Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38984538

RESUMEN

Tissue tension encompasses the mechanical forces exerted on solid tissues within animal bodies, originating from various sources such as cellular contractility, interactions with neighboring cells and the extracellular matrix. Emerging evidence indicates that an imbalance in such forces can influence structural organization, homeostasis, and potentially contribute to disease. For instance, heightened tissue tension can impede apical cell extrusion, leading to the retention of apoptotic or transformed cells. In this study, we investigate the potential role of adenomatous polyposis coli (APC) in modulating tissue tension. Our findings reveal that expression of an APC truncation mutant elevates epithelial tension via the RhoA/ROCK pathway. This elevation induces morphological alterations and hampers apoptotic cell extrusion in cultured epithelial cells and organoids, both of which could be mitigated by pharmacologically restoring the tissue tension. This raises the possibility that APC mutations may exert pathogenetic effects by altering tissue mechanics.

2.
Cell Death Differ ; 31(3): 360-377, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38365970

RESUMEN

Phenotypic plasticity, defined as the ability of individual cells with stable genotypes to exert different phenotypes upon exposure to specific environmental cues, represent the quintessential hallmark of the cancer cell en route from the primary lesion to distant organ sites where metastatic colonization will occur. Phenotypic plasticity is driven by a broad spectrum of epigenetic mechanisms that allow for the reversibility of epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions (EMT/MET). By taking advantage of the co-existence of epithelial and quasi-mesenchymal cells within immortalized cancer cell lines, we have analyzed the role of EMT-related gene isoforms in the regulation of epithelial mesenchymal plasticity (EMP) in high grade serous ovarian cancer. When compared with colon cancer, a distinct spectrum of downstream targets characterizes quasi-mesenchymal ovarian cancer cells, likely to reflect the different modalities of metastasis formation between these two types of malignancy, i.e. hematogenous in colon and transcoelomic in ovarian cancer. Moreover, upstream RNA-binding proteins differentially expressed between epithelial and quasi-mesenchymal subpopulations of ovarian cancer cells were identified that underlie differential regulation of EMT-related isoforms. In particular, the up- and down-regulation of RBM24 and ESRP1, respectively, represent a main regulator of EMT in ovarian cancer cells. To validate the functional and clinical relevance of our approach, we selected and functionally analyzed the Tropomyosin 1 gene (TPM1), encoding for a protein that specifies the functional characteristics of individual actin filaments in contractile cells, among the ovarian-specific downstream AS targets. The low-molecular weight Tpm1.8/9 isoforms are specifically expressed in patient-derived ascites and promote invasion through activation of EMT and Wnt signaling, together with a broad spectrum of inflammation-related pathways. Moreover, Tpm1.8/9 expression confers resistance to taxane- and platinum-based chemotherapy. Small molecule inhibitors that target the Tpm1 isoforms support targeting Tpm1.8/9 as therapeutic targets for the development of future tailor-made clinical interventions.


Asunto(s)
Neoplasias Ováricas , Humanos , Femenino , Movimiento Celular , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Vía de Señalización Wnt , Transición Epitelial-Mesenquimal , Proteínas de Unión al ARN/metabolismo
3.
Mol Biol Cell ; 35(1): br3, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37903230

RESUMEN

Apical extrusion is a tissue-intrinsic process that allows epithelia to eliminate unfit or surplus cells. This is exemplified by the early extrusion of apoptotic cells, which is critical to maintain the epithelial barrier and prevent inflammation. Apoptotic extrusion is an active mechanical process, which involves mechanotransduction between apoptotic cells and their neighbors, as well as local changes in tissue mechanics. Here we report that the preexisting mechanical tension at adherens junctions (AJs) conditions the efficacy of apoptotic extrusion. Specifically, increasing baseline mechanical tension by overexpression of a phosphomimetic Myosin II regulatory light chain (MRLC) compromises apoptotic extrusion. This occurs when tension is increased in either the apoptotic cell or its surrounding epithelium. Further, we find that the proinflammatory cytokine, TNFα, stimulates Myosin II and increases baseline AJ tension to disrupt apical extrusion, causing apoptotic cells to be retained in monolayers. Importantly, reversal of mechanical tension with an inhibitory MRLC mutant or tropomyosin inhibitors is sufficient to restore apoptotic extrusion in TNFα-treated monolayers. Together, these findings demonstrate that baseline levels of tissue tension are important determinants of apoptotic extrusion, which can potentially be coopted by pathogenetic factors to disrupt the homeostatic response of epithelia to apoptosis.


Asunto(s)
Uniones Adherentes , Células Epiteliales , Uniones Adherentes/metabolismo , Células Epiteliales/metabolismo , Mecanotransducción Celular , Factor de Necrosis Tumoral alfa , Epitelio/metabolismo , Miosina Tipo II/metabolismo
4.
Curr Biol ; 33(20): 4458-4469.e4, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37875071

RESUMEN

Mechanical force generation plays an essential role in many cellular functions, including mitosis. Actomyosin contractile forces mediate changes in cell shape in mitosis and are implicated in mitotic spindle integrity via cortical tension. An unbiased screen of 150 small molecules that impact actin organization and 32 anti-mitotic drugs identified two molecular targets, Rho kinase (ROCK) and tropomyosin 3.1/2 (Tpm3.1/2), whose inhibition has the greatest impact on mitotic cortical tension. The converse was found for compounds that depolymerize microtubules. Tpm3.1/2 forms a co-polymer with mitotic cortical actin filaments, and its inhibition prevents rescue of multipolar spindles induced by anti-microtubule chemotherapeutics. We examined the role of mitotic cortical tension in this rescue mechanism. Inhibition of ROCK and Tpm3.1/2 and knockdown (KD) of cortical nonmuscle myosin 2A (NM2A), all of which reduce cortical tension, inhibited rescue of multipolar mitotic spindles, further implicating cortical tension in the rescue mechanism. GEF-H1 released from microtubules by depolymerization increased cortical tension through the RhoA pathway, and its KD also inhibited rescue of multipolar mitotic spindles. We conclude that microtubule depolymerization by anti-cancer drugs induces cortical-tension-based rescue to ensure integrity of the mitotic bipolar spindle mediated via the RhoA pathway. Central to this mechanism is the dependence of NM2A on Tpm3.1/2 to produce the functional engagement of actin filaments responsible for cortical tension.


Asunto(s)
Microtúbulos , Huso Acromático , Huso Acromático/metabolismo , Microtúbulos/metabolismo , Actinas/metabolismo , Mitosis , Citoesqueleto de Actina/metabolismo , Miosinas/metabolismo
5.
Nat Mater ; 21(1): 120-128, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34518666

RESUMEN

The actin cytoskeleton is the primary driver of cellular adhesion and mechanosensing due to its ability to generate force and sense the stiffness of the environment. At the cell's leading edge, severing of the protruding Arp2/3 actin network generates a specific actin/tropomyosin (Tpm) filament population that controls lamellipodial persistence. The interaction between these filaments and adhesion to the environment is unknown. Using cellular cryo-electron tomography we resolve the ultrastructure of the Tpm/actin copolymers and show that they specifically anchor to nascent adhesions and are essential for focal adhesion assembly. Re-expression of Tpm1.8/1.9 in transformed and cancer cells is sufficient to restore cell-substrate adhesions. We demonstrate that knock-out of Tpm1.8/1.9 disrupts the formation of dorsal actin bundles, hindering the recruitment of α-actinin and non-muscle myosin IIa, critical mechanosensors. This loss causes a force-generation and proliferation defect that is notably reversed when cells are grown on soft surfaces. We conclude that Tpm1.8/1.9 suppress the metastatic phenotype, which may explain why transformed cells naturally downregulate this Tpm subset during malignant transformation.


Asunto(s)
Neoplasias , Tropomiosina , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proliferación Celular , Seudópodos/metabolismo , Tropomiosina/metabolismo
6.
Br J Cancer ; 125(2): 265-276, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33981016

RESUMEN

BACKGROUND: Anti-microtubule agents are widely used to treat ovarian cancers, but the efficacy is often compromised by drug resistance. We investigated co-targeting the actin/tropomyosin cytoskeleton and microtubules to increase treatment efficacy in ovarian cancers and potentially overcome resistance. METHODS: The presence of tropomyosin-3.1 (Tpm3.1) was examined in clinical specimens from ovarian cancer patients using immunohistochemistry. Combinatorial effects of an anti-Tpm3.1 compound, ATM-3507, with vinorelbine and paclitaxel were evaluated in ovarian cancer cells via MTS and apoptosis assays. The mechanisms of action were established using live- and fixed-cell imaging and protein analysis. RESULTS: Tpm3.1 is overexpressed in 97% of tumour tissues (558 of 577) representing all histotypes of epithelial ovarian cancer. ATM-3507 displayed synergy with both anti-microtubule agents to reduce cell viability. Only vinorelbine synergised with ATM-3507 in causing apoptosis. ATM-3507 significantly prolonged vinorelbine-induced mitotic arrest with elevated activity of the spindle assembly checkpoint and mitotic cell death; however, ATM-3507 showed minor impact on paclitaxel-induced mitotic defects. Both combinations substantially increased post-mitotic G1 arrest with cyclin D1 and E1 downregulation and an increase of p21Cip and p27Kip. CONCLUSION: Combined targeting of Tpm3.1/actin and microtubules is a promising treatment strategy for ovarian cancer that should be further tested in clinical settings.


Asunto(s)
Carcinoma Epitelial de Ovario/metabolismo , Cloruros/farmacología , Neoplasias Ováricas/metabolismo , Paclitaxel/farmacología , Tropomiosina/metabolismo , Regulación hacia Arriba , Vinorelbina/farmacología , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Femenino , Humanos , Persona de Mediana Edad , Neoplasias Ováricas/tratamiento farmacológico , Tropomiosina/antagonistas & inhibidores , Regulación hacia Arriba/efectos de los fármacos
7.
Mol Cancer Res ; 18(7): 1074-1087, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32269073

RESUMEN

Antimicrotubule vinca alkaloids are widely used in the clinic but their toxicity is often dose limiting. Strategies that enhance their effectiveness at lower doses are needed. We show that combining vinca alkaloids with compounds that target a specific population of actin filaments containing the cancer-associated tropomyosin Tpm3.1 result in synergy against a broad range of tumor cell types. We discovered that low concentrations of vincristine alone induce supernumerary microtubule asters that form transient multi-polar spindles in early mitosis. Over time these asters can be reconstructed into functional bipolar spindles resulting in cell division and survival. These microtubule asters are organized by the nuclear mitotic apparatus protein (NuMA)-dynein-dynactin complex without involvement of centrosomes. However, anti-Tpm3.1 compounds at nontoxic concentrations inhibit this rescue mechanism resulting in delayed onset of anaphase, formation of multi-polar spindles, and apoptosis during mitosis. These findings indicate that drug targeting actin filaments containing Tpm3.1 potentiates the anticancer activity of low-dose vincristine treatment. IMPLICATIONS: Simultaneously inhibiting Tpm3.1-containing actin filaments and microtubules is a promising strategy to potentiate the anticancer activity of low-dose vincristine.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Piperazinas/administración & dosificación , Tropomiosina/metabolismo , Vincristina/administración & dosificación , Células A549 , Citoesqueleto de Actina/efectos de los fármacos , Animales , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HT29 , Células HeLa , Humanos , Neoplasias Pulmonares/metabolismo , Células MCF-7 , Ratones , Piperazinas/farmacología , Tropomiosina/antagonistas & inhibidores , Vincristina/farmacología
8.
Curr Biol ; 30(5): 767-778.e5, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-32037094

RESUMEN

Eukaryotic cells have diverse protrusive and contractile actin filament structures, which compete with one another for a limited pool of actin monomers. Numerous actin-binding proteins regulate the dynamics of actin structures, including tropomodulins (Tmods), which cap the pointed end of actin filaments. In striated muscles, Tmods prevent actin filaments from overgrowing, whereas in non-muscle cells, their function has remained elusive. Here, we identify two Tmod isoforms, Tmod1 and Tmod3, as key components of contractile stress fibers in non-muscle cells. Individually, Tmod1 and Tmod3 can compensate for one another, but their simultaneous depletion results in disassembly of actin-tropomyosin filaments, loss of force-generating stress fibers, and severe defects in cell morphology. Knockout-rescue experiments reveal that Tmod's interaction with tropomyosin is essential for its role in the stabilization of actin-tropomyosin filaments in cells. Thus, in contrast to their role in muscle myofibrils, in non-muscle cells, Tmods bind actin-tropomyosin filaments to protect them from depolymerizing, not elongating. Furthermore, loss of Tmods shifts the balance from linear actin-tropomyosin filaments to Arp2/3 complex-nucleated branched networks, and this phenotype can be partially rescued by inhibiting the Arp2/3 complex. Collectively, the data reveal that Tmods are essential for the maintenance of contractile actomyosin bundles and that Tmod-dependent capping of actin-tropomyosin filaments is critical for the regulation of actin homeostasis in non-muscle cells.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Tropomodulina/metabolismo , Tropomiosina/metabolismo , Línea Celular , Línea Celular Tumoral , Humanos
9.
Cell Syst ; 9(5): 496-507.e5, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31606369

RESUMEN

Although F-actin has a large number of binding partners and regulators, the number of phenotypic states available to the actin cytoskeleton is unknown. Here, we quantified 74 features defining filamentous actin (F-actin) and cellular morphology in >25 million cells after treatment with a library of 114,400 structurally diverse compounds. After reducing the dimensionality of these data, only ∼25 recurrent F-actin phenotypes emerged, each defined by distinct quantitative features that could be machine learned. We identified 2,003 unknown compounds as inducers of actin-related phenotypes, including two that directly bind the focal adhesion protein, talin. Moreover, we observed that compounds with distinct molecular mechanisms could induce equivalent phenotypes and that initially divergent cellular responses could converge over time. These findings suggest a conceptual parallel between the actin cytoskeleton and gene regulatory networks, where the theoretical plasticity of interactions is nearly infinite, yet phenotypes in vivo are constrained into a limited subset of practicable configurations.


Asunto(s)
Citoesqueleto de Actina/química , Actinas/química , Adaptación Fisiológica/fisiología , Citoesqueleto de Actina/fisiología , Actinas/metabolismo , Secuencia de Aminoácidos , Adhesión Celular/fisiología , Línea Celular Tumoral , Citoesqueleto/metabolismo , Femenino , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Unión Proteica , Talina/metabolismo
10.
Sci Rep ; 9(1): 11262, 2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31375704

RESUMEN

Tropomyosins (Tpm) determine the functional capacity of actin filaments in an isoform-specific manner. The primary isoform in cancer cells is Tpm3.1 and compounds that target Tpm3.1 show promising results as anti-cancer agents both in vivo and in vitro. We have determined the molecular mechanism of interaction of the lead compound ATM-3507 with Tpm3.1-containing actin filaments. When present during co-polymerization of Tpm3.1 with actin, 3H-ATM-3507 is incorporated into the filaments and saturates at approximately one molecule per Tpm3.1 dimer and with an apparent binding affinity of approximately 2 µM. In contrast, 3H-ATM-3507 is poorly incorporated into preformed Tpm3.1/actin co-polymers. CD spectroscopy and thermal melts using Tpm3.1 peptides containing the C-terminus, the N-terminus, and a combination of the two forming the overlap junction at the interface of adjacent Tpm3.1 dimers, show that ATM-3507 shifts the melting temperature of the C-terminus and the overlap junction, but not the N-terminus. Molecular dynamic simulation (MDS) analysis predicts that ATM-3507 integrates into the 4-helix coiled coil overlap junction and in doing so, likely changes the lateral movement of Tpm3.1 across the actin surface resulting in an alteration of filament interactions with actin binding proteins and myosin motors, consistent with the cellular impact of ATM-3507.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Antineoplásicos/farmacología , Tropomiosina/antagonistas & inhibidores , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Dicroismo Circular , Cristalografía por Rayos X , Humanos , Simulación de Dinámica Molecular , Neoplasias/tratamiento farmacológico , Conformación Proteica en Hélice alfa/efectos de los fármacos , Dominios Proteicos/genética , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/ultraestructura , Multimerización de Proteína/efectos de los fármacos , Multimerización de Proteína/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Relación Estructura-Actividad , Termodinámica , Tropomiosina/metabolismo , Tropomiosina/ultraestructura
11.
J Cell Sci ; 132(15)2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31331962

RESUMEN

Co-polymers of tropomyosin and actin make up a major fraction of the actin cytoskeleton. Tropomyosin isoforms determine the function of an actin filament by selectively enhancing or inhibiting the association of other actin binding proteins, altering the stability of an actin filament and regulating myosin activity in an isoform-specific manner. Previous work has implicated specific roles for at least five different tropomyosin isoforms in stress fibres, as depletion of any of these five isoforms results in a loss of stress fibres. Despite this, most models of stress fibres continue to exclude tropomyosins. In this study, we investigate tropomyosin organisation in stress fibres by using super-resolution light microscopy and electron microscopy with genetically tagged, endogenous tropomyosin. We show that tropomyosin isoforms are organised in subdomains within the overall domain of stress fibres. The isoforms Tpm3.1 and 3.2 (hereafter Tpm3.1/3.2, encoded by TPM3) colocalise with non-muscle myosin IIa and IIb heads, and are in register, but do not overlap, with non-muscle myosin IIa and IIb tails. Furthermore, perturbation of Tpm3.1/3.2 results in decreased myosin IIa in stress fibres, which is consistent with a role for Tpm3.1 in maintaining myosin IIa localisation in stress fibres.


Asunto(s)
Miosina Tipo IIA no Muscular/metabolismo , Fibras de Estrés/metabolismo , Tropomiosina/metabolismo , Línea Celular Tumoral , Humanos , Miosina Tipo IIA no Muscular/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fibras de Estrés/genética , Tropomiosina/genética
12.
Mol Biol Cell ; 30(10): 1170-1181, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30865560

RESUMEN

Two-dimensional (2D) substrate rigidity promotes myosin II activity to increase traction force in a process negatively regulated by tropomyosin (Tpm) 2.1. We recently discovered that actomyosin contractility can increase intracellular pressure and switch tumor cells from low-pressure lamellipodia to high-pressure lobopodial protrusions during three-dimensional (3D) migration. However, it remains unclear whether these myosin II-generated cellular forces are produced simultaneously, and by the same molecular machinery. Here we identify Tpm 1.6 as a positive regulator of intracellular pressure and confirm that Tpm 2.1 is a negative regulator of traction force. We find that Tpm 1.6 and 2.1 can control intracellular pressure and traction independently, suggesting these myosin II-dependent forces are generated by distinct mechanisms. Further, these tropomyosin-regulated mechanisms can be integrated to control complex cell behaviors on 2D and in 3D environments.


Asunto(s)
Miosina Tipo II/fisiología , Tropomiosina/fisiología , Citoesqueleto de Actina/fisiología , Actomiosina/fisiología , Movimiento Celular , Proteínas del Citoesqueleto , Matriz Extracelular , Fibroblastos/metabolismo , Prepucio/metabolismo , Humanos , Masculino , Miosina Tipo II/metabolismo , Presión , Cultivo Primario de Células , Seudópodos/fisiología , Tracción , Tropomiosina/metabolismo
13.
Curr Opin Chem Biol ; 51: 40-47, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30901618

RESUMEN

The actin cytoskeleton is dysregulated in cancer, yet this critical cellular machinery has not translated as a druggable clinical target due to cardio-toxic side-effects. Many actin regulators are also considered undruggable, being structural proteins lacking clear functional sites suitable for targeted drug design. In this review, we discuss opportunities and challenges associated with drugging the actin cytoskeleton through its structural regulators, taking tropomyosins as a target example. In particular, we highlight emerging data acquisition and analysis trends driving phenotypic, imaging-based compound screening. Finally, we consider how the confluence of these trends is now bringing functionally integral machineries such as the actin cytoskeleton, and associated structural regulatory proteins, into an expanded repertoire of druggable targets with previously unexploited clinical potential.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Animales , Humanos , Fenotipo , Tropomiosina/metabolismo
14.
FASEB J ; 33(3): 3997-4006, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30509116

RESUMEN

Critical functions of immune cells require them to rapidly change their shape and generate forces in response to cues from their surrounding environment. However, little is known about how soluble factors that may be present in the microenvironment modulate key aspects of cellular mechanobiology-such as immune cell deformability and force generation-to impact functions such as phagocytosis and migration. Here we show that signaling by soluble stress hormones through ß-adrenoceptors (ß-AR) reduces the deformability of macrophages; this is dependent on changes in the organization of the actin cytoskeleton and is associated with functional changes in phagocytosis and migration. Pharmacologic interventions reveal that the impact of ß-AR signaling on macrophage deformability is dependent on actin-related proteins 2/3, indicating that stress hormone signaling through ß-AR shifts actin organization to favor branched structures rather than linear unbranched actin filaments. These findings show that through remodeling of the actin cytoskeleton, ß-AR-mediated stress hormone signaling modulates macrophage mechanotype to impact functions that play a critical role in immune response.-Kim, T.-H., Ly, C., Christodoulides, A., Nowell, C. J., Gunning, P. W., Sloan, E. K., Rowat, A. C. Stress hormone signaling through ß-adrenergic receptors regulates macrophage mechanotype and function.


Asunto(s)
Forma de la Célula , Macrófagos/efectos de los fármacos , Receptores Adrenérgicos beta/metabolismo , Citoesqueleto de Actina/metabolismo , Agonistas Adrenérgicos beta/farmacología , Antagonistas Adrenérgicos beta/farmacología , Línea Celular Tumoral , Humanos , Isoproterenol/farmacología , Macrófagos/citología , Macrófagos/metabolismo , Propranolol/farmacología , Transducción de Señal
15.
Curr Biol ; 28(14): 2331-2337.e5, 2018 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-29983319

RESUMEN

Tropomyosin proteins form stable coiled-coil dimers that polymerize along the α-helical groove of actin filaments [1]. The actin cytoskeleton consists of both co-polymers of actin and tropomyosin and polymers of tropomyosin-free actin [2]. The fundamental distinction between these two types of filaments is that tropomyosin determines the functional capability of actin filaments in an isoform-dependent manner [3-9]. However, it is unknown what portion of actin filaments are associated with tropomyosin. To address this deficit, we have measured the relative distribution between these two filament populations by quantifying tropomyosin and actin levels in a variety of human cell types, including bone (U2OS); breast epithelial (MCF-10A); transformed breast epithelial (MCF-7); and primary (BJpar), immortalized (BJeH), and Ras-transformed (BJeLR) BJ fibroblasts [10]. Our measurements of tropomyosin and actin predict the saturation of the actin cytoskeleton, implying that tropomyosin binding must be inhibited in order to generate tropomyosin-free actin filaments. We find the majority of actin filaments to be associated with tropomyosin in four of the six cell lines tested and the portion of actin filaments associated with tropomyosin to decrease with transformation. We also discover that high-molecular-weight (HMW), unlike low-molecular-weight (LMW), tropomyosin isoforms are primarily co-polymerized with actin in untransformed cells. This differential partitioning of tropomyosins is not due to a lack of N-terminal acetylation of LMW tropomyosins, but it is, in part, explained by the susceptibility of soluble HMW tropomyosins to proteasomal degradation. We conclude that actin-tropomyosin co-polymers make up a major fraction of the human actin cytoskeleton.


Asunto(s)
Citoesqueleto de Actina/química , Actinas/química , Polímeros/química , Tropomiosina/química , Humanos
16.
Sci Rep ; 8(1): 4604, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29545590

RESUMEN

The development of novel small molecule inhibitors of the cancer-associated tropomyosin 3.1 (Tpm3.1) provides the ability to examine the metabolic function of specific actin filament populations. We have determined the ability of these anti-Tpm (ATM) compounds to regulate glucose metabolism in mice. Acute treatment (1 h) of wild-type (WT) mice with the compounds (TR100 and ATM1001) led to a decrease in glucose clearance due mainly to suppression of glucose-stimulated insulin secretion (GSIS) from the pancreatic islets. The impact of the drugs on GSIS was significantly less in Tpm3.1 knock out (KO) mice indicating that the drug action is on-target. Experiments in MIN6 ß-cells indicated that the inhibition of GSIS by the drugs was due to disruption to the cortical actin cytoskeleton. The impact of the drugs on insulin-stimulated glucose uptake (ISGU) was also examined in skeletal muscle ex vivo. In the absence of drug, ISGU was decreased in KO compared to WT muscle, confirming a role of Tpm3.1 in glucose uptake. Both compounds suppressed ISGU in WT muscle, but in the KO muscle there was little impact of the drugs. Collectively, this data indicates that the ATM drugs affect glucose metabolism in vivo by inhibiting Tpm3.1's function with few off-target effects.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Glucosa/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Tropomiosina/antagonistas & inhibidores , Citoesqueleto de Actina/efectos de los fármacos , Animales , Glucosa/administración & dosificación , Células Secretoras de Insulina/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Tropomiosina/fisiología
17.
Cell Rep ; 21(1): 274-288, 2017 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-28978480

RESUMEN

The small GTPase RhoA is involved in a variety of fundamental processes in normal tissue. Spatiotemporal control of RhoA is thought to govern mechanosensing, growth, and motility of cells, while its deregulation is associated with disease development. Here, we describe the generation of a RhoA-fluorescence resonance energy transfer (FRET) biosensor mouse and its utility for monitoring real-time activity of RhoA in a variety of native tissues in vivo. We assess changes in RhoA activity during mechanosensing of osteocytes within the bone and during neutrophil migration. We also demonstrate spatiotemporal order of RhoA activity within crypt cells of the small intestine and during different stages of mammary gestation. Subsequently, we reveal co-option of RhoA activity in both invasive breast and pancreatic cancers, and we assess drug targeting in these disease settings, illustrating the potential for utilizing this mouse to study RhoA activity in vivo in real time.


Asunto(s)
Técnicas Biosensibles , Transferencia Resonante de Energía de Fluorescencia/métodos , Microscopía Intravital/métodos , Imagen de Lapso de Tiempo/métodos , Proteínas de Unión al GTP rho/genética , Animales , Antineoplásicos/farmacología , Huesos/citología , Huesos/metabolismo , Movimiento Celular/efectos de los fármacos , Dasatinib/farmacología , Clorhidrato de Erlotinib/farmacología , Femenino , Transferencia Resonante de Energía de Fluorescencia/instrumentación , Regulación de la Expresión Génica , Intestino Delgado/metabolismo , Intestino Delgado/ultraestructura , Microscopía Intravital/instrumentación , Glándulas Mamarias Animales/irrigación sanguínea , Glándulas Mamarias Animales/efectos de los fármacos , Glándulas Mamarias Animales/ultraestructura , Neoplasias Mamarias Experimentales/irrigación sanguínea , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/ultraestructura , Mecanotransducción Celular , Ratones , Ratones Transgénicos , Neutrófilos/metabolismo , Neutrófilos/ultraestructura , Osteocitos/metabolismo , Osteocitos/ultraestructura , Neoplasias Pancreáticas/irrigación sanguínea , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/ultraestructura , Imagen de Lapso de Tiempo/instrumentación , Proteínas de Unión al GTP rho/metabolismo , Proteína de Unión al GTP rhoA
18.
Mol Cancer Ther ; 16(8): 1555-1565, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28522589

RESUMEN

Actin filaments, with their associated tropomyosin polymers, and microtubules are dynamic cytoskeletal systems regulating numerous cell functions. While antimicrotubule drugs are well-established, antiactin drugs have been more elusive. We previously targeted actin in cancer cells by inhibiting the function of a tropomyosin isoform enriched in cancer cells, Tpm3.1, using a first-in-class compound, TR100. Here, we screened over 200 other antitropomyosin analogues for anticancer and on-target activity using a series of in vitro cell-based and biochemical assays. ATM-3507 was selected as the new lead based on its ability to disable Tpm3.1-containing filaments, its cytotoxicity potency, and more favorable drug-like characteristics. We tested ATM-3507 and TR100 alone and in combination with antimicrotubule agents against neuroblastoma models in vitro and in vivo Both ATM-3507 and TR100 showed a high degree of synergy in vitro with vinca alkaloid and taxane antimicrotubule agents. In vivo, combination-treated animals bearing human neuroblastoma xenografts treated with antitropomyosin combined with vincristine showed minimal weight loss, a significant and profound regression of tumor growth and improved survival compared with control and either drug alone. Antitropomyosin combined with vincristine resulted in G2-M phase arrest, disruption of mitotic spindle formation, and cellular apoptosis. Our data suggest that small molecules targeting the actin cytoskeleton via tropomyosin sensitize cancer cells to antimicrotubule agents and are tolerated together in vivo This combination warrants further study. Mol Cancer Ther; 16(8); 1555-65. ©2017 AACR.


Asunto(s)
Antineoplásicos/uso terapéutico , Microtúbulos/metabolismo , Neoplasias/tratamiento farmacológico , Tropomiosina/antagonistas & inhibidores , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Sinergismo Farmacológico , Femenino , Fase G2/efectos de los fármacos , Humanos , Ratones Desnudos , Microtúbulos/efectos de los fármacos , Mitosis/efectos de los fármacos , Neoplasias/patología , Tropomiosina/metabolismo , Vincristina/farmacología
19.
Cytoskeleton (Hoboken) ; 74(6): 233-248, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28378936

RESUMEN

The actin cytoskeleton is a polymer system that acts both as a sensor and mediator of apoptosis. Tropomyosins (Tpm) are a family of actin binding proteins that form co-polymers with actin and diversify actin filament function. Previous studies have shown that elevated expression of the tropomyosin isoform Tpm2.1 sensitized cells to apoptosis induced by cell detachment (anoikis) via an unknown mechanism. It is not yet known whether Tpm2.1 or other tropomyosin isoforms regulate sensitivity to apoptosis beyond anoikis. In this study, rat neuroepithelial cells overexpressing specific tropomyosin isoforms (Tpm1.7, Tpm2.1, Tpm3.1, and Tpm4.2) were screened for sensitivity to different classes of apoptotic stimuli, including both cytoskeletal and non-cytoskeletal targeting compounds. Results showed that elevated expression of tropomyosins in general inhibited apoptosis sensitivity to different stimuli. However, Tpm2.1 overexpression consistently enhanced sensitivity to anoikis as well as apoptosis induced by the actin targeting drug jasplakinolide (JASP). In contrast the cancer-associated isoform Tpm3.1 inhibited the induction of apoptosis by a range of agents. Treatment of Tpm2.1 overexpressing cells with JASP was accompanied by enhanced sensitivity to mitochondrial depolarization, a hallmark of intrinsic apoptosis. Moreover, Tpm2.1 overexpressing cells showed elevated levels of the apoptosis proteins Bak (proapoptotic), Mcl-1 (prosurvival), Bcl-2 (prosurvival) and phosphorylated p53 (Ser392). Finally, JASP treatment of Tpm2.1 cells caused significantly reduced Mcl-1, Bcl-2 and p53 (Ser392) levels relative to control cells. We therefore propose that Tpm2.1 regulates sensitivity to apoptosis beyond the scope of anoikis by modulating the expression of key intrinsic apoptosis proteins which primes the cell for death.


Asunto(s)
Anoicis/fisiología , Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis/fisiología , Células Neuroepiteliales/metabolismo , Tropomiosina/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Línea Celular , Células Neuroepiteliales/citología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratas , Tropomiosina/genética , Proteínas Supresoras de Tumor/genética
20.
Oncotarget ; 8(20): 33544-33559, 2017 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-28431393

RESUMEN

Here we report the identification and characterization of a novel high molecular weight isoform of tropomyosin, Tpm4.1, expressed from the human TPM4 gene. Tpm4.1 expression is down-regulated in a subset of breast cancer cells compared with untransformed MCF10A breast epithelial cells and in highly metastatic breast cancer cell lines derived from poorly metastatic MDA-MD-231 cells. In addition, patients with invasive ductal breast carcinoma show decreased TPM4 expression compared with patients with ductal breast carcinoma in situ, and low TPM4 expression is associated with poor prognosis. Loss of Tpm4.1 using siRNA in MCF10A cells increases cell migration in wound-healing and Boyden chamber assays and invasion out of spheroids as well as disruption of cell-cell adhesions. Down-regulation of Tpm4.1 in MDA-MB-231 cells leads to disruption of actin organization and increased cell invasion and dissemination from spheroids into collagen gels. The down-regulation of Tpm4.1 induces Rac1-mediated alteration of myosin IIB localization, and pharmacologic inhibition of Rac1 or down-regulation of myosin IIB using siRNA inhibits the invasive phenotypes in MCF10A cells. Thus Tpm4.1 plays an important role in blocking invasive behaviors through Rac1-myosin IIB signaling and our findings suggest that decreased expression of Tpm4.1 might play a crucial role during tumor progression.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Células Epiteliales/metabolismo , Transducción de Señal , Tropomiosina/genética , Tropomiosina/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Actinas/metabolismo , Neoplasias de la Mama/patología , Adhesión Celular , Línea Celular Tumoral , Movimiento Celular , Células Epiteliales/patología , Femenino , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Humanos , Uniones Intercelulares/metabolismo , Invasividad Neoplásica , Miosina Tipo IIB no Muscular/metabolismo , Isoformas de Proteínas , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA