Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
PeerJ ; 12: e16808, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38313018

RESUMEN

Objectives: Multiple lung cancers may present as multiple primary lung cancers (MPLC) or intrapulmonary metastasis (IPM) with variations in clinical stage, treatment, and prognosis. However, the existing differentiation criteria based on histology do not fully meet the clinical needs. Next-generation sequencing (NGS) may play an important role in assisting the identification of different pathologies. Here, we extended the relevant data by combining histology and NGS to develop detailed identification criteria for MPLC and IPM. Materials and Methods: Patients with lung cancer (each patient had ≥2 tumors) were enrolled in the training (n = 22) and validation (n = 13) cohorts. Genomic profiles obtained from 450-gene-targeted NGS were analyzed, and the new criteria were developed based on our findings and pre-existing Martini & Melamed criteria and molecular benchmarks. Results: The analysis of the training cohort indicated that patients identified with MPLC had no (or <2) trunk or shared mutations. However, 98.02% of mutations were branch mutations, and 69.23% of MPLC had no common mutations. In contrast, a higher percentage of trunk (33.08%) or shared (9.02%) mutations were identified in IPM, suggesting significant differences among mutated components. Subsequently, eight MPLC and five IPM cases were identified in the validation cohort, aligning with the independent imaging and pathologic distinction. Overall, the percentage of trunk and shared mutations was higher in patients with IPM than in patients with MPLC. Based on these results and the establishment of new determination criteria for MPLC and IPM, we emphasize that the type and number of shared variants based on histologic consistency assist in identification. Conclusion: Determining genetic alterations may be an effective method for differentiating MPLC and IPM, and NGS can be used as a valuable assisting tool.


Asunto(s)
Neoplasias Pulmonares , Neoplasias Primarias Múltiples , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Primarias Múltiples/genética , Pulmón/patología , Mutación , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
2.
Int J Biol Macromol ; 253(Pt 5): 127121, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37778588

RESUMEN

The precise coupling of tRNAs with their cognate amino acids, known as tRNA aminoacylation, is a stringently regulated process that governs translation fidelity. To ensure fidelity, organisms deploy multiple layers of editing mechanisms to correct mischarged tRNAs. Prior investigations have unveiled the propensity of eukaryotic AlaRS to erroneously attach alanine onto tRNACys and tRNAThr featuring the G4:U69 base pair. In light of this, and given ProXp-ala's capacity in deacylating Ala-tRNAPro, we embarked on exploring whether this trans-editing factor could extend its corrective function to encompass these mischarged tRNAs. Our in vitro deacylation assays demonstrate that murine ProXp-ala (mProXp-ala) is able to efficiently hydrolyze Ala-tRNAThr, while Ala-tRNACys remains unaffected. Subsequently, we determined the first structure of eukaryotic ProXp-ala, revealing a dynamic helix α2 involved in substrate binding. By integrating molecular dynamics simulations and biochemical assays, we pinpointed the pivotal interactions between mProXp-ala and Ala-tRNA, wherein the basic regions of mProXp-ala as well as the C3-G70 plays essential role in recognition. These observations collectively provide a cogent rationale for mProXp-ala's deacylation proficiency against Ala-tRNAThr. Our findings offer valuable insights into the translation quality control within higher eukaryotic organisms, where the fidelity of translation is safeguarded by the multi-functionality of extensively documented proteins.


Asunto(s)
Alanina , Aminoacil-ARNt Sintetasas , Animales , Ratones , Alanina/genética , ARN de Transferencia de Treonina , ARN de Transferencia de Cisteína , Aminoacil-ARNt Sintetasas/química , Aminoácidos/química , ARN de Transferencia/genética , Mamíferos/genética
3.
Cancer Med ; 12(13): 14317-14326, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37184093

RESUMEN

OBJECTIVE: Immune checkpoint inhibitors (ICIs) or combined with chemotherapy exhibit substantial efficacy for the treatment of advanced non-small cell lung cancer (NSCLC). However, reliable biomarkers that can monitor response to first-line ICIs ± chemotherapy remain unclear. METHODS: A total of 16 tumor tissues and 46 matched peripheral blood samples at baseline and during treatment were retrospectively collected from 19 locally advanced or metastatic NSCLC patients. The circulating tumor DNA (ctDNA) burden by tumor-informed assay was detected to monitor and predict the therapeutic response and survival of NSCLC patients treated with first-line ICIs or plus chemotherapy. RESULTS: We found that ctDNA was only positively detected in one patient by tumor-agnostic assay with a mean variant allele fraction (VAF) of 6.40%, whereas it was positively detected in three patients by tumor-informed assay with a mean VAF of 8.83%, 0.154%, and 0.176%, respectively. Tumor-informed assays could sensitively detect ctDNA in 93.75% (15/16) of patients. Trends in the level of ctDNA from baseline to first evaluation was consistent with the radiographic changes. There was a greater decrease in ctDNA after treatment compared with baseline in patients with partial response compared to patients with stable disease/progressive disease. Patients with over a 50% reduction in ctDNA had a significant progression-free survival and overall survival benefit. CONCLUSION: The tumor-informed assay was favorable for ctDNA detection, and early dynamic changes in plasma ctDNA may be a valuable biomarker for monitoring the efficacy and predicting the outcome in advanced NSCLC patients treated with first-line ICIs ± chemotherapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , ADN Tumoral Circulante , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , ADN Tumoral Circulante/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Estudios Retrospectivos , Mutación , Inmunoterapia , Biomarcadores de Tumor/genética
4.
Cancer Med ; 12(9): 10187-10198, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37096801

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is the third leading cause of cancer-related deaths worldwide. Studies have shown that the DNA damage response (DDR) mutation is strongly associated with microsatellite instability (MSI) status and is an indication for patients with CRCs receiving immune checkpoint inhibitor (ICI) treatment. However, DDR mutation in microsatellite stable (MSS) CRC remains unclear. METHODS: In this study, Fisher's exact test, Student'st-test, Wilcoxon rank-sum test and Cox proportional hazards regression model were performed, and a p value of < 0.05 was considered statistically significant. RESULTS: The most common gene alterations were APC (77%), TP53 (73%), KRAS (48%), and PIK3CA (25%). The mutationfrequency of APC and TP53 in left-sided CRC was significantly higher than that for right-sided CRC, while the mutation frequency of PIK3CA, ACVR2A, FAT4, and RNF43 in right-sided CRC was significantly higher than that for left-sided CRC. DDR mutations occurred in100% of MSI CRCs and in 83.77% of MSS CRCs, with the most frequently mutated DDR genes being ARID1A (7.5%), ATM (5.7%,) and BRCA2 (2.6%). When right- and left-sided CRCs were compared, no significant difference was observed for DDR genes and pathways. A survival analysis indicated that the DDR mutation was not associated with overall survival (OS) in MSS CRCs, while left-sided patients with homologous recombination repair (HRR) pathway mutations had a significantly prolonged OS compared with right-sided CRCs. CONCLUSIONS: Here, we found that stage and grade were statistically significant independent prognostic factors in the left-sided CRC and the right-sided CRC, recommending treatment for these patients stratified by stage. For the future, utilizing DDR gene defects for expanding treatment options and improving prognosis is an issue worth exploring.


Asunto(s)
Neoplasias Colorrectales , Humanos , Mutación , Inestabilidad de Microsatélites , Pronóstico , Daño del ADN , Fosfatidilinositol 3-Quinasa Clase I/genética
5.
IEEE Trans Neural Netw Learn Syst ; 34(11): 9102-9115, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35320107

RESUMEN

Many e-commerce platforms, such as AliExpress, run major promotion campaigns regularly. Before such a promotion, it is important to predict potential best sellers and their respective sales volumes so that the platform can arrange their supply chains and logistics accordingly. For items with a sufficiently long sales history, accurate sales forecast can be achieved through the traditional statistical forecasting techniques. Accurately predicting the sales volume of a new item, however, is rather challenging with existing methods; time series models tend to overfit due to the very limited historical sales records of the new item, whereas models that do not utilize historical information often fail to make accurate predictions, due to the lack of strong indicators of sales volume among the item's basic attributes. This article presents the solution deployed at Alibaba in 2019, which had been used in production to prepare for its annual "Double 11" promotion event whose total sales amount exceeded U.S. $ 38 billion in a single day. The main idea of the proposed solution is to predict the sales volume of each new item through its connections with older products with sufficiently long sales history. In other words, our solution considers the cross-selling effects between different products, which has been largely neglected in previous methods. Specifically, the proposed solution first constructs an item graph, in which each new item is connected to relevant older items. Then, a novel multitask graph convolutional neural network (GCN) is trained by a multiobjective optimization-based gradient surgery technique to predict the expected sales volumes of new items. The designs of both the item graph and the GCN exploit the fact that we only need to perform accurate sales forecasts for potential best-selling items in a major promotion, which helps reduce computational overhead. Extensive experiments on both proprietary AliExpress data and a public dataset demonstrate that the proposed solution achieves consistent performance gains compared to existing methods for sales forecast.

6.
Cancer Med ; 12(5): 5195-5208, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36404592

RESUMEN

BACKGROUD: There were limitations existing in programmed cell-death ligand 1 (PD-L1) as predictive biomarkers for breast cancer (BC), hence exploring the correlation between PD-L1 levels and other biomarkers in BC may become a very useful therapeutic clinical tool. METHODS: A total of 301 Chinese patients with different BC subtypes including 47 HR+/HER2+, 185 HR+/HER2-, 38 HR-/HER2+, and 31 triple-negative breast cancer (TNBC) were enrolled in our study. Next-generation sequencing based Yuansu450 gene panel was used for genomic alteration identification and PD-L1 expression was tested using immunohistochemistry. RESULTS: The most prevalent BC-related mutations were TP53 mutations, followed by mutations in PIK3CA, ERBB2, CDK12, and GATA3 in our Chinese cohort. We found that mutations DDR2 and MYCL were only mutated in HR-/HER2+ subtype, whereas H3-3A and NRAS mutations were only occurred in HR-/HER2- subtype. The percentage of patients with PD-L1-positive expression was higher in patients with HR-/HER2- mainly due to the percentage of PD-L1-high level. Mutational frequencies of TP53, MYC, FAT4, PBRM1, PREX2 were observed to have significant differences among patients with different BC subtypes based on PD-L1 levels. Moreover, a positive correlation was observed between TMB and PD-L1 level in HR+/HER2- subtype, and showed that the proportion of patients with high PD-L1 expression was higher than that of patients with low PD-L1 expression in the HR+/HER2- and HR+/HER2+ cohorts with high Ki67 expression. CONCLUSIONS: The genomic alterations based on PD-L1 and other biomarkers of different cohorts may provide more possibilities for the treatment of BC with different subtypes.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Pueblos del Este de Asia , Neoplasias de la Mama Triple Negativas/genética , Mutación , Genómica , Biomarcadores de Tumor/genética
7.
Front Oncol ; 12: 967675, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36523965

RESUMEN

Introduction: Traditional therapeutic approaches for the treatment of advanced non-small-cell lung cancer (NSCLC) are based on chemotherapy. However, the discovery and understanding of oncogenic driver alterations has led to the development of targeted therapies that have substantially improved patient outcomes. Still, to date, there have been no reports of patients with advanced anaplastic lymphoma kinase (ALK)-positive lung cancer achieving clinical complete response (cCR) in the systemic lesion and pathological complete remission (pCR) in primary lung lesion after multiple lines of conversion therapy. Methods: In this case, a 55-year-old man was diagnosed with ALK-positive, stage IV lung adenocarcinoma using immunohistochemistry and next generation sequencing (NGS) tests. Results: Crizotinib and two other ATP-competitive ALK inhibitors, ceritinib and alectinib, were used respectively as first-line, second-line, and third-line therapy. The patient received treatment with crizotinib and achieved partial response (PR), but 5 months later the efficacy was evaluated as progressive disease (PD). Ceritinib was used as the second-line treatment, but the disease progressed 6 months later. Alectinib was used as the third-line treatment, but the efficacy was evaluated as PD. From April 2019 to November 2019, the patient received 4 cycles of induction chemotherapy with pemetrexed/carboplatin/bevacizumab and then switched to pemetrexed/bevacizumab as the fourth-line treatment, and received the fifth line treatment, cetuximab/paclitaxel liposome/nedaplatin, for 1 cycle, but the disease still progressed. Then the patient received the sixth line of treatment, camrelizumab/lorlatinib, for 9 antitumor cycles, resulting in PR. The patient underwent surgery followed by maintenance treatment with lorlatinib and achieved cCR. To our knowledge, this is the first documented case of cCR in a patient with ALK-positive advanced lung adenocarcinoma treated with multiple lines of therapy followed by surgical treatment. Discussion: This case reveals the possible survival benefit of immunotherapy after multiple line treatment in ALK-positive advanced lung adenocarcinoma, indicating that it is possible find new therapeutic targets based on NGS molecular detection and provide precise therapeutic strategies for clinical practice when drug resistance or progression occurs in cancer therapy.

8.
Front Oncol ; 12: 989349, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36457500

RESUMEN

Background: Lung adenocarcinoma (LA) with a micropapillary component (LAMPC) is a histological subtype of lung cancer that has received increasing attention due to its correlation with poor prognosis, and its tendency to recur and metastasize. At present, comprehensive genomic profiles and clinicopathological features for LAMPC remain unclear and require further investigation. Methods: From September 2009 to October 2020, a total of 465 LAMPC patients were recruited and divided into four groups according to MPC proportions, and the correlations between varying proportions of MPCs and clinicopathological characteristics were analyzed. Twenty-nine (29) LAMPC patients and 89 LA patients without MPC (non-MPC) that had undergone NGS testing were selected for further study The comprehensively analyze genomic variations and the difference between LAMPC and MPC were determined. In addition, Gene alterations of LAMPC between Chinese and Western populations were also compared using cBioPortal data. Results: A higher proportion of MPCs, associated with higher tumor stage, pleural invasion, and vascular tumor thrombus formation, was determined in LA patients. Compared to non-MPC patients, LAMPC patients were determined to have a lower frequency of single nucleotide variants and a higher frequency of insertion-deletion mutations. Mutations in TP53, CTNNB1, and SMAD4, and ALK rearrangements/fusions were significantly more frequent in LAMPC patients. ERBB2 mutations were only detected in non-MPC patients. Gene mutations in the Wnt pathway were significantly more common in LAMPC patients as compared to non-MPC patients. ALK fusions were more prevalent in younger patients. Patients with KRAS or LBP1B mutations had significantly larger tumor diameters than patients with wild-type KRAS or LBP1B. Patients with KRAS mutations were more likely to develop vascular tumor thrombus. Using the cBioPortal public database, we determined that mutations in EGFR were significantly higher in Chinese patients than in a Memorial Sloan Kettering Cancer Center (MSKCC) Western cohort. ALK fusions were exclusively detected in the Chinese cohort, while mutations in KEAP1 and NOTCH4 were only detected in the MSKCC cohort. Our analysis of signaling pathways revealed that Wnt pathway gene mutations were significantly higher in the Chinese cohort. Conclusion: LA patients with higher proportions of MPCs were determined to have a higher tumor stage, pleural invasion, and vascular tumor thrombosis formation. We comprehensively analyzed the genomic mutation characteristics of LAMPC patients and identified multiple, novel MPC-related gene alterations and pathway changes. Our data provide further understanding of the nature of the LAMPC and potential drug-targeted gene alterations, which may lead to new therapeutic strategies.

9.
Front Oncol ; 12: 945843, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36185247

RESUMEN

Adenosquamous carcinoma (ASC) of the lung is a relatively rare tumor with strong aggressiveness and poor prognosis. The analysis of mutational signatures is becoming routine in cancer genomics and has implications for pathogenesis, classification, and prognosis. However, the distribution of mutational signatures in ASC patients has not been evaluated. In this study, we sought to reveal the landscape of genomic mutations and mutational signatures in ASC. Next-generation sequencing (NGS) technology was used to retrieve genomic information for 124 ASC patients. TP53 and EGFR were the most prevalent somatic mutations observed, and were present in 66.9% and 54.8% of patients, respectively. CDKN2A (21%), TERT (21%), and LRP1B (18.5%) mutations were also observed. An analysis of gene fusion/rearrangement characteristics revealed a total of 64 gene fusions. The highest frequency of variants was determined for ALK fusions, with six ALK-EML4 classical and two intergenic ALK fusions, followed by three CD74-ROS1 fusions and one ROS1-SYN3 fusion. EGFR 19del (45.6%), and EGFR L858R (38.2%) and its amplification (29.4%) were the top three EGFR mutations. We extracted mutational signatures from NGS data and then performed a statistical analysis in order to search for genomic and clinical features that could be linked to mutation signatures. Amongst signatures cataloged at COSMIC, the most prevalent, high-frequency base changes were for C > T; and the five most frequent signatures, from highest to lowest, were 2, 3, 1, 30, and 13. Signatures 1 and 6 were determined to be associated with age and tumor stage, respectively, and Signatures 22 and 30 were significantly related to smoking. We additionally evaluated the correlation between tumor mutational burden (TMB) and genomic variations. We found that mutations ARID2, BRCA1, and KEAP1 were associated with high TMB. The homologous recombination repair (HRR) pathway-related gene mutation displayed a slightly higher TMB than those without mutations. Our study is the first to report comprehensive genomic features and mutational signatures in Chinese ASC patients. Results obtained from our study will help the scientific community better understand signature-related mutational processes in ASC.

10.
Front Oncol ; 12: 908759, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35912232

RESUMEN

Background: The genomic features of cancer cells may confer the metastatic ability of lung adenocarcinoma (LUAD) to metastasize to specific organs. We aimed to identify the differences in genomic alterations between patients with primary LUAD with and without metastases and to elucidate the metastatic biology that may help developing biomarker-directed therapies for advanced or metastatic disease. Methods: A retrospective cohort of 497 patients with LUAD including 388 primary tumors (PR), 53 bone metastases (MT-bone), 30 liver metastases (MT-liver), and 26 brain metastases (MT-brain) was tested for genomic alterations by a next-generation sequencing assay. Results: The EGFR, TP53, TERT, LRP1B, CDKN2A, ERBB2, ALK, and KMT2C genes had a high frequency of mutations, and the mutations were shared by PR and metastases groups. TP53 and EGFR were the most common mutated genes. In comparison with PR, KRAS, STK11, ATM, NPM1, and ROS1 were significantly mutated in MT-brain, and TP53, MYC, RSPO2, CDKN2a, and CDKN2B were significantly mutated in MT-liver. The frequencies of TP53, CDKN2A, MTAP, PRKCI, and APC mutations were higher in MT-bone than that in PR. The ERBB, phosphoinositide-3-kinase/protein kinase B (PI3K-AKT), cell cycle, Fibroblast growth factor (FGF), and homologous recombination deficiency signaling pathways were affected in both PR and metastases, and there is higher frequency of mutations in metastases. Moreover, the co-mutations in patients with PR and metastasis were respectively analyzed. In addition, the programmed death ligand 1 (PD-L1) level was obviously related to tumor stage and tumor metastases, and the tumor mutational burden was correlated to clinicopathological features including age, gender, pathological stages, and tumor metastases. FGFR1, KAT6A, MYC, RAD21, TP53, and DAXX were also dramatically correlated to the tumor mutational burden. Conclusion: Metastases are the most devastating stage of tumors and the main cause of cancer-related deaths. Our results provided a clinically relevant view of the tumor-intrinsic mutational landscape of patients with metastatic LUAD.

11.
Front Oncol ; 12: 911362, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35957915

RESUMEN

Non-small cell lung cancer (NSCLC) patients harboring MET exon 14 skipping or high MET amplification display a high rate of response to MET inhibitors. However, MET fusions in NSCLC have rarely been revealed. In this report, a 63-year-old woman with lung adenocarcinoma (LADC), harboring EGFR exon 18 G719D and exon 21 L861Q mutations, received first-generation, EGFR-tyrosine kinase inhibitor (TKI) icotinib therapy. Next generation sequencing (NGS) results only displayed an EGFR T790M point mutation following icotinib resistance. Thus, the patient was treated with osimertinib and achieved a stable disease (SD). However, disease progressed after 15 months and a novel MET fusion (CUX1 exon14-MET exon15) in addition to EGFR G719D/L861Q mutations were simultaneously detected in a tissue biopsy sample. After more than nine months, the patient subsequently achieved a PR with the combination of icotinib and crizotinib. To our knowledge, this is the first case of LADC patient displaying the presence of EGFR double uncommon mutations and an acquired novel CUX1-MET fusion that has benefited from icotinib plus crizotinib treatment. Following nine months of PR with icotinib plus crizotinib, the patient, until the time of publication, is exhibiting stable disease. The results suggest that the CUX1-MET fusion may be sensitive to crizotinib, although previous reports indicated that some MET fusion cases did not respond to crizotinib. Given this disparity, distinguishing MET fusion partners when crizotinib is used in LADC treatment is also very important.

12.
J Environ Manage ; 301: 113834, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34600423

RESUMEN

Casing or tubing leaks cause unwanted water production from oil-producing wells. Many chemical and mechanic water control technologies can be used to solve this problem, including squeezing chemical shutoff fluids into the targeted zone or using plugs, cement, packers, patches to block the leakage. Although those methods are field-proven to be effective, the mechanical solutions may require well logs to detect the water entry point in the well. Chemical methods may present environment risks. In this study, an alternative method, Downhole Water Sink, is proposed to solve the problem of unwanted water production from a casing or tubing leak. The effectiveness of this method to control water production in a well with casing or tubing leaks is tested using the Hele-Shaw experimental model. The results show that this method can control unwanted water production via dynamic control of the pressure drawdown in the reservoir. From a technical standpoint, the advantage of this technology is that it eliminates the need to run logs to locate the water entry point and does not require chemical injection into the formation. From an environmental standpoint, this technology has the circular economy elements. Because the produced water in this technology contains little or no oil, it can be reused for reinjection into the reservoir for water flooding or pressure maintenance purposes. Therefore, a production-reinjection process to recycle the produced water is established to reduce the pollution caused by discharging the wastewater into the environment.


Asunto(s)
Yacimiento de Petróleo y Gas , Agua , Tecnología , Aguas Residuales , Pozos de Agua
13.
Front Oncol ; 12: 1024677, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36620566

RESUMEN

Advanced or recurrent mucinous carcinoma of the ovary minimally responds to current cytotoxic treatments and has a poor prognosis. Despite multimodal treatment with chemotherapy and surgery, most patients ultimately progress and require palliative systemic therapy. Anti-HER2 therapy has been demonstrated to be an effective strategy for the treatment of HER2-positive breast cancer. However, the role of anti-HER2 therapy in ovarian cancer remains largely unknown. Here, we report the case of a young woman with FIGO Stage IIIc recurrent mucinous ovarian carcinoma (MOC) who developed trastuzumab resistance and disease progression following cross-treatment with trastuzumab combined with pertuzumab. HER2 amplification was discovered using next-generation sequencing (NGS). The patient then received bevacizumab, and pyrotinib (an irreversible HER2 antagonist) plus capecitabine treatment, and achieved a long-term clinical benefit for 22 months. Pyrotinib combined with bevacizumab is a potential treatment for MOC patients who are heavily pretreated and harbor a HER2 amplification. Our case may provide valuable treatment information for patients with advanced or recurrent MOC.

14.
Front Immunol ; 12: 712351, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34504494

RESUMEN

Hepatocellular carcinoma (HCC) is an aggressive liver tumor that occurs due to chronic liver disease, and it has a high mortality rate and limited treatment options. Immune checkpoint inhibitors have been successfully introduced and used in cancer therapy, among which inhibitors of programmed death ligand-1 (PD-L1) and its receptor programmed death-1 (PD-1) are commonly administered for HCC as combination therapy, including combined anti-angiogenic and immunotherapy combination therapy. We report a case of a primary massive HCC patient with portal hepatic vein tumor thrombus who had a good response to atezolizumab in combination with bevacizumab, following progression of disease on combined immunotherapy with pembrolizumab and lenvatinib. This case demonstrates for the first time that an HCC patient who is resistant to anti-PD-1 antibody immunotherapy can benefit from anti-PD-L1 antibody immunotherapy, providing a potentially promising strategy for the treatment of HCC.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Antígeno B7-H1/antagonistas & inhibidores , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Inhibidores de la Angiogénesis/administración & dosificación , Anticuerpos Monoclonales Humanizados/administración & dosificación , Bevacizumab/administración & dosificación , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/inmunología , Sustitución de Medicamentos , Femenino , Hepatitis B Crónica/complicaciones , Humanos , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Cirrosis Hepática/etiología , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/inmunología , Persona de Mediana Edad , Compuestos de Fenilurea/administración & dosificación , Vena Porta , Quinolinas/administración & dosificación , Terapia Recuperativa , Tomografía Computarizada por Rayos X , Trombosis de la Vena/etiología
15.
Eur J Pharmacol ; 907: 174294, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34217712

RESUMEN

Glaucoma is a leading cause of irreversible blindness worldwide due to elevated intraocular pressure, and filtering surgery can efficiently control intraocular pressure of glaucoma patients. However, failure of filtering surgery commonly results from scarring formation at the surgical site, in which fibroblast proliferation plays an essential role in the scarring process. Our previous study has demonstrated that zinc oxide (ZnO) nanoparticles could efficiently inhibit human tenon fibroblasts (HTFs) proliferation. The present study aimed to explore the underlying mechanism involved in oxidative stress and autophagy signaling in zinc oxide (ZnO) nanoparticles-induced inhibition of HTFs proliferation. In this study, we investigated the effect of ZnO nanoparticles on HTFs proliferation, mitochondrial function, ATP production and nuclear morphology. Moreover, we also explored the interactions between ZnO nanoparticles and HTFs, investigated the influence of ZnO nanoparticles on the autophagosome formation, the expression of autophagy-related 5 (Atg5), Atg12 and Becn1 (Beclin 1), and the level of light chain 3 (LC3). The results suggested that ZnO nanoparticles can efficiently inhibit HTFs proliferation, disrupt the mitochondrial function, attenuate the adenosine triphosphate (ATP) generation, and damage the nuclear morphology of HTFs. Exposure of HTFs to ZnO nanoparticles can also induce the shifted peak, elevate the expression of Atg5, Atg12 and Becn1, enhance the autophagosome formation, and promote the LC3 expression, and thus activate autophagy signaling. Overall, ZnO nanoparticles can apparently trigger oxidative stress and activate autophagy signaling in HTFs, and thus inhibit HTFs proliferation and mediate HTFs apoptosis.


Asunto(s)
Óxido de Zinc , Apoptosis , Autofagia , Fibroblastos , Humanos , Cápsula de Tenon
16.
PLoS Biol ; 18(5): e3000705, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32401820

RESUMEN

Modeling the processes of neuronal progenitor proliferation and differentiation to produce mature cortical neuron subtypes is essential for the study of human brain development and the search for potential cell therapies. We demonstrated a novel paradigm for the generation of vascularized organoids (vOrganoids) consisting of typical human cortical cell types and a vascular structure for over 200 days as a vascularized and functional brain organoid model. The observation of spontaneous excitatory postsynaptic currents (sEPSCs), spontaneous inhibitory postsynaptic currents (sIPSCs), and bidirectional electrical transmission indicated the presence of chemical and electrical synapses in vOrganoids. More importantly, single-cell RNA-sequencing analysis illustrated that vOrganoids exhibited robust neurogenesis and that cells of vOrganoids differentially expressed genes (DEGs) related to blood vessel morphogenesis. The transplantation of vOrganoids into the mouse S1 cortex resulted in the construction of functional human-mouse blood vessels in the grafts that promoted cell survival in the grafts. This vOrganoid culture method could not only serve as a model to study human cortical development and explore brain disease pathology but also provide potential prospects for new cell therapies for nervous system disorders and injury.


Asunto(s)
Técnicas de Cultivo de Célula , Neurogénesis , Organoides/irrigación sanguínea , Telencéfalo/embriología , Animales , Células Madre Embrionarias , Células Endoteliales de la Vena Umbilical Humana , Humanos , Células Madre Pluripotentes Inducidas , Ratones Endogámicos NOD , Ratones SCID , Organoides/metabolismo , Organoides/trasplante
17.
Materials (Basel) ; 13(5)2020 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-32150952

RESUMEN

Alkali-activated copper and nickel slag cementitious materials (ACNCMs) are composite cementitious materials with CNS (copper and nickel slag) as the main materials and GGBFS (ground-granulated blast-furnace slag) as a mineral admixture. In this paper, the activity indexes of CNS with different grinding times were studied using CNS to replace a portion of cement. NaOH, Na2SO4, and Na2SiO3 activators were used to study the alkaline solution of the CNS glass phase. The effects of the fineness of CNS and the type of activator on the hydration of ACNCMs were investigated via physical/mechanical grinding and chemical activation. The hydration products of ACNCMs were analyzed via XRD, SEM, FT-IR, TG, and MIP. The results of the study revealed that the activity indexes of CNS ground with different grinding times (10, 30 and 50 min) were 0.662, 0.689, and 0.703, respectively. When Na2SiO3 was used as the activator, the glass phase dissolved the most Si4+, Al3+, and Ca2+, and the respective concentrations in the solution were found to be 2419, 39.55, and 3.38 mg/L. Additionally, the hydration products of ACNCMs were found to have a 28-day compressive strength of up to 84 MPa.

18.
J Inorg Biochem ; 187: 25-32, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30041155

RESUMEN

Zinc (Zn) is a fundamental trace element for cell viability and physiology, and concentrations above the physiological level may lead to cell damage. In order to explore the effect of zinc chloride (ZnCl2) on murine photoreceptor cells, in this study, we investigated the alterations of murine photoreceptor cell proliferation and cell morphology after exposure to various concentrations of ZnCl2, determined the levels of hydrogen peroxide, hydroxyl radicals, cytochrome c, and ATP before and after cells exposure to different concentrations of ZnCl2, monitored the changes of mitochondrial membrane potential, and further explored the expressions of BCL2-associated X (Bax) and B cell CLL/lymphoma (Bcl)-2 at gene and protein levels. The results indicated that appropriate ZnCl2 levels can enhance the cell proliferation, whereas high levels of ZnCl2 could apparently inhibit cell growth, exaggerate the generation of both hydrogen peroxide and hydroxyl radicals, collapse the mitochondrial membrane potential, and accelerate cytochrome c release into cytosol, decrease the ATP production, elevate the Bax production, and reduce the Bcl-2 expression, thereby disrupting the mitochondrial homeostasis. Consequently, the disrupted mitochondrial homeostasis initiates the mitochondria-mediated apoptotic signaling pathway, leading to cell death. Taken together, the results suggest that the over generation of reactive oxygen species and the activated mitochondrial signaling pathway play an important role in ZnCl2-induced murine photoreceptor cell death.


Asunto(s)
Cloruros/farmacología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Células Fotorreceptoras/metabolismo , Transducción de Señal/efectos de los fármacos , Compuestos de Zinc/farmacología , Animales , Muerte Celular/efectos de los fármacos , Ratones , Células Fotorreceptoras/patología
19.
Artif Cells Nanomed Biotechnol ; 46(sup1): 1102-1113, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29488395

RESUMEN

Zinc oxide (ZnO) nanoparticles can exhibit toxic effect on cells and tissues, which may be involved in the excessive generation of reactive oxygen species (ROS) and the consequent mitochondria-mediated apoptotic pathway. Nevertheless, the detailed mechanism remains unclear. In this study, we explored the effects of ZnO nanoparticles on the expressions of cytochrome c, ATP level, mitochondrial membrane potential, ROS, apoptosis, total antioxidant enzyme activities and apoptotic-related protein levels in murine photoreceptor cells as well as the changes of proteomic profiling. Moreover, we also performed the bioinformatics analysis for the differentially expressed proteins. Our results show that ZnO nanoparticles induce the release of cytochorme c, decrease the intracellular ATP level, collapse the mitochondrial membrane potential, elevate the ROS level, inhibit total antioxidant enzyme activities and increase the Bax and Caspase 3 levels whereas it decrease the Bcl-2 expression, leading to cell death. Proteomic analysis reveals the differentially expressed proteins are involved in cytochrome c oxidase activity and oxidative phosphorylation. Protein-protein interaction analysis confirms the differentially expressed proteins are closely associated with the clusters related to apoptotic signaling pathway and oxidative phosphorylation-associated proteins. Our results indicate that mitochondria play a central role in ZnO nanoparticle-induced murine photoreceptor cell death.


Asunto(s)
Muerte Celular/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Células Fotorreceptoras/citología , Células Fotorreceptoras/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Óxido de Zinc/química , Óxido de Zinc/toxicidad , Adenosina Trifosfato/metabolismo , Animales , Antioxidantes/metabolismo , Caspasa 3/metabolismo , Citocromos c/metabolismo , Ontología de Genes , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Proteómica , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteína X Asociada a bcl-2/metabolismo
20.
Materials (Basel) ; 11(1)2018 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-29301360

RESUMEN

In this paper, aluminum alloy samples were fabricated by selective laser melting (SLM) and subsequently T2 heat treatment was undertaken. In order to obtain comprehensive results, various experiments on densification, hardness, tensile strength, bending strength and microstructure characterization were carried out. The results show that densification of samples after T2 heat treatment does not vary very much from the SLMed ones, while the Brinell hardness and strength decreases to about 50%. Moreover, the plasticity and fracture deflection increases about 3 fold. The effects on the microstructure and the mechanical properties of the SLMed aluminum alloy samples and subsequent T2 heat treatment were studied.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA