Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nat Commun ; 9(1): 4028, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30279421

RESUMEN

The presequence translocase of the mitochondrial inner membrane (TIM23 complex) facilitates anterograde precursor transport into the matrix and lateral release of precursors with stop-transfer signal into the membrane (sorting). Sorting requires precursor exit from the translocation channel into the lipid phase through the lateral gate of the TIM23 complex. How the two transport modes are regulated and balanced against each other is unknown. Here we show that the import motor J-protein Pam18, which is essential for matrix import, controls lateral protein release into the lipid bilayer. Constitutively translocase-associated Pam18 obstructs lateral precursor transport. Concomitantly, Mgr2, implicated in precursor quality control, is displaced from the translocase. We conclude that during motor-dependent matrix protein transport, the transmembrane segment of Pam18 closes the lateral gate to promote anterograde polypeptide movement. This finding explains why a motor-free form of the translocase facilitates the lateral movement of precursors with a stop-transfer signal.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Levaduras
2.
J Cell Biol ; 216(1): 83-92, 2017 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-28011846

RESUMEN

Two driving forces energize precursor translocation across the inner mitochondrial membrane. Although the membrane potential (Δψ) is considered to drive translocation of positively charged presequences through the TIM23 complex (presequence translocase), the activity of the Hsp70-powered import motor is crucial for the translocation of the mature protein portion into the matrix. In this study, we show that mitochondrial matrix proteins display surprisingly different dependencies on the Δψ. However, a precursor's hypersensitivity to a reduction of the Δψ is not linked to the respective presequence, but rather to the mature portion of the polypeptide chain. The presequence translocase constituent Pam17 is specifically recruited by the receptor Tim50 to promote the transport of hypersensitive precursors into the matrix. Our analyses show that two distinct Δψ-driven translocation steps energize precursor passage across the inner mitochondrial membrane. The Δψ- and Pam17-dependent import step identified in this study is positioned between the two known energy-dependent steps: Δψ-driven presequence translocation and adenosine triphosphate-driven import motor activity.


Asunto(s)
Potencial de la Membrana Mitocondrial , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Precursores de Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/metabolismo , Genotipo , Hidrólisis , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Mutación , Fenotipo , Precursores de Proteínas/genética , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Tiempo
3.
Cell Metab ; 18(4): 578-87, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24093680

RESUMEN

Most mitochondrial proteins are imported by the translocase of the outer mitochondrial membrane (TOM). Tom22 functions as central receptor and transfers preproteins to the import pore. Casein kinase 2 (CK2) constitutively phosphorylates the cytosolic precursor of Tom22 at Ser44 and Ser46 and, thus, promotes its import. It is unknown whether Tom22 is regulated under different metabolic conditions. We report that CK1, which is involved in glucose-induced signal transduction, is bound to mitochondria. CK1 phosphorylates Tom22 at Thr57 and stimulates the assembly of Tom22 and Tom20. In contrast, protein kinase A (PKA), which is also activated by the addition of glucose, phosphorylates the precursor of Tom22 at Thr76 and impairs its import. Thus, PKA functions in an opposite manner to CK1 and CK2. Our results reveal that three kinases regulate the import and assembly of Tom22, demonstrating that the central receptor is a major target for the posttranslational regulation of mitochondrial protein import.


Asunto(s)
Glucosa/farmacología , Mitocondrias/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Quinasa de la Caseína I/metabolismo , Quinasa de la Caseína II/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Mitocondrias/enzimología , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Fosforilación/efectos de los fármacos , Unión Proteica , Saccharomyces cerevisiae/metabolismo , Transducción de Señal/efectos de los fármacos
4.
Biochim Biophys Acta ; 1827(5): 612-26, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23274250

RESUMEN

The mitochondrial inner membrane harbors the complexes of the respiratory chain and protein translocases required for the import of mitochondrial precursor proteins. These complexes are functionally interdependent, as the import of respiratory chain precursor proteins across and into the inner membrane requires the membrane potential. Vice versa the membrane potential is generated by the proton pumping complexes of the respiratory chain. Besides this basic codependency four different systems for protein import, processing and assembly show further connections to the respiratory chain. The mitochondrial intermembrane space import and assembly machinery oxidizes cysteine residues within the imported precursor proteins and is able to donate the liberated electrons to the respiratory chain. The presequence translocase of the inner membrane physically interacts with the respiratory chain. The mitochondrial processing peptidase is homologous to respiratory chain subunits and the carrier translocase of the inner membrane even shares a subunit with the respiratory chain. In this review we will summarize the import of mitochondrial precursor proteins and highlight these special links between the mitochondrial protein import machinery and the respiratory chain. This article is part of a Special Issue entitled: Respiratory complex II: Role in cellular physiology and disease.


Asunto(s)
Potencial de la Membrana Mitocondrial/fisiología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Transporte de Electrón/fisiología , Complejo II de Transporte de Electrones/metabolismo , Humanos , Modelos Biológicos , Transporte de Proteínas/fisiología
5.
J Mol Biol ; 424(5): 227-39, 2012 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-23036860

RESUMEN

The intermembrane space of mitochondria contains a dedicated chaperone network-the small translocase of the inner membrane (TIM) family-for the sorting of hydrophobic precursors. All small TIMs are defined by the presence of a twin CX(3)C motif and the monomeric proteins are stabilized by two intramolecular disulfide bonds formed between the cysteines of these motifs. The conserved cysteine residues within small TIM members have also been shown to participate in early biogenesis events, with the most N-terminal cysteine residue important for import and retention within the intermembrane space via the receptor and disulfide oxidase, Mia40. In this study, we have analyzed the in vivo consequences of improper folding of small TIM chaperones by generating site-specific cysteine mutants and assessed the fate of the incompletely oxidized proteins within mitochondria. We show that no individual cysteine residue is required for the function of Tim9 or Tim10 in yeast and that defective assembly of the small TIMs induces their proteolytic clearance from mitochondria. We delineate a clearance mechanism for the mutant proteins and their unassembled wild-type partner protein by the mitochondrial ATP-dependent protease, Yme1 (yeast mitochondrial escape 1).


Asunto(s)
Proteasas ATP-Dependientes/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Pliegue de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteolisis , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
6.
Mol Biol Cell ; 23(20): 3957-69, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22918950

RESUMEN

The intermembrane space of mitochondria accommodates the essential mitochondrial intermembrane space assembly (MIA) machinery that catalyzes oxidative folding of proteins. The disulfide bond formation pathway is based on a relay of reactions involving disulfide transfer from the sulfhydryl oxidase Erv1 to Mia40 and from Mia40 to substrate proteins. However, the substrates of the MIA typically contain two disulfide bonds. It was unclear what the mechanisms are that ensure that proteins are released from Mia40 in a fully oxidized form. In this work, we dissect the stage of the oxidative folding relay, in which Mia40 binds to its substrate. We identify dynamics of the Mia40-substrate intermediate complex. Our experiments performed in a native environment, both in organello and in vivo, show that Erv1 directly participates in Mia40-substrate complex dynamics by forming a ternary complex. Thus Mia40 in cooperation with Erv1 promotes the formation of two disulfide bonds in the substrate protein, ensuring the efficiency of oxidative folding in the intermembrane space of mitochondria.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sitios de Unión , Cisteína/genética , Proteínas de Transporte de Membrana Mitocondrial/química , Membranas Mitocondriales/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Complejos Multiproteicos/metabolismo , Mutación/genética , Oxidación-Reducción , Fenotipo , Unión Proteica , Conformación Proteica , Precursores de Proteínas/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química , Especificidad por Sustrato
7.
Mol Biol Cell ; 23(9): 1618-27, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22419819

RESUMEN

The preprotein translocase of the outer mitochondrial membrane (TOM) functions as the main entry gate for the import of nuclear-encoded proteins into mitochondria. The major subunits of the TOM complex are the three receptors Tom20, Tom22, and Tom70 and the central channel-forming protein Tom40. Cytosolic kinases have been shown to regulate the biogenesis and activity of the Tom receptors. Casein kinase 2 stimulates the biogenesis of Tom22 and Tom20, whereas protein kinase A (PKA) impairs the receptor function of Tom70. Here we report that PKA exerts an inhibitory effect on the biogenesis of the ß-barrel protein Tom40. Tom40 is synthesized as precursor on cytosolic ribosomes and subsequently imported into mitochondria. We show that PKA phosphorylates the precursor of Tom40. The phosphorylated Tom40 precursor is impaired in import into mitochondria, whereas the nonphosphorylated precursor is efficiently imported. We conclude that PKA plays a dual role in the regulation of the TOM complex. Phosphorylation by PKA not only impairs the receptor activity of Tom70, but it also inhibits the biogenesis of the channel protein Tom40.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Precursores de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/aislamiento & purificación , Membranas Mitocondriales/enzimología , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Fosforilación , Saccharomyces cerevisiae/enzimología
8.
Mol Biol Cell ; 22(16): 2823-33, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21680715

RESUMEN

The mitochondrial outer membrane contains proteinaceous machineries for the translocation of precursor proteins. The sorting and assembly machinery (SAM) is required for the insertion of ß-barrel proteins into the outer membrane. Sam50 is the channel-forming core subunit of the SAM complex and belongs to the BamA/Sam50/Toc75 family of proteins that have been conserved from Gram-negative bacteria to mitochondria and chloroplasts. These proteins contain one or more N-terminal polypeptide transport-associated (POTRA) domains. POTRA domains can bind precursor proteins, however, different views exist on the role of POTRA domains in the biogenesis of ß-barrel proteins. It has been suggested that the single POTRA domain of mitochondrial Sam50 plays a receptor-like function at the SAM complex. We established a system to monitor the interaction of chemical amounts of ß-barrel precursor proteins with the SAM complex of wild-type and mutant yeast in organello. We report that the SAM complex lacking the POTRA domain of Sam50 efficiently binds ß-barrel precursors, but is impaired in the release of the precursors. These results indicate the POTRA domain of Sam50 is not essential for recognition of ß-barrel precursors but functions in a subsequent step to promote the release of precursor proteins from the SAM complex.


Asunto(s)
Proteínas Mitocondriales/metabolismo , Señales de Clasificación de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Sistema Libre de Células , Técnicas de Inactivación de Genes , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Complejos Multiproteicos , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Porinas/química , Porinas/metabolismo , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
9.
Cell ; 144(2): 227-39, 2011 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-21215441

RESUMEN

Mitochondria import a large number of nuclear-encoded proteins via membrane-bound transport machineries; however, little is known about regulation of the preprotein translocases. We report that the main protein entry gate of mitochondria, the translocase of the outer membrane (TOM complex), is phosphorylated by cytosolic kinases-in particular, casein kinase 2 (CK2) and protein kinase A (PKA). CK2 promotes biogenesis of the TOM complex by phosphorylation of two key components, the receptor Tom22 and the import protein Mim1, which in turn are required for import of further Tom proteins. Inactivation of CK2 decreases the levels of the TOM complex and thus mitochondrial protein import. PKA phosphorylates Tom70 under nonrespiring conditions, thereby inhibiting its receptor activity and the import of mitochondrial metabolite carriers. We conclude that cytosolic kinases exert stimulatory and inhibitory effects on biogenesis and function of the TOM complex and thus regulate protein import into mitochondria.


Asunto(s)
Quinasa de la Caseína II/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Citosol/enzimología , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Portadoras/metabolismo , Citosol/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Fosforilación , Transporte de Proteínas , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Mol Biol Cell ; 19(1): 226-36, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17978092

RESUMEN

The mitochondrial intermembrane space contains chaperone complexes that guide hydrophobic precursor proteins through this aqueous compartment. The chaperones consist of hetero-oligomeric complexes of small Tim proteins with conserved cysteine residues. The precursors of small Tim proteins are synthesized in the cytosol. Import of the precursors requires the essential intermembrane space proteins Mia40 and Erv1 that were proposed to form a relay for disulfide formation in the precursor proteins. However, experimental evidence for a role of Mia40 and Erv1 in the oxidation of intermembrane space precursors has been lacking. We have established a system to directly monitor the oxidation of precursors during import into mitochondria and dissected distinct steps of the import process. Reduced precursors bind to Mia40 during translocation into mitochondria. Both Mia40 and Erv1 are required for formation of oxidized monomers of the precursors that subsequently assemble into oligomeric complexes. Whereas the reduced precursors can diffuse back into the cytosol, the oxidized precursors are retained in the intermembrane space. Thus, oxidation driven by Mia40 and Erv1 determines vectorial transport of the precursors into the mitochondrial intermembrane space.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Precursores de Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Cisteína , Disulfuros/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Mutación/genética , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo
11.
Nat Cell Biol ; 9(10): 1152-9, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17828250

RESUMEN

The mitochondrial inner membrane is the central energy-converting membrane of eukaryotic cells. The electrochemical proton gradient generated by the respiratory chain drives the ATP synthase. To maintain this proton-motive force, the inner membrane forms a tight barrier and strictly controls the translocation of ions. However, the major preprotein transport machinery of the inner membrane, termed the presequence translocase, translocates polypeptide chains into or across the membrane. Different views exist of the molecular mechanism of the translocase, in particular of the coupling with the import motor of the matrix. We have reconstituted preprotein transport into the mitochondrial inner membrane by incorporating the purified presequence translocase into cardiolipin-containing liposomes. We show that the motor-free form of the presequence translocase integrates preproteins into the membrane. The reconstituted presequence translocase responds to targeting peptides and mediates voltage-driven preprotein translocation, lateral release and insertion into the lipid phase. Thus, the minimal system for preprotein integration into the mitochondrial inner membrane is the presequence translocase, a cardiolipin-rich membrane and a membrane potential.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Citocromos c1/metabolismo , Inmunoprecipitación , Potencial de la Membrana Mitocondrial/fisiología , Proteínas de Transporte de Membrana/genética , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Membranas Mitocondriales/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Precursores de Proteínas/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
12.
J Biol Chem ; 282(31): 22472-80, 2007 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-17553782

RESUMEN

The mitochondrial intermembrane space (IMS) contains an essential machinery for protein import and assembly (MIA). Biogenesis of IMS proteins involves a disulfide relay between precursor proteins, the cysteine-rich IMS protein Mia40 and the sulfhydryl oxidase Erv1. How precursor proteins are specifically directed to the IMS has remained unknown. Here we systematically analyzed the role of cysteine residues in the biogenesis of the essential IMS chaperone complex Tim9-Tim10. Although each of the four cysteines of Tim9, as well as of Tim10, is required for assembly of the chaperone complex, only the most amino-terminal cysteine residue of each precursor is critical for translocation across the outer membrane and interaction with Mia40. Mia40 selectively recognizes cysteine-containing IMS proteins in a site-specific manner in organello and in vitro. Our results indicate that Mia40 acts as a trans receptor in the biogenesis of mitochondrial IMS proteins.


Asunto(s)
Cisteína/química , Regulación Fúngica de la Expresión Génica , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Cisteína/metabolismo , Cistina/metabolismo , Disulfuros , Escherichia coli/metabolismo , Histidina/química , Mitocondrias/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Modelos Genéticos , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Unión Proteica , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo
13.
Mol Cell Biol ; 27(2): 411-25, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17074805

RESUMEN

The import of mitochondrial preproteins requires an electric potential across the inner membrane and the hydrolysis of ATP in the matrix. We assessed the contributions of the two energy sources to the translocation driving force responsible for movement of the polypeptide chain through the translocation channel and the unfolding of preprotein domains. The import-driving activity was directly analyzed by the determination of the protease resistances of saturating amounts of membrane-spanning translocation intermediates. The ability to generate a strong translocation-driving force was solely dependent on the activity of the ATP-dependent import motor complex in the matrix. For a sustained import-driving activity on the preprotein in transit, an unstructured N-terminal segment of more than 70 to 80 amino acid residues was required. The electric potential of the inner membrane was required to maintain the import-driving activity at a high level. The electrophoretic force of the potential exhibited only a limited capacity to unfold preprotein domains. We conclude that the membrane potential increases the probability of a dynamic interaction of the preprotein with the import motor. Polypeptide translocation and unfolding are mainly driven by the inward-directed translocation activity based on the functional cooperation of the import motor components.


Asunto(s)
Adenosina Trifosfato/metabolismo , Potencial de la Membrana Mitocondrial/fisiología , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Proteínas Motoras Moleculares/fisiología , Precursores de Proteínas/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , L-Lactato Deshidrogenasa (Citocromo)/genética , L-Lactato Deshidrogenasa (Citocromo)/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Motoras Moleculares/genética , Mutación , Péptidos/genética , Péptidos/metabolismo , Pliegue de Proteína , Precursores de Proteínas/genética , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Partículas Submitocóndricas/genética , Partículas Submitocóndricas/fisiología , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo
14.
J Mol Biol ; 365(3): 612-20, 2007 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-17095012

RESUMEN

Mitochondria consist of four compartments, the outer membrane, intermembrane space (IMS), inner membrane and the matrix. Most mitochondrial proteins are synthesized as precursors in the cytosol and have to be imported into these compartments. While the protein import machineries of the outer membrane, inner membrane and matrix have been investigated in detail, a specific mitochondrial machinery for import and assembly of IMS proteins, termed MIA, was identified only recently. To date, only a very small number of substrate proteins of the MIA pathway have been identified. The substrates contain characteristic cysteine motifs, either a twin Cx(3)C or a twin Cx(9)C motif. The largest MIA substrates known possess a molecular mass of 11 kDa, implying that this new import pathway has a very small size limit. Here, we have compiled a list of Saccharomyces cerevisiae proteins with a twin Cx(9)C motif and identified three IMS proteins that were previously localized to incorrect cellular compartments by tagging approaches. Mdm35, Mic14 (YDR031w) and Mic17 (YMR002w) require the two essential subunits, Mia40 and Erv1, of the MIA machinery for their localization in the mitochondrial IMS. With a molecular mass of 14 kDa and 17 kDa, respectively, Mic14 and Mic17 are larger than the known MIA substrates. Remarkably, the precursor of Erv1 itself is imported via the MIA pathway. As Erv1 has a molecular mass of 22 kDa and a twin Cx(2)C motif, this study demonstrates that the MIA pathway can transport substrates that are twice as large as the substrates known to date and is not limited to proteins with twin Cx(3)C or Cx(9)C motifs. However, tagging of MIA substrates can interfere with their subcellular localization, indicating that the proper localization of mitochondrial IMS proteins requires the characterization of the authentic untagged proteins.


Asunto(s)
Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/química , Datos de Secuencia Molecular , Mutación/genética , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Precursores de Proteínas/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/química , Especificidad por Sustrato
15.
Science ; 312(5779): 1523-6, 2006 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-16763150

RESUMEN

Transport of metabolites across the mitochondrial inner membrane is highly selective, thereby maintaining the electrochemical proton gradient that functions as the main driving force for cellular adenosine triphosphate synthesis. Mitochondria import many preproteins via the presequence translocase of the inner membrane. However, the reconstituted Tim23 protein constitutes a pore remaining mainly in its open form, a state that would be deleterious in organello. We found that the intermembrane space domain of Tim50 induced the Tim23 channel to close. Presequences overcame this effect and activated the channel for translocation. Thus, the hydrophilic cis domain of Tim50 maintains the permeability barrier of mitochondria by closing the translocation pore in a presequence-regulated manner.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Permeabilidad de la Membrana Celular , Liposomas , Proteínas de Transporte de Membrana/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Estructura Terciaria de Proteína , Saccharomyces cerevisiae
16.
EMBO J ; 25(1): 184-95, 2006 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-16341089

RESUMEN

Mitochondria are indispensable for cell viability; however, major mitochondrial functions including citric acid cycle and oxidative phosphorylation are dispensable. Most known essential mitochondrial proteins are involved in preprotein import and assembly, while the only known essential biosynthetic process performed by mitochondria is the biogenesis of iron-sulfur clusters (ISC). The components of the mitochondrial ISC-assembly machinery are derived from the prokaryotic ISC-assembly machinery. We have identified an essential mitochondrial matrix protein, Isd11 (YER048w-a), that is found in eukaryotes only. Isd11 is required for biogenesis of cellular Fe/S proteins and thus is a novel subunit of the mitochondrial ISC-assembly machinery. It forms a complex with the cysteine desulfurase Nfs1 and is required for formation of an Fe/S cluster on the Isu scaffold proteins. We conclude that Isd11 is an indispensable eukaryotic component of the mitochondrial machinery for biogenesis of Fe/S proteins.


Asunto(s)
Proteínas Hierro-Azufre/biosíntesis , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Liasas de Carbono-Azufre/metabolismo , Núcleo Celular/química , Núcleo Celular/metabolismo , Citosol/química , Citosol/metabolismo , Estabilidad de Enzimas , Proteínas Hierro-Azufre/análisis , Mitocondrias/química , Proteínas Mitocondriales/análisis , Proteínas Mitocondriales/genética , Datos de Secuencia Molecular , Mutación , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/genética , Sulfurtransferasas
17.
Biol Chem ; 386(12): 1307-17, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16336126

RESUMEN

The protease Pim1/LON, a member of the AAA+ family of homo-oligomeric ATP-dependent proteases, is responsible for the degradation of soluble proteins in the mitochondrial matrix. To establish the molecular parameters required for the specific recognition and proteolysis of substrate proteins by Pim1, we analyzed the in organello degradation of imported reporter proteins containing different structural properties. The amino acid composition at the amino-terminal end had no major effect on the proteolysis reaction. However, proteins with an amino-terminal extension of less than 60 amino acids in front of a stably folded reporter domain were completely resistant to proteolysis by Pim1. Substrate proteins with a longer amino-terminal extension showed incomplete proteolysis, resulting in the generation of a defined degradation fragment. We conclude that Pim1-mediated protein degradation is processive and is initiated from an unstructured amino-terminal segment. Resistance to degradation and fragment formation was abolished if the folding state of the reporter domain was destabilized, indicating that Pim1 is not able to unravel folded proteins for proteolysis. We propose that the requirement for an exposed, large, non-native protein segment, in combination with a limited unfolding capability, accounts for the selectivity of the protease Pim1 for damaged or misfolded polypeptides.


Asunto(s)
Proteasas ATP-Dependientes/metabolismo , Endopeptidasas/metabolismo , Mitocondrias/enzimología , Pliegue de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina Endopeptidasas/metabolismo , Proteasas ATP-Dependientes/química , Western Blotting , Endopeptidasas/química , Genes Reporteros , L-Lactato Deshidrogenasa (Citocromo)/metabolismo , Proteínas Mitocondriales , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Serina Endopeptidasas/química , Especificidad por Sustrato , Temperatura , Factores de Tiempo
18.
J Biol Chem ; 280(48): 39852-9, 2005 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-16207709

RESUMEN

Mitochondrial apocytochrome c and c1 are converted to their holoforms in the intermembrane space by attachment of heme to the cysteines of the CXXCH motif through the activity of assembly factors cytochrome c heme lyase and cytochrome c1 heme lyase (CCHL and CC1HL). The maintenance of apocytochrome sulfhydryls and heme substrates in a reduced state is critical for the ligation of heme. Factors that control the redox chemistry of the heme attachment reaction to apocytochrome c are known in bacteria and plastids but not in mitochondria. We have explored the function of Cyc2p, a candidate redox cytochrome c assembly component in yeast mitochondria. We show that Cyc2p is required for the activity of CCHL toward apocytochrome c and c1 and becomes essential for the heme attachment to apocytochrome c1 carrying a CAPCH instead of CAACH heme binding site. A redox function for Cyc2p in the heme lyase reaction is suggested from 1) the presence of a noncovalently bound FAD molecule in the C-terminal domain of Cyc2p, 2) the localization of Cyc2p in the inner membrane with the FAD binding domain exposed to the intermembrane space, and 3) the ability of recombinant Cyc2p to carry the NADPH-dependent reduction of ferricyanide. We postulate that, in vivo, Cyc2p interacts with CCHL and is involved in the reduction of heme prior to its ligation to apocytochrome c by CCHL.


Asunto(s)
Proteínas Portadoras/fisiología , Membrana Celular/metabolismo , Citocromos c/metabolismo , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Mitocondrias/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Secuencias de Aminoácidos , Sitios de Unión , Citocromos c1/química , Electroforesis en Gel de Poliacrilamida , Flavinas/química , Flavoproteínas/química , Proteínas Fúngicas/química , Hemo/química , Cinética , Liasas/química , Proteínas Mitocondriales , Modelos Biológicos , Mutación , Oxidación-Reducción , Consumo de Oxígeno , Plásmidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo , Partículas Submitocóndricas/metabolismo , Temperatura
19.
J Biol Chem ; 277(48): 45829-37, 2002 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-12237310

RESUMEN

Molecular chaperones perform vital functions in mitochondrial protein import and folding. In yeast mitochondria, two members of the Clp/Hsp100 chaperone family, Hsp78 and Mcx1, have been identified as homologs of the bacterial proteins ClpB and ClpX, respectively. In this report we employed a novel quantitative assay system to assess the role of Hsp78 and Mcx1 in protein degradation within the matrix. Mitochondria were preloaded with large amounts of two purified recombinant reporter proteins exhibiting different folding stabilities. Proteolysis of the imported substrate proteins depended on the mitochondrial level of ATP and was mediated by the matrix protease Pim1/LON. Degradation rates were found to be independent of the folding stability of the reporter proteins. Mitochondria from hsp78Delta cells exhibited a significant defect in the degradation efficiency of both substrates even at low temperature whereas mcx1Delta mitochondria showed wild-type activity. The proteolysis defect in hsp78Delta mitochondria was independent from the aggregation behavior of the substrate proteins. We conclude that Hsp78 is a genuine component of the mitochondrial proteolysis system required for the efficient degradation of substrate proteins in the matrix.


Asunto(s)
Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/fisiología , Proteínas de Choque Térmico/fisiología , Mitocondrias/metabolismo , Proteínas de Saccharomyces cerevisiae , Proteasas ATP-Dependientes , Adenosina Trifosfato/metabolismo , Hidrólisis , Proteínas Mitocondriales , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Serina Endopeptidasas/metabolismo , Tetrahidrofolato Deshidrogenasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA