Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Exp Clin Cancer Res ; 42(1): 99, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37095531

RESUMEN

BACKGROUND: MiT-Renal Cell Carcinoma (RCC) is characterized by genomic translocations involving microphthalmia-associated transcription factor (MiT) family members TFE3, TFEB, or MITF. MiT-RCC represents a specific subtype of sporadic RCC that is predominantly seen in young patients and can present with heterogeneous histological features making diagnosis challenging. Moreover, the disease biology of this aggressive cancer is poorly understood and there is no accepted standard of care therapy for patients with advanced disease. Tumor-derived cell lines have been established from human TFE3-RCC providing useful models for preclinical studies. METHODS: TFE3-RCC tumor derived cell lines and their tissues of origin were characterized by IHC and gene expression analyses. An unbiased high-throughput drug screen was performed to identify novel therapeutic agents for treatment of MiT-RCC. Potential therapeutic candidates were validated in in vitro and in vivo preclinical studies. Mechanistic assays were conducted to confirm the on-target effects of drugs. RESULTS: The results of a high-throughput small molecule drug screen utilizing three TFE3-RCC tumor-derived cell lines identified five classes of agents with potential pharmacological efficacy, including inhibitors of phosphoinositide-3-kinase (PI3K) and mechanistic target of rapamycin (mTOR), and several additional agents, including the transcription inhibitor Mithramycin A. Upregulation of the cell surface marker GPNMB, a specific MiT transcriptional target, was confirmed in TFE3-RCC and evaluated as a therapeutic target using the GPNMB-targeted antibody-drug conjugate CDX-011. In vitro and in vivo preclinical studies demonstrated efficacy of the PI3K/mTOR inhibitor NVP-BGT226, Mithramycin A, and CDX-011 as potential therapeutic options for treating advanced MiT-RCC as single agents or in combination. CONCLUSIONS: The results of the high-throughput drug screen and validation studies in TFE3-RCC tumor-derived cell lines have provided in vitro and in vivo preclinical data supporting the efficacy of the PI3K/mTOR inhibitor NVP-BGT226, the transcription inhibitor Mithramycin A, and GPNMB-targeted antibody-drug conjugate CDX-011 as potential therapeutic options for treating advanced MiT-RCC. The findings presented here should provide the basis for designing future clinical trials for patients with MiT-driven RCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/patología , Neoplasias Renales/patología , Inhibidores mTOR , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Translocación Genética , Fosfatidilinositol 3-Quinasa , Glicoproteínas de Membrana/genética
2.
Mol Cancer Ther ; 21(7): 1246-1258, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35511749

RESUMEN

Malignant peripheral nerve sheath tumors (MPNST) are soft-tissue sarcomas that are the leading cause of mortality in patients with Neurofibromatosis type 1 (NF1). Single chemotherapeutic agents have shown response rates ranging from 18% to 44% in clinical trials, so there is still a high medical need to identify chemotherapeutic combination treatments that improve clinical prognosis and outcome. We screened a collection of compounds from the NCATS Mechanism Interrogation PlatE (MIPE) library in three MPNST cell lines, using cell viability and apoptosis assays. We then tested whether compounds that were active as single agents were synergistic when screened as pairwise combinations. Synergistic combinations in vitro were further evaluated in patient-derived orthotopic xenograft/orthoxenograft (PDOX) athymic models engrafted with primary MPNST matching with their paired primary-derived cell line where synergism was observed. The high-throughput screening identified 21 synergistic combinations, from which four exhibited potent synergies in a broad panel of MPNST cell lines. One of the combinations, MK-1775 with Doxorubicin, significantly reduced tumor growth in a sporadic PDOX model (MPNST-SP-01; sevenfold) and in an NF1-PDOX model (MPNST-NF1-09; fourfold) and presented greater effects in TP53 mutated MPNST cell lines. The other three combinations, all involving Panobinostat (combined with NVP-BGT226, Torin 2, or Carfilzomib), did not reduce the tumor volume in vivo at noncytotoxic doses. Our results support the utility of our screening platform of in vitro and in vivo models to explore new therapeutic approaches for MPNSTs and identified that combination MK-1775 with Doxorubicin could be a good pharmacologic option for the treatment of these tumors.


Asunto(s)
Neoplasias de la Vaina del Nervio , Neurofibromatosis 1 , Neurofibrosarcoma , Línea Celular Tumoral , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Ensayos Analíticos de Alto Rendimiento , Humanos , Neoplasias de la Vaina del Nervio/tratamiento farmacológico , Neoplasias de la Vaina del Nervio/genética , Neurofibromatosis 1/complicaciones , Neurofibromatosis 1/patología , Neurofibromatosis 1/terapia
3.
PLoS One ; 16(7): e0252048, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34264955

RESUMEN

Neurofibromatosis Type 2 (NF2) is an autosomal dominant genetic syndrome caused by mutations in the NF2 tumor suppressor gene resulting in multiple schwannomas and meningiomas. There are no FDA approved therapies for these tumors and their relentless progression results in high rates of morbidity and mortality. Through a combination of high throughput screens, preclinical in vivo modeling, and evaluation of the kinome en masse, we identified actionable drug targets and efficacious experimental therapeutics for the treatment of NF2 related schwannomas and meningiomas. These efforts identified brigatinib (ALUNBRIG®), an FDA-approved inhibitor of multiple tyrosine kinases including ALK, to be a potent inhibitor of tumor growth in established NF2 deficient xenograft meningiomas and a genetically engineered murine model of spontaneous NF2 schwannomas. Surprisingly, neither meningioma nor schwannoma cells express ALK. Instead, we demonstrate that brigatinib inhibited multiple tyrosine kinases, including EphA2, Fer and focal adhesion kinase 1 (FAK1). These data demonstrate the power of the de novo unbiased approach for drug discovery and represents a major step forward in the advancement of therapeutics for the treatment of NF2 related malignancies.


Asunto(s)
Neoplasias Meníngeas/genética , Meningioma/genética , Neurilemoma/genética , Neurofibromina 2/deficiencia , Neurofibromina 2/genética , Compuestos Organofosforados/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Pirimidinas/farmacología , Proliferación Celular , Humanos , Mutación , Neurilemoma/patología
4.
Neoplasia ; 23(6): 624-633, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34107377

RESUMEN

Amplification of MYCN is a poor prognostic feature in neuroblastoma (NBL) indicating aggressive disease. We and others have shown BET bromodomain inhibitors (BETi) target MYCN indirectly by downregulating its transcription. Here we sought to identify agents that synergize with BETi and to identify biomarkers of resistance. We previously performed a viability screen of ∼1,900 oncology-focused compounds combined with BET bromodomain inhibitors against MYCN-amplified NBL cell lines. Reanalysis of our screening results prominently identified inhibitors of aurora kinase A (AURKAi) to be highly synergistic with BETi. We confirmed the anti-proliferative effects of several BETi+AURKAi combinations in MYCN-amplified NBL cell lines. Compared to single agents, these combinations cooperated to decrease levels of N-myc. We treated both TP53-wild type and mutant, MYCN-amplified cell lines with the BETi JQ1 and the AURKAi Alisertib. The combination had improved efficacy in the TP53-WT context, notably driving apoptosis in both genetic backgrounds. JQ1+Alisertib combination treatment of a MYCN-amplified, TP53-null or TP53-restored genetically engineered mouse model of NBL prolonged survival better than either single agent. This was most profound with TP53 restored, with marked tumor shrinkage and apoptosis induction in response to combination JQ1+Alisertib. BETi+AURKAi in MYCN-amplified NBL, particularly in the context of functional TP53, provided anti-tumor benefits in preclinical models. This combination should be studied more closely in a pediatric clinical trial.


Asunto(s)
Aurora Quinasa A/antagonistas & inhibidores , Amplificación de Genes , Proteína Proto-Oncogénica N-Myc/genética , Neuroblastoma/genética , Neuroblastoma/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular , Edición Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Inmunohistoquímica , Ratones , Proteína Proto-Oncogénica N-Myc/antagonistas & inhibidores , Proteína Proto-Oncogénica N-Myc/metabolismo , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/patología , Proteína p53 Supresora de Tumor/genética , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Cancers (Basel) ; 12(12)2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33334024

RESUMEN

Inhibitor of apoptosis (IAP) proteins are frequently upregulated in ovarian cancer, resulting in the evasion of apoptosis and enhanced cellular survival. Birinapant, a synthetic second mitochondrial activator of caspases (SMAC) mimetic, suppresses the functions of IAP proteins in order to enhance apoptotic pathways and facilitate tumor death. Despite on-target activity, however, pre-clinical trials of single-agent birinapant have exhibited minimal activity in the recurrent ovarian cancer setting. To augment the therapeutic potential of birinapant, we utilized a high-throughput screening matrix to identify synergistic drug combinations. Of those combinations identified, birinapant plus docetaxel was selected for further evaluation, given its remarkable synergy both in vitro and in vivo. We showed that this synergy results from multiple convergent pathways to include increased caspase activation, docetaxel-mediated TNF-α upregulation, alternative NF-kB signaling, and birinapant-induced microtubule stabilization. These findings provide a rationale for the integration of birinapant and docetaxel in a phase 2 clinical trial for recurrent ovarian cancer where treatment options are often limited and minimally effective.

6.
Sci Rep ; 10(1): 20213, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33214619

RESUMEN

Drug Discovery is a lengthy and costly process and has faced a period of declining productivity within the last two decades resulting in increasing importance of integrative data-driven approaches. In this paper, data mining and integration is leveraged to inspect target innovation trends in drug discovery. The study highlights protein families and classes that have received more attention and those that have just emerged in the scientific literature, thus highlighting novel opportunities for drug intervention. In order to delineate the evolution of target-driven research interest from a biological perspective, trends in biological process annotations from Gene Ontology and disease annotations from DisGeNET are captured. The analysis reveals an increasing interest in targets related to immune system processes, and a recurrent trend for targets involved in circulatory system processes. At the level of diseases, targets associated with cancer-related pathologies, intellectual disability, and schizophrenia are increasingly investigated in recent years. The methodology enables researchers to capture trends in research attention in target space at an early stage during the drug discovery process. Workflows, scripts, and data used in this study are publicly available from https://github.com/BZdrazil/Moving_Targets . An interactive web application allows the customized exploration of target, biological process, and disease trends (available at https://rguha.shinyapps.io/MovingTargets/ ).


Asunto(s)
Descubrimiento de Drogas , Ontología de Genes , Bases de Datos Factuales , Humanos , Programas Informáticos
7.
Cancers (Basel) ; 12(6)2020 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-32575908

RESUMEN

Disease recurrence is the major cause of morbidity and mortality of ovarian cancer (OC). In terms of maintenance therapies after platinum-based chemotherapy, PARP inhibitors significantly improve the overall survival of patients with BRCA mutations but is of little benefit to patients without homologous recombination deficiency (HRD). The stem-like tumor-initiating cell (TIC) population within OC tumors are thought to contribute to disease recurrence and chemoresistance. Therefore, there is a need to identify drugs that target TICs to prevent relapse in OC without HRD. RNA sequencing analysis of OC cells grown in TIC conditions revealed a strong enrichment of genes involved in drug metabolism, oxidative phosphorylation and reactive oxygen species (ROS) pathways. Concurrently, a high-throughput drug screen identified drugs that showed efficacy against OC cells grown as TICs compared to adherent cells. Four drugs were chosen that affected drug metabolism and ROS response: disulfiram, bardoxolone methyl, elesclomol and salinomycin. The drugs were tested in vitro for effects on viability, sphere formation and markers of stemness CD133 and ALDH in TICs compared to adherent cells. The compounds promoted ROS accumulation and oxidative stress and disulfiram, elesclomol and salinomycin increased cell death following carboplatin treatment compared to carboplatin alone. Disulfiram and salinomycin were effective in a post-surgery, post-chemotherapy OC relapse model in vivo, demonstrating that enhancing oxidative stress in TICs can prevent OC recurrence.

8.
Genes Chromosomes Cancer ; 59(8): 472-483, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32259323

RESUMEN

Renal medullary carcinoma (RMC) is a rare, aggressive disease that predominantly afflicts individuals of African or Mediterranean descent with sickle cell trait. RMC comprises 1% of all renal cell carcinoma diagnoses with a median overall survival of 13 months. Patients are typically young (median age-22) and male (male:female ratio of 2:1) and tumors are characterized by complete loss of expression of the SMARCB1 tumor suppressor protein. Due to the low incidence of RMC and the disease's aggressiveness, treatment decisions are often based on case reports. Thus, it is critical to develop preclinical models of RMC to better understand the pathogenesis of this disease and to identify effective forms of therapy. Two novel cell line models, UOK353 and UOK360, were derived from primary RMCs that both demonstrated the characteristic SMARCB1 loss. Both cell lines overexpressed EZH2 and other members of the polycomb repressive complex and EZH2 inhibition in RMC tumor spheroids resulted in decreased viability. High throughput drug screening of both cell lines revealed several additional candidate compounds, including bortezomib that had both in vitro and in vivo antitumor activity. The activity of bortezomib was shown to be partially dependent on increased oxidative stress as addition of the N-acetyl cysteine antioxidant reduced the effect on cell proliferation. Combining bortezomib and cisplatin further decreased cell viability both in vitro and in vivo that single agent bortezomib treatment. The UOK353 and UOK360 cell lines represent novel preclinical models for the development of effective forms of therapy for RMC patients.


Asunto(s)
Carcinoma Medular/patología , Neoplasias Renales/patología , Cultivo Primario de Células/métodos , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Bortezomib/farmacología , Bortezomib/uso terapéutico , Carcinoma Medular/tratamiento farmacológico , Carcinoma Medular/genética , Autenticación de Línea Celular/métodos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cisplatino/farmacología , Cisplatino/uso terapéutico , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Humanos , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Ratones , Ratones Desnudos , Proteína SMARCB1/genética , Proteína SMARCB1/metabolismo , Células Tumorales Cultivadas
9.
SLAS Discov ; 25(1): 9-20, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31498718

RESUMEN

Cell-based phenotypic screening is a commonly used approach to discover biological pathways, novel drug targets, chemical probes, and high-quality hit-to-lead molecules. Many hits identified from high-throughput screening campaigns are ruled out through a series of follow-up potency, selectivity/specificity, and cytotoxicity assays. Prioritization of molecules with little or no cytotoxicity for downstream evaluation can influence the future direction of projects, so cytotoxicity profiling of screening libraries at an early stage is essential for increasing the likelihood of candidate success. In this study, we assessed the cell-based cytotoxicity of nearly 10,000 compounds in the National Institutes of Health, National Center for Advancing Translational Sciences annotated libraries and more than 100,000 compounds in a diversity library against four normal cell lines (HEK 293, NIH 3T3, CRL-7250, and HaCat) and one cancer cell line (KB 3-1, a HeLa subline). This large-scale library profiling was analyzed for overall screening outcomes, hit rates, pan-activity, and selectivity. For the annotated library, we also examined the primary targets and mechanistic pathways regularly associated with cell death. To our knowledge, this is the first study to use high-throughput screening to profile a large screening collection (>100,000 compounds) for cytotoxicity in both normal and cancer cell lines. The results generated here constitute a valuable resource for the scientific community and provide insight into the extent of cytotoxic compounds in screening libraries, allowing for the identification and avoidance of compounds with cytotoxicity during high-throughput screening campaigns.


Asunto(s)
Antineoplásicos/farmacología , Descubrimiento de Drogas , Ensayos de Selección de Medicamentos Antitumorales , Ensayos Analíticos de Alto Rendimiento , Bibliotecas de Moléculas Pequeñas , Antineoplásicos/química , Técnicas de Cultivo de Célula , Línea Celular , Biología Computacional/métodos , Descubrimiento de Drogas/métodos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Expresión Génica , Genes Reporteros , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos
10.
Sci Transl Med ; 11(519)2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31748226

RESUMEN

Diffuse midline gliomas (DMGs) are universally lethal malignancies occurring chiefly during childhood and involving midline structures of the central nervous system, including thalamus, pons, and spinal cord. These molecularly related cancers are characterized by high prevalence of the histone H3K27M mutation. In search of effective therapeutic options, we examined multiple DMG cultures in sequential quantitative high-throughput screens (HTS) of 2706 approved and investigational drugs. This effort generated 19,936 single-agent dose responses that inspired a series of HTS-enabled drug combination assessments encompassing 9195 drug-drug examinations. Top combinations were validated across patient-derived cell cultures representing the major DMG genotypes. In vivo testing in patient-derived xenograft models validated the combination of the multi-histone deacetylase (HDAC) inhibitor panobinostat and the proteasome inhibitor marizomib as a promising therapeutic approach. Transcriptional and metabolomic surveys revealed substantial alterations to key metabolic processes and the cellular unfolded protein response after treatment with panobinostat and marizomib. Mitigation of drug-induced cytotoxicity and basal mitochondrial respiration with exogenous application of nicotinamide mononucleotide (NMN) or exacerbation of these phenotypes when blocking nicotinamide adenine dinucleotide (NAD+) production via nicotinamide phosphoribosyltransferase (NAMPT) inhibition demonstrated that metabolic catastrophe drives the combination-induced cytotoxicity. This study provides a comprehensive single-agent and combinatorial drug screen for DMG and identifies concomitant HDAC and proteasome inhibition as a promising therapeutic strategy that underscores underrecognized metabolic vulnerabilities in DMG.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Evaluación Preclínica de Medicamentos , Glioma/tratamiento farmacológico , Ensayos Analíticos de Alto Rendimiento/métodos , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias del Tronco Encefálico/tratamiento farmacológico , Muerte Celular , Línea Celular Tumoral , Sinergismo Farmacológico , Femenino , Glioma/genética , Glioma/metabolismo , Humanos , Lactonas/farmacología , Lactonas/uso terapéutico , Masculino , Metabolómica , Ratones , Panobinostat/farmacología , Panobinostat/uso terapéutico , Pirroles/farmacología , Pirroles/uso terapéutico , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN , Transcripción Genética/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Mol Pharmacol ; 96(5): 629-640, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31515284

RESUMEN

The ATP-binding cassette transporter P-glycoprotein (P-gp) is known to limit both brain penetration and oral bioavailability of many chemotherapy drugs. Although US Food and Drug Administration guidelines require that potential interactions of investigational drugs with P-gp be explored, often this information does not enter the literature. In response, we developed a high-throughput screen to identify substrates of P-gp from a series of chemical libraries, testing a total of 10,804 compounds, most of which have known mechanisms of action. We used the CellTiter-Glo viability assay to test library compounds against parental KB-3-1 human cervical adenocarcinoma cells and the colchicine-selected subline KB-8-5-11 that overexpresses P-gp. KB-8-5-11 cells were also tested in the presence of a P-gp inhibitor (tariquidar) to assess reversibility of transporter-mediated resistance. Of the tested compounds, a total of 90 P-gp substrates were identified, including 55 newly identified compounds. Substrates were confirmed using an orthogonal killing assay against human embryonic kidney-293 cells overexpressing P-gp. We confirmed that AT7159 (cyclin-dependent kinase inhibitor), AT9283, (Janus kinase 2/3 inhibitor), ispinesib (kinesin spindle protein inhibitor), gedatolisib (PKI-587, phosphoinositide 3-kinase/mammalian target of rampamycin inhibitor), GSK-690693 (AKT inhibitor), and KW-2478 (heat-shock protein 90 inhibitor) were substrates. In addition, we assessed direct ATPase stimulation. ABCG2 was also found to confer high levels of resistance to AT9283, GSK-690693, and gedatolisib, whereas ispinesib, AT7519, and KW-2478 were weaker substrates. Combinations of P-gp substrates and inhibitors were assessed to demonstrate on-target synergistic cell killing. These data identified compounds whose oral bioavailability or brain penetration may be affected by P-gp. SIGNIFICANCE STATEMENT: The ATP-binding cassette transporter P-glycoprotein (P-gp) is known to be expressed at barrier sites, where it acts to limit oral bioavailability and brain penetration of substrates. In order to identify novel compounds that are transported by P-gp, we developed a high-throughput screen using the KB-3-1 cancer cell line and its colchicine-selected subline KB-8-5-11. We screened the Mechanism Interrogation Plate (MIPE) library, the National Center for Advancing Translational Science (NCATS) pharmaceutical collection (NPC), the NCATS Pharmacologically Active Chemical Toolbox (NPACT), and a kinase inhibitor library comprising 977 compounds, for a total of 10,804 compounds. Of the 10,804 compounds screened, a total of 90 substrates were identified of which 55 were novel. P-gp expression may adversely affect the oral bioavailability or brain penetration of these compounds.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Citotoxinas/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Proteínas de Neoplasias/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/química , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Citotoxinas/química , Citotoxinas/farmacología , Relación Dosis-Respuesta a Droga , Células HEK293 , Células HeLa , Humanos , Especificidad por Sustrato/efectos de los fármacos , Especificidad por Sustrato/fisiología
12.
Papillomavirus Res ; 8: 100181, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31446060

RESUMEN

Recurrent respiratory papillomatosis (RRP) is a benign neoplasm of the larynx caused mainly by human papillomavirus type 6 or 11 and its standard treatment involves repeated surgical debulking of the laryngeal tumors. However, significant morbidity and occasional mortality due to multiple recurrences occur. Conditional reprogramming (CR) was used to establish a HPV-6 positive culture from an RRP patient, named GUMC-403. High-throughput screening was performed at the National Center for Advanced Technology (NCATS) to identify potential drugs to treat this rare but morbid disease. GUMC-403 cells were screened against the NPC library of >2800 approved drugs and the MIPE library of >1900 investigational drugs to identify new uses for FDA-approved drugs or drugs that have undergone significant research and development. From the two libraries, we identified a total of 13 drugs that induced significant cytotoxicity in RRP cells at IC50 values that were clinically achievable. We validated the efficacy of the drugs in vitro using CR 2D and 3D models and further refined our list of drugs to panobinostat, dinaciclib and forskolin as potential therapies for RRP patients.


Asunto(s)
Descubrimiento de Drogas , Ensayos Analíticos de Alto Rendimiento , Infecciones por Papillomavirus/tratamiento farmacológico , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Animales , Biopsia , Técnicas de Cultivo de Célula , Línea Celular , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Papillomavirus Humano 6/fisiología , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/etiología , Infecciones por Papillomavirus/virología , Infecciones del Sistema Respiratorio/etiología
13.
Mol Cancer Ther ; 18(11): 2097-2110, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31395684

RESUMEN

Pancreatic cancer remains an incurable condition. Its progression is driven, in part, by subsets of cancer cells that evade the cytotoxic effects of conventional chemotherapies. These cells are often low-cycling, multidrug resistant, and adopt a stem cell-like phenotype consistent with the concept of cancer stem cells (CSC). To identify drugs impacting on tumor-promoting CSCs, we performed a differential high-throughput drug screen in pancreatic cancer cells cultured in traditional (2D) monolayers versus three-dimensional (3D) spheroids which replicate key elements of the CSC model. Among the agents capable of killing cells cultured in both formats was a 1H-benzo[d]imidazol-2-amine-based inhibitor of IL2-inducible T-cell kinase (ITK; NCGC00188382, inhibitor #1) that effectively mediated growth inhibition and induction of apoptosis in vitro, and suppressed cancer progression and metastasis formation in vivo An examination of this agent's polypharmacology via in vitro and in situ phosphoproteomic profiling demonstrated an activity profile enriched for mediators involved in DNA damage repair. Included was a strong inhibitory potential versus the thousand-and-one amino acid kinase 3 (TAOK3), CDK7, and aurora B kinases. We found that cells grown under CSC-enriching spheroid conditions are selectively dependent on TAOK3 signaling. Loss of TAOK3 decreases colony formation, expression of stem cell markers, and sensitizes spheroids to the genotoxic effect of gemcitabine, whereas overexpression of TAOK3 increases stem cell traits including tumor initiation and metastasis formation. By inactivating multiple components of the cell-cycle machinery in concert with the downregulation of key CSC signatures, inhibitor #1 defines a distinctive strategy for targeting pancreatic cancer cell populations.


Asunto(s)
Imidazoles/administración & dosificación , Células Madre Neoplásicas/efectos de los fármacos , Neoplasias Pancreáticas/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/administración & dosificación , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Humanos , Imidazoles/química , Imidazoles/farmacología , Ratones , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/enzimología , Neoplasias Pancreáticas/enzimología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Esferoides Celulares/citología , Esferoides Celulares/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Clin Cancer Res ; 25(14): 4552-4566, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-30979745

RESUMEN

PURPOSE: Ewing sarcoma is an aggressive solid tumor malignancy of childhood. Although current treatment regimens cure approximately 70% of patients with localized disease, they are ineffective for most patients with metastases or relapse. New treatment combinations are necessary for these patients. EXPERIMENTAL DESIGN: Ewing sarcoma cells are dependent on focal adhesion kinase (FAK) for growth. To identify candidate treatment combinations for Ewing sarcoma, we performed a small-molecule library screen to identify compounds synergistic with FAK inhibitors in impairing Ewing cell growth. The activity of a top-scoring class of compounds was then validated across multiple Ewing cell lines in vitro and in multiple xenograft models of Ewing sarcoma. RESULTS: Numerous Aurora kinase inhibitors scored as synergistic with FAK inhibition in this screen. We found that Aurora kinase B inhibitors were synergistic across a larger range of concentrations than Aurora kinase A inhibitors when combined with FAK inhibitors in multiple Ewing cell lines. The combination of AZD-1152, an Aurora kinase B-selective inhibitor, and PF-562271 or VS-4718, FAK-selective inhibitors, induced apoptosis in Ewing sarcoma cells at concentrations that had minimal effects on survival when cells were treated with either drug alone. We also found that the combination significantly impaired tumor progression in multiple xenograft models of Ewing sarcoma. CONCLUSIONS: FAK and Aurora kinase B inhibitors synergistically impair Ewing sarcoma cell viability and significantly inhibit tumor progression. This study provides preclinical support for the consideration of a clinical trial testing the safety and efficacy of this combination for patients with Ewing sarcoma.


Asunto(s)
Aurora Quinasa B/antagonistas & inhibidores , Neoplasias Óseas/tratamiento farmacológico , Sinergismo Farmacológico , Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Sarcoma de Ewing/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas/farmacología , Aminopiridinas/farmacología , Animales , Apoptosis , Neoplasias Óseas/enzimología , Neoplasias Óseas/patología , Proliferación Celular , Quimioterapia Combinada , Femenino , Ensayos Analíticos de Alto Rendimiento , Humanos , Indoles/farmacología , Ratones , Ratones Desnudos , Organofosfatos/farmacología , Quinazolinas/farmacología , Sarcoma de Ewing/enzimología , Sarcoma de Ewing/patología , Sulfonamidas/farmacología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto , Pez Cebra
15.
SLAS Technol ; 24(1): 28-40, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30289729

RESUMEN

Glioblastoma (GBM) is a lethal brain cancer with a median survival time of approximately 15 months following treatment. Common in vitro GBM models for drug screening are adherent and do not recapitulate the features of human GBM in vivo. Here we report the genomic characterization of nine patient-derived, spheroid GBM cell lines that recapitulate human GBM characteristics in orthotopic xenograft models. Genomic sequencing revealed that the spheroid lines contain alterations in GBM driver genes such as PTEN, CDKN2A, and NF1. Two spheroid cell lines, JHH-136 and JHH-520, were utilized in a high-throughput drug screen for cell viability using a 1912-member compound library. Drug mechanisms that were cytotoxic in both cell lines were Hsp90 and proteasome inhibitors. JHH-136 was uniquely sensitive to topoisomerase 1 inhibitors, while JHH-520 was uniquely sensitive to Mek inhibitors. Drug combination screening revealed that PI3 kinase inhibitors combined with Mek or proteasome inhibitors were synergistic. However, animal studies to test these drug combinations in vivo revealed that Mek inhibition alone was superior to the combination treatments. These data show that these GBM spheroid lines are amenable to high-throughput drug screening and that this dataset may deliver promising therapeutic leads for future GBM preclinical studies.


Asunto(s)
Antineoplásicos/farmacología , Evaluación Preclínica de Medicamentos/métodos , Glioblastoma/patología , Mutación , Esferoides Celulares/efectos de los fármacos , Antineoplásicos/toxicidad , Supervivencia Celular/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Células Tumorales Cultivadas
16.
Clin Cancer Res ; 25(4): 1343-1357, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30397176

RESUMEN

PURPOSE: Novel targeted therapeutics have transformed the care of subsets of patients with cancer. In pediatric malignancies, however, with simple tumor genomes and infrequent targetable mutations, there have been few new FDA-approved targeted drugs. The cyclin-dependent kinase (CDK)4/6 pathway recently emerged as a dependency in Ewing sarcoma. Given the heightened efficacy of this class with targeted drug combinations in other cancers, as well as the propensity of resistance to emerge with single agents, we aimed to identify genes mediating resistance to CDK4/6 inhibitors and biologically relevant combinations for use with CDK4/6 inhibitors in Ewing. EXPERIMENTAL DESIGN: We performed a genome-scale open reading frame (ORF) screen in 2 Ewing cell lines sensitive to CDK4/6 inhibitors to identify genes conferring resistance. Concurrently, we established resistance to a CDK4/6 inhibitor in a Ewing cell line. RESULTS: The ORF screen revealed IGF1R as a gene whose overexpression promoted drug escape. We also found elevated levels of phospho-IGF1R in our resistant Ewing cell line, supporting the relevance of IGF1R signaling to acquired resistance. In a small-molecule screen, an IGF1R inhibitor scored as synergistic with CDK4/6 inhibitor treatment. The combination of CDK4/6 inhibitors and IGF1R inhibitors was synergistic in vitro and active in mouse models. Mechanistically, this combination more profoundly repressed cell cycle and PI3K/mTOR signaling than either single drug perturbation. CONCLUSIONS: Taken together, these results suggest that IGF1R inhibitors activation is an escape mechanism to CDK4/6 inhibitors in Ewing sarcoma and that dual targeting of CDK4/6 inhibitors and IGF1R inhibitors provides a candidate synergistic combination for clinical application in this disease.


Asunto(s)
Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 6 Dependiente de la Ciclina/genética , Receptor IGF Tipo 1/genética , Sarcoma de Ewing/tratamiento farmacológico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Línea Celular Tumoral , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Resistencia a Antineoplásicos/genética , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Inhibidores de Proteínas Quinasas/farmacología , Receptor IGF Tipo 1/antagonistas & inhibidores , Sarcoma de Ewing/genética , Sarcoma de Ewing/patología , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Hepatology ; 70(2): 563-576, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30353932

RESUMEN

Hepatocellular carcinoma (HCC) is the second most common cause of cancer-related death in the world. Therapeutic outcomes of HCC remain unsatisfactory, and novel treatments are urgently needed. GPC3 (glypican-3) is an emerging target for HCC, given the findings that 1) GPC3 is highly expressed in more than 70% of HCC; (2) elevated GPC3 expression is linked with poor HCC prognosis; and (3) GPC3-specific therapeutics, including immunotoxin, bispecific antibody and chimeric antigen receptor T cells. have shown promising results. Here, we postulate that GPC3 is a potential target of antibody-drug conjugates (ADCs) for treating liver cancer. To determine the payload for ADCs against liver cancer, we screened three large drug libraries (> 9,000 compounds) against HCC cell lines and found that the most potent drugs are DNA-damaging agents. Duocarmycin SA and pyrrolobenzodiazepine dimer were chosen as the payloads to construct two GPC3-specific ADCs: hYP7-DC and hYP7-PC. Both ADCs showed potency at picomolar concentrations against a panel of GPC3-positive cancer cell lines, but not GPC3 negative cell lines. To improve potency, we investigated the synergetic effect of hYP7-DC with approved drugs. Gemcitabine showed a synergetic effect with hYP7-DC in vitro and in vivo. Furthermore, single treatment of hYP7-PC induced tumor regression in multiple mouse models. Conclusion: We provide an example of an ADC targeting GPC3, suggesting a strategy for liver cancer therapy.


Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Glipicanos/antagonistas & inhibidores , Inmunoconjugados/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Animales , Línea Celular Tumoral , Femenino , Humanos , Ratones
18.
Cancer Cell ; 34(6): 922-938.e7, 2018 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-30537514

RESUMEN

Drug resistance represents a major challenge to achieving durable responses to cancer therapeutics. Resistance mechanisms to epigenetically targeted drugs remain largely unexplored. We used bromodomain and extra-terminal domain (BET) inhibition in neuroblastoma as a prototype to model resistance to chromatin modulatory therapeutics. Genome-scale, pooled lentiviral open reading frame (ORF) and CRISPR knockout rescue screens nominated the phosphatidylinositol 3-kinase (PI3K) pathway as promoting resistance to BET inhibition. Transcriptomic and chromatin profiling of resistant cells revealed that global enhancer remodeling is associated with upregulation of receptor tyrosine kinases (RTKs), activation of PI3K signaling, and vulnerability to RTK/PI3K inhibition. Large-scale combinatorial screening with BET inhibitors identified PI3K inhibitors among the most synergistic upfront combinations. These studies provide a roadmap to elucidate resistance to epigenetic-targeted therapeutics and inform efficacious combination therapies.


Asunto(s)
Azepinas/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Indazoles/farmacología , Terapia Molecular Dirigida/métodos , Neuroblastoma/tratamiento farmacológico , Sulfonamidas/farmacología , Triazoles/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Línea Celular Tumoral , Supervivencia sin Enfermedad , Epigénesis Genética/efectos de los fármacos , Femenino , Humanos , Ratones Desnudos , Neuroblastoma/genética , Neuroblastoma/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas/antagonistas & inhibidores , Proteínas/metabolismo , Transducción de Señal/efectos de los fármacos
19.
Sci Rep ; 8(1): 17239, 2018 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-30467317

RESUMEN

The development of new treatments for castrate resistant prostate cancer (CRPC) must address such challenges as intrinsic tumor heterogeneity and phenotypic plasticity. Combined PTEN/TP53 alterations represent a major genotype of CRPC (25-30%) and are associated with poor outcomes. Using tumor-derived, castration-resistant Pten/Tp53 null luminal prostate cells for comprehensive, high-throughput, mechanism-based screening, we identified several vulnerabilities among >1900 compounds, including inhibitors of: PI3K/AKT/mTOR, the proteasome, the cell cycle, heat shock proteins, DNA repair, NFκB, MAPK, and epigenetic modifiers. HSP90 inhibitors were one of the most active compound classes in the screen and have clinical potential for use in drug combinations to enhance efficacy and delay the development of resistance. To inform future design of rational drug combinations, we tested ganetespib, a potent second-generation HSP90 inhibitor, as a single agent in multiple CRPC genotypes and phenotypes. Ganetespib decreased growth of endogenous Pten/Tp53 null tumors, confirming therapeutic activity in situ. Fifteen human CRPC LuCaP PDX-derived organoid models were assayed for responses to 110 drugs, and HSP90 inhibitors (ganetespib and onalespib) were among the select group of drugs (<10%) that demonstrated broad activity (>75% of models) at high potency (IC50 <1 µM). Ganetespib inhibits multiple targets, including AR and PI3K pathways, which regulate mutually compensatory growth and survival signals in some forms of CRPC. Combined with castration, ganetespib displayed deeper PDX tumor regressions and delayed castration resistance relative to either monotherapy. In all, comprehensive data from near-patient models presents novel contexts for HSP90 inhibition in multiple CRPC genotypes and phenotypes, expands upon HSP90 inhibitors as simultaneous inhibitors of oncogenic signaling and resistance mechanisms, and suggests utility for combined HSP90/AR inhibition in CRPC.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Antagonistas de Receptores Androgénicos/farmacología , Animales , Benzamidas/farmacología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Genotipo , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Isoindoles/farmacología , Masculino , Ratones , Fosfohidrolasa PTEN/metabolismo , Fenotipo , Fosfatidilinositol 3-Quinasas/metabolismo , Próstata/efectos de los fármacos , Próstata/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Triazoles/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
20.
Breast Cancer Res Treat ; 172(1): 69-82, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30056566

RESUMEN

BACKGROUND: A perennial challenge in systemic cytotoxic cancer therapy is to eradicate primary tumors and metastatic disease while sparing normal tissue from off-target effects of chemotherapy. Anthracyclines such as doxorubicin are effective chemotherapeutic agents for which dosing is limited by development of cardiotoxicity. Our published evidence shows that targeting CD47 enhances radiation-induced growth delay of tumors while remarkably protecting soft tissues. The protection of cell viability observed with CD47 is mediated autonomously by activation of protective autophagy. However, whether CD47 protects cancer cells from cytotoxic chemotherapy is unknown. METHODS: We tested the effect of CD47 blockade on cancer cell survival using a 2-dimensional high-throughput cell proliferation assay in 4T1 breast cancer cell lines. To evaluate blockade of CD47 in combination with chemotherapy in vivo, we employed the 4T1 breast cancer model and examined tumor and cardiac tissue viability as well as autophagic flux. RESULTS: Our high-throughput screen revealed that blockade of CD47 does not interfere with the cytotoxic activity of anthracyclines against 4T1 breast cancer cells. Targeting CD47 enhanced the effect of doxorubicin chemotherapy in vivo by reducing tumor growth and metastatic spread by activation of an anti-tumor innate immune response. Moreover, systemic suppression of CD47 protected cardiac tissue viability and function in mice treated with doxorubicin. CONCLUSIONS: Our experiments indicate that the protective effects observed with CD47 blockade are mediated through upregulation of autophagic flux. However, the absence of CD47 in did not elicit a protective effect in cancer cells, but it enhanced macrophage-mediated cancer cell cytolysis. Therefore, the differential responses observed with CD47 blockade are due to autonomous activation of protective autophagy in normal tissue and enhancement immune cytotoxicity against cancer cells.


Asunto(s)
Antraciclinas/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Antígeno CD47/antagonistas & inhibidores , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Neoplasias de la Mama/genética , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Antígeno CD47/inmunología , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Células MCF-7 , Ratones , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA