). In this work, we characterized the UDP-Glc PPase from Streptococcus mutans. In addition, we constructed a chimeric protein by cutting the C-terminal domain of the ADP-Glc PPase from Escherichia coli and pasting it to the entire S. mutans UDP-Glc PPase. Both proteins were fully active as UDP-Glc PPases and their kinetic parameters were measured. The chimeric enzyme had a slightly higher affinity for substrates than the native S. mutans UDP-Glc PPase, but the maximal activity was four times lower. Interestingly, the chimeric protein was sensitive to regulation by pyruvate, 3-phosphoglyceric acid and fructose-1,6-bis-phosphate, which are known to be effectors of ADP-Glc PPases from different sources. The three compounds activated the chimeric enzyme up to three-fold, and increased the affinity for substrates. This chimeric protein is the first reported UDP-Glc PPase with allosteric regulatory properties. In addition, this is a pioneer work dealing with a chimeric enzyme constructed as a hybrid of two pyrophosphorylases with different specificity toward nucleoside-diphospho-glucose and our results turn to be relevant for a deeper understanding of the evolution of allosterism in this family of enzymes.


Asunto(s)
Escherichia coli/enzimología , Glucosa-1-Fosfato Adenililtransferasa/metabolismo , Ingeniería de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Streptococcus mutans/enzimología , UTP-Glucosa-1-Fosfato Uridililtransferasa/metabolismo , Regulación Alostérica , Secuencia de Aminoácidos , Clonación Molecular , Escherichia coli/química , Escherichia coli/genética , Glucosa-1-Fosfato Adenililtransferasa/química , Glucosa-1-Fosfato Adenililtransferasa/genética , Glucofosfatos/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Streptococcus mutans/química , Streptococcus mutans/genética , UTP-Glucosa-1-Fosfato Uridililtransferasa/química , UTP-Glucosa-1-Fosfato Uridililtransferasa/genética
15.
Rev Invest Clin ; 65 Suppl 2: s5-27, 2013 Jun.
Artículo en Español | MEDLINE | ID: mdl-24459777

RESUMEN

Non-Hodgkin lymphoma comprises a heterogeneous group of haematological malignancies, classified according to their clinic, anatomic-pathological features and, lately, to their molecular biomarkers. Despite the therapeutic advances, nearly half of the patients will die because of this disease. The new diagnostic tools have been the cornerstone to design recent therapy targets, which must be included in the current treatment guidelines of this sort of neoplasms by means of clinical trials and evidence-based medicine. In the face of poor diagnoses devices in most of the Mexican hospitals, we recommend the present diagnose stratification, and treatment guidelines for non-Hodgkin lymphoma, based on evidence. They include the latest and most innovative therapeutic approaches, as well as specific recommendations for hospitals with limited framework and therapy resources.


Asunto(s)
Linfoma no Hodgkin/diagnóstico , Linfoma no Hodgkin/terapia , Humanos , México
16.
J Proteomics ; 74(9): 1683-92, 2011 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-21539948

RESUMEN

Trypanosoma cruzi tryparedoxin 1 (TcTXN1) is an oxidoreductase belonging to the thioredoxin superfamily, which mediates electron transfer between trypanothione and peroxiredoxins. In trypanosomes TXNs, and not thioredoxins, constitute the oxido-reductases of peroxiredoxins. Since, to date, there is no information concerning TcTXN1 substrates in T. cruzi, the aim of this work was to characterize TcTXN1 in two aspects: expression throughout T. cruzi life cycle and subcellular localization; and the study of TcTXN1 interacting-proteins. We demonstrate that TcTXN1 is a cytosolic and constitutively expressed protein in T. cruzi. In order to start to unravel the redox interactome of T. cruzi we designed an active site mutant protein lacking the resolving cysteine, and validated the complex formation in vitro between the mutated TcTXN1 and a known partner, the cytosolic peroxiredoxin. Through the expression of this mutant protein in parasites with an additional 6xHis-tag, heterodisulfide complexes were isolated by affinity chromatography and identified by 2-DE/MS. This allowed us to identify fifteen TcTXN1 proteins which are involved in two main processes: oxidative metabolism and protein synthesis and degradation. Our approach led us to the discovery of several putatively TcTXN1-interacting proteins thereby contributing to our understanding of the redox interactome of T. cruzi.


Asunto(s)
Proteínas Protozoarias/metabolismo , Tiorredoxinas/análisis , Trypanosoma cruzi/metabolismo , Dominio Catalítico/genética , Proteínas Mutantes , Oxidación-Reducción , Unión Proteica , Proteínas Protozoarias/fisiología , Especificidad por Sustrato , Tiorredoxinas/metabolismo
17.
Biochimie ; 93(2): 260-8, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20888387

RESUMEN

Amoebiasis is an intestinal infection caused by the human pathogen Entamoeba histolytica and representing the third leading cause of death by parasites in the world. Host-parasite interactions mainly involve anchored glycoconjugates localized in the surface of the parasitic cell. In protozoa, synthesis of structural oligo- and polysaccharides occurs via UDP-glucose, generated in a reaction catalyzed by UDP-glucose pyrophosphorylase. We report the molecular cloning of the gene coding for this enzyme from genomic DNA of E. histolytica and its recombinant expression in Escherichia coli cells. The purified enzyme was kinetically characterized, catalyzing UDP-glucose synthesis and pyrophosphorolysis with V(max) values of 95 U/mg and 3 U/mg, respectively, and affinity for substrates comparable to those found for the enzyme from other sources. Enzyme activity was affected by redox modification of thiol groups. Different oxidants, including diamide, hydrogen peroxide and sodium nitroprusside inactivated the enzyme. The process was completely reverted by reducing agents, mainly cysteine, dithiothreitol, and thioredoxin. Characterization of the enzyme mutants C94S, C108S, C191S, C354S, C378S, C108/378S, M106S and M106C supported a molecular mechanism for the redox regulation. Molecular modeling confirmed the role of specific cysteine and methionine residues as targets for redox modification in the entamoebic enzyme. Our results suggest that UDP-glucose pyrophosphorylase is a regulated enzyme in E. histolytica. Interestingly, results strongly agree with the occurrence of a physiological redox mechanism modulating enzyme activity, which would critically affect carbohydrate metabolism in the protozoon.


Asunto(s)
Entamoeba histolytica/enzimología , UTP-Glucosa-1-Fosfato Uridililtransferasa/metabolismo , Clonación Molecular , Espacio Intracelular/enzimología , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Oxidación-Reducción , Conformación Proteica , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , UTP-Glucosa-1-Fosfato Uridililtransferasa/química , UTP-Glucosa-1-Fosfato Uridililtransferasa/genética
18.
Arch Microbiol ; 192(2): 103-14, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20035319

RESUMEN

Leptospira interrogans synthesizes a range of mannose-containing glycoconjugates relevant for its virulence. A prerequisite in the synthesis is the availability of the GDP-mannose, produced from mannose-1-phosphate and GTP in a reaction catalyzed by GDP-mannose pyrophosphorylase. The gene coding for a putative enzyme in L. interrogans was expressed in Escherichia coli BL21(DE3). The identity of this enzyme was confirmed by electrospray-mass spectroscopy, Edman sequencing and immunological assays. Gel filtration chromatography showed that the dimeric form of the enzyme is catalytically active and stable. The recombinant protein was characterized as a mannose-1-phosphate guanylyltransferase. S (0.5) for the substrates were determined both in GDP-mannose pyrophosphorolysis: 0.20 mM (GDP-mannose), 0.089 mM (PPi), and 0.47 mM; and in GDP-mannose synthesis: 0.24 mM (GTP), 0.063 mM (mannose-1-phosphate), and 0.45 mM (Mg(2+)). The enzyme was able to produce GDP-mannose, IDP-mannose, UDP-mannose and ADP-glucose. We obtained a structural model of the enzyme using as a template the crystal structure of mannose-1-phosphate guanylyltransferase from Thermus thermophilus HB8. Binding of substrates and cofactor in the model agree with the pyrophosphorylases reaction mechanism. Our studies provide insights into the structure of a novel molecular target, which could be useful for detection of leptospirosis and for the development of anti-leptospiral drugs.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Leptospira interrogans/enzimología , Nucleotidiltransferasas/química , Nucleotidiltransferasas/metabolismo , Adenosina Difosfato Glucosa/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Western Blotting , Cromatografía en Gel , Guanosina Difosfato Manosa/metabolismo , Manosafosfatos/metabolismo , Datos de Secuencia Molecular , Nucleotidiltransferasas/genética , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Ionización de Electrospray , Especificidad por Sustrato , Azúcares de Uridina Difosfato/metabolismo
19.
Protist ; 161(1): 91-101, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19664954

RESUMEN

Glutathione reductase (E.C.1.8.1.7) was purified from Phaeodactylum tricornutum cells grown axenically in an autotrophic medium. The overall procedure started with preparation of the cell extract and addition of ammonium sulfate to 20% saturation, followed by anion exchange and affinity interaction chromatography (Blue-A- and 2',5'-ADP-Sepharose). Complete purification required native polyacrylamide gel electrophoresis as the final step. The enzyme was purified to homogeneity and functionally characterized. Its native molecular mass was estimated to be 118 kDa; which corresponds to a dimer. The enzyme exhibited a specific activity of 190 U mg(-1) with an optimal activity at pH 8.0 and 32 degrees C. We determined K(m) values of 14 microM and 60 microM for NADPH and oxidized glutathione, respectively. Products inhibited the enzyme according to a hybrid ping-pong reaction mechanism. After MALDI-TOF analysis, the purified enzyme was unambiguously identified as one of the two proteins annotated as glutathione reductases in the genome of the diatom. The properties of the enzyme help to understand redox metabolic scenarios in P. tricornutum.


Asunto(s)
Proteínas Algáceas/aislamiento & purificación , Proteínas Algáceas/metabolismo , Diatomeas/enzimología , Glutatión Reductasa/aislamiento & purificación , Glutatión Reductasa/metabolismo , Proteínas Algáceas/química , Secuencia de Aminoácidos , Sulfato de Amonio/metabolismo , Fraccionamiento Químico , Cromatografía de Afinidad , Cromatografía en Gel , Cromatografía por Intercambio Iónico , Dimerización , Estabilidad de Enzimas , Glutatión/metabolismo , Glutatión Reductasa/química , Concentración de Iones de Hidrógeno , Cinética , Datos de Secuencia Molecular , Peso Molecular , NADP/metabolismo , Temperatura
20.
Lett Appl Microbiol ; 49(5): 641-5, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19780960

RESUMEN

AIMS: To identify LipL32 epitopes and to evaluate their capability to recognize specific antibodies using ELISA. METHODS AND RESULTS: Epitope mapping by means of a library of overlapping peptide fragments prepared by simultaneous and parallel solid phase peptide synthesis on derivatized cellulose membranes (SPOT synthesis) was carried out. Eighty-seven overlapping decapentapeptides corresponding to the complete sequence of LipL32 were synthesized. According to spot-image intensities, the most reactive sequences were localized in regions 151-177 (sequence AAKAKPVQKLDDDDDGDDTYKEERHNK) and 181-204 (sequence LTRIKIPNPPKSFDDLKNIDTKKL). Two peptides (P1 and P2) corresponding to these sequences were synthesized, and their reactivity evaluated using ELISA test. CONCLUSIONS: Epitope identification and analysis suggested the existence of two antigenic regions within LipL32. These LipL32 reactive regions were highly conserved among antigenically variants of Leptospira spp. isolates. Peptides containing these regions (P1 and P2) showed a good capability for anti-leptospiral antibody recognition. SIGNIFICANCE AND IMPACT OF THE STUDY: This finding could have potential relevance not only for serodiagnosis but also as a starting point for the characterization of targets for vaccine design.


Asunto(s)
Mapeo Epitopo , Leptospira/inmunología , Secuencia de Aminoácidos , Ensayo de Inmunoadsorción Enzimática , Humanos , Leptospira/química , Leptospirosis/inmunología , Leptospirosis/microbiología , Datos de Secuencia Molecular , Péptidos/síntesis química , Péptidos/química , Péptidos/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA