Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Theranostics ; 14(6): 2290-2303, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646651

RESUMEN

Background: Neoantigen nanovaccine has been recognized as a promising treatment modality for personalized cancer immunotherapy. However, most current nanovaccines are carrier-dependent and the manufacturing process is complicated, resulting in potential safety concerns and suboptimal codelivery of neoantigens and adjuvants to antigen-presenting cells (APCs). Methods: Here we report a facile and general methodology for nanoassembly of peptide and oligonucleotide by programming neoantigen peptide with a short cationic module at N-terminus to prepare nanovaccine. The programmed peptide can co-assemble with CpG oligonucleotide (TLR9 agonist) into monodispersed nanostructures without the introduction of artificial carrier. Results: We demonstrate that the engineered nanovaccine promoted the codelivery of neoantigen peptides and adjuvants to lymph node-residing APCs and instigated potent neoantigen-specific T-cell responses, eliciting neoantigen-specific antitumor immune responses with negligible systemic toxicity. Furthermore, the antitumor T-cell immunity is profoundly potentiated when combined with anti-PD-1 therapy, leading to significant inhibition or even complete regression of established melanoma and MC-38 colon tumors. Conclusions: Collectively, this work demonstrates the feasibility and effectiveness of personalized cancer nanovaccine preparation with high immunogenicity and good biosafety by programming neoantigen peptide for nanoassembly with oligonucleotides without the aid of artificial carrier.


Asunto(s)
Antígenos de Neoplasias , Vacunas contra el Cáncer , Péptidos , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/administración & dosificación , Animales , Ratones , Antígenos de Neoplasias/inmunología , Péptidos/inmunología , Péptidos/química , Ratones Endogámicos C57BL , Oligodesoxirribonucleótidos/administración & dosificación , Oligodesoxirribonucleótidos/inmunología , Oligodesoxirribonucleótidos/química , Células Presentadoras de Antígenos/inmunología , Línea Celular Tumoral , Inmunoterapia/métodos , Humanos , Femenino , Linfocitos T/inmunología , Nanoestructuras/química , Neoplasias del Colon/inmunología , Neoplasias del Colon/terapia , Neoplasias del Colon/tratamiento farmacológico
2.
Adv Sci (Weinh) ; 11(15): e2307063, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38342624

RESUMEN

The high incidence of restenosis after angioplasty has been the leading reason for the recurrence of coronary heart disease, substantially increasing the mortality risk for patients. However, current anti-stenosis drug-eluting stents face challenges due to their limited functions and long-term safety concerns, significantly compromising their therapeutic effect. Herein, a stent-free anti-stenosis drug coating (denoted as Cur-NO-Gel) based on a peptide hydrogel is proposed. This hydrogel is formed by assembling a nitric oxide (NO) donor-peptide conjugate as a hydrogelator and encapsulating curcumin (Cur) during the assembly process. Cur-NO-Gel has the capability to release NO upon ß-galactosidase stimulation and gradually release Cur through hydrogel hydrolysis. The in vitro experiments confirmed that Cur-NO-Gel protects vascular endothelial cells against oxidative stress injury, inhibits cellular activation of vascular smooth muscle cells, and suppresses adventitial fibroblasts. Moreover, periadventitial administration of Cur-NO-Gel in the angioplasty model demonstrate its ability to inhibit vascular stenosis by promoting reendothelialization, suppressing neointima hyperplasia, and preventing constrictive remodeling. Therefore, the study provides proof of concept for designing a new generation of clinical drugs in angioplasty.


Asunto(s)
Curcumina , Hidrogeles , Humanos , Constricción Patológica , Células Endoteliales , Angioplastia , Curcumina/farmacología , Curcumina/uso terapéutico , Péptidos
3.
Adv Healthc Mater ; 13(7): e2302729, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38097368

RESUMEN

Acute kidney injury (AKI) is a common adverse event in chemotherapy patients. AKI is accompanied by the generation of reactive oxygen species (ROS) and inflammation. Therefore, the management of ROS and inflammation is a potential strategy for AKI mitigation. Herein, polyethylene glycol-coated osmium nanozyme-based antidotes (Os) are developed for imaging-guided photothermal therapy (PTT) in combination with cisplatin (Pt); while, avoiding AKI induced by high-dose Pt. Os nanoantidotes can enhance the efficiency of tumor treatment during combined PTT and chemotherapy and inhibit tumor metastasis by improving the hypoxic and inflammatory tumor microenvironment. Os nanoantidotes preferentially accumulate in the kidney because of their 2-nm size distribution; and then, regulate inflammation by scavenging ROS and generating oxygen to alleviate Pt-induced AKI. Os nanoantidotes can be cleared from the kidneys by urine excretion but can be degraded under hydrogen peroxide stimulation, reducing the bio-retention of these compounds. By integrating PTT with inflammatory regulation, Os nanoantidotes have the potential to reduce the side effects of chemotherapy, offering an alternative route for the clinical management of cancer patients with chemotherapy-induced AKI.


Asunto(s)
Lesión Renal Aguda , Antineoplásicos , Neoplasias , Humanos , Osmio/efectos adversos , Especies Reactivas de Oxígeno/metabolismo , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/patología , Neoplasias/patología , Inflamación , Línea Celular Tumoral , Microambiente Tumoral
4.
Exploration (Beijing) ; 3(5): 20230007, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37933287

RESUMEN

Breast cancer ranks among the most prevalent malignant tumours and is the primary contributor to cancer-related deaths in women. Breast imaging is essential for screening, diagnosis, and therapeutic surveillance. With the increasing demand for precision medicine, the heterogeneous nature of breast cancer makes it necessary to deeply mine and rationally utilize the tremendous amount of breast imaging information. With the rapid advancement of computer science, artificial intelligence (AI) has been noted to have great advantages in processing and mining of image information. Therefore, a growing number of scholars have started to focus on and research the utility of AI in breast imaging. Here, an overview of breast imaging databases and recent advances in AI research are provided, the challenges and problems in this field are discussed, and then constructive advice is further provided for ongoing scientific developments from the perspective of the National Natural Science Foundation of China.

5.
Acta Biomater ; 172: 369-381, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37852456

RESUMEN

Cancer stem cells (CSCs) are found in many solid tumors, which play decisive roles in the occurrence, recurrence and metastasis of tumors. However, drugs are difficult to kill CSCs due to their limited number and location in oxygen-deprived tissue far from the blood vessels. Meanwhile, the survival and stemness maintenance of CSCs strongly depend on the tumor microenvironment (TME). Herein, we developed a CD44 antibody modified iridium nanosheet with enzyme-like activity (defined as Ir Nts-Ab) that effectively eradicates CSCs for cancer therapy. We observe that Ir Nts-Ab can enrich tumor tissues to remove excessive reactive oxygen species and produce oxygen, thus alleviating hypoxia and the inflammatory TME to reduce the proportion of CSCs and inhibit metastasis. In addition, Ir Nts-Ab targets CSCs and normal cancer cells with near infrared II-region photothermal therapy (NIR-II PTT), and is easily taken up by CSCs due to recognition of the CD44 proteins. Moreover, photoacoustic imaging helps monitor drug accumulation and hypoxic TME improvement in tumor tissue. Importantly, Ir Nts-Ab has good biological safety, making it suitable for biomedical applications. This iridium nanozyme based on TME regulation as well as NIR-II PTT will be a promising strategy for the treatment of cancer. STATEMENT OF SIGNIFICANCE: Cancer stem cells (CSCs) are key factors that make tumors difficult to eradicate, and strongly depend on the hypoxic tumor microenvironment (TME), which plays a crucial role in the occurrence and metastasis of tumors. Herein, an antibody modified iridium nanosheet (definition as Ir Nts-Ab) was developed for targeted eradication of CSCs by photoacoustic imaging guided photothermal therapy (PTT) and TME regulation. Ir Nts-Ab with catalase-like activity could inhibit HIF-1α by producing oxygen, thus effectively reducing the proportion of CSCs and inhibiting tumor metastasis. Additionally, Ir Nts-Ab achieved the eradication of CSCs by PTT, and eliminated reactive oxygen species to decrease the inflammatory response, resulting in reduced tumor metastasis, which was promising for the cure of solid tumors in the clinics.


Asunto(s)
Nanopartículas , Neoplasias , Técnicas Fotoacústicas , Humanos , Terapia Fototérmica , Iridio/farmacología , Iridio/uso terapéutico , Microambiente Tumoral , Técnicas Fotoacústicas/métodos , Especies Reactivas de Oxígeno , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Células Madre Neoplásicas/patología , Oxígeno , Línea Celular Tumoral
6.
J Mater Chem B ; 11(35): 8528-8540, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37608753

RESUMEN

Photothermal immunotherapy has shown great potential for efficient cancer treatment. However, the immunosuppressive tumor microenvironment forms a heavy barrier for photothermal-induced anti-tumor immunity by inhibiting dendritic cell (DC) maturation and cytotoxic T cell response. Moreover, the lack of reliable spatiotemporal imaging modalities makes photothermal immunotherapy difficult to guide tumor ablation and monitor therapeutic outcomes in real time. Herein, we designed a theranostic thermosensitive liposome (PLDD) as a versatile nanoplatform to boost the adaptive anti-tumor immunity of photothermal immunotherapy and to achieve multiple bioimaging modalities in a real-time manner. PLDD contains two major functional components: a multifunctional photothermal agent (DTTB) and an immune potentiator STING pathway agonist (DMXAA). Upon irradiation, the heat generated by DTTB induced the immunogenic cell death (ICD) of the tumor and dissociated the structure of thermosensitive liposome to release DMXAA, which ultimately activated the STING pathway and promoted the ICD-induced immune response by increasing DC cell maturation and T cell recruitment. Moreover, the DTTB in PLDD displayed excellent second near-infrared (NIR-II) fluorescence and photoacoustic (PA) dual-modal imaging, which provided omnibearing information on the tumor and guided the subsequent therapeutic operation. Therefore, this versatile PLDD with light-triggered promotion of anti-tumor immunity and multiple spatiotemporal imaging profiles holds great potential for the future development of cancer immunotherapy.


Asunto(s)
Neoplasias , Medicina de Precisión , Liposomas , Terapia Fototérmica , Fluorescencia , Inmunoterapia
7.
Adv Sci (Weinh) ; 10(26): e2302575, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37435620

RESUMEN

Rheumatoid arthritis (RA) is a systemic autoimmune disease with pathogenic inflammation caused partly by excessive cell-free DNA (cfDNA). Specifically, cfDNA is internalized into immune cells, such as macrophages in lymphoid tissues and joints, and activates pattern recognition receptors, including cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS), resulting in overly strong proinflammation. Here, nanomedicine-in-hydrogel (NiH) is reported that co-delivers cGAS inhibitor RU.521 (RU) and cfDNA-scavenging cationic nanoparticles (cNPs) to draining lymph nodes (LNs) for systemic immunosuppression in RA therapy. Upon subcutaneous injection, NiH prolongs LN retention of RU and cNPs, which pharmacologically inhibit cGAS and scavenged cfDNA, respectively, to inhibit proinflammation. NiH elicits systemic immunosuppression, repolarizes macrophages, increases fractions of immunosuppressive cells, and decreases fractions of CD4+ T cells and T helper 17 cells. Such skewed immune milieu allows NiH to significantly inhibit RA progression in collagen-induced arthritis mice. These studies underscore the great potential of NiH for RA immunotherapy.


Asunto(s)
Artritis Reumatoide , Ácidos Nucleicos Libres de Células , Ratones , Animales , Nanomedicina , Hidrogeles , Artritis Reumatoide/terapia , Terapia de Inmunosupresión , Nucleotidiltransferasas , Inmunoterapia , Ganglios Linfáticos , ADN
8.
Sci Adv ; 9(28): eade6257, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37450588

RESUMEN

Current cancer immunotherapy [e.g., immune checkpoint blockade (ICB)] only benefits small subsets of patients, largely due to immunosuppressive tumor microenvironment (TME). In situ tumor vaccination can reduce TME immunosuppression and thereby improve cancer immunotherapy. Here, we present single-dose injectable (nanovaccines + ICBs)-in-hydrogel (NvIH) for robust immunotherapy of large tumors with abscopal effect. NvIH is thermo-responsive hydrogel co-encapsulated with ICB antibodies and novel polymeric nanoparticles loaded with three immunostimulatory agonists for Toll-like receptors 7/8/9 (TLR7/8/9) and stimulator of interferon genes (STING). Upon in situ tumor vaccination, NvIH undergoes rapid sol-to-gel transformation, prolongs tumor retention, sustains the release of immunotherapeutics, and reduces acute systemic inflammation. In multiple poorly immunogenic tumor models, single-dose NvIH reduces multitier TME immunosuppression, elicits potent TME and systemic innate and adaptive antitumor immunity with memory, and regresses both local (vaccinated) and distant large tumors with abscopal effect, including distant orthotopic glioblastoma. Overall, NvIH holds great potential for tumor immunotherapy.


Asunto(s)
Hidrogeles , Neoplasias , Humanos , Línea Celular Tumoral , Inmunoterapia , Terapia de Inmunosupresión , Neoplasias/terapia , Inmunidad Adaptativa , Microambiente Tumoral
9.
Adv Healthc Mater ; 12(20): e2203177, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36947826

RESUMEN

Traditional starvation treatment strategies, which involve glucose oxidase and drug-induced thrombi, often suffer from aggravated tumor hypoxia and have failed to improve antitumor efficacy in combination with oxygen-dependent photodynamic therapy (PDT). Herein, glucose transporter 1 inhibitor genistein (Gen) and photosensitizer chlorin e6 (Ce6) are integrated to construct carrier-free self-assembled nanoparticles defined as GC NPs, for starvation therapy-amplified PDT of tumor. GC NPs with regular morphology and stability are screened out by component adjustment, while the function of each component is preserved. On the one hand, Gen released from GC NPs can cut off tumor glucose uptake by inhibiting the glucose transporter 1 to restrict tumor growth, achieving starvation therapy. On the other hand, they are able to decrease the amount of oxygen consumed by tumor respiration and amplify the therapeutic effect of PDT. In vitro and in vivo experiments verify the excellent synergistic antitumor therapeutic efficacy of GC NPs without any apparent toxicity. Moreover, fluorescence and photoacoustic imaging provide guidance for in vivo PDT, demonstrating the excellent tumor enrichment efficiency of GC NPs. It is believed that this starvation therapy-amplified PDT strategy by carrier-free self-assembled GC NPs holds promising clinical prospects.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Porfirinas , Fotoquimioterapia/métodos , Transportador de Glucosa de Tipo 1 , Línea Celular Tumoral , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Oxígeno , Nanopartículas/uso terapéutico , Porfirinas/farmacología , Neoplasias/tratamiento farmacológico
10.
Adv Mater ; : e2301770, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36964936

RESUMEN

T-cell immunotherapy offers outstanding advantages in the treatment of various diseases, and with the selection of appropriate targets, efficient disease treatment can be achieved. T-cell immunotherapy has made great progress, but clinical results show that only a small proportion of patients can benefit from T-cell immunotherapy. The extensive mechanistic work outlines a blueprint for using T cells as a new option for immunotherapy, but also presents new challenges, including the balance between different fractions of T cells, the inherent T-cell suppression patterns in the disease microenvironment, the acquired loss of targets, and the decline of T-cell viability. The diversity, flexibility, and intelligence of nanomedicines give them great potential for enhancing T-cell immunotherapy. Here, how T-cell immunotherapy strategies can be adapted with different nanomaterials to enhance therapeutic efficacy is discussed. For two different pathological states, immunosuppression and immune activation, recent advances in nanomedicines for T-cell immunotherapy in diseases such as cancers, rheumatoid arthritis, systemic lupus erythematosus, ulcerative colitis, and diabetes are summarized. With a focus on T-cell immunotherapy, this review highlights the outstanding advantages of nanomedicines in disease treatment, and helps advance one's understanding of the use of nanotechnology to enhance T-cell immunotherapy.

11.
Nat Nanotechnol ; 18(1): 86-97, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36536041

RESUMEN

T cells play a determining role in the immunomodulation and prognostic evaluation of cancer treatments relying on immune activation. While specific biomarkers determine the population and distribution of T cells in tumours, the in situ activity of T cells is less studied. Here we designed T-cell-targeting fusogenic liposomes to regulate and quantify the activity of T cells by exploiting their surface redox status as a chemical target. The T-cell-targeting fusogenic liposomes equipped with 2,2,6,6-tetramethylpiperidine (TEMP) groups neutralize reactive oxygen species protecting T cells from oxidation-induced loss of activity. Meanwhile, the production of paramagnetic 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) radicals allows magnetic resonance imaging quantification of the T cell activity. In multiple mouse models, the T-cell-targeting fusogenic liposomes led to efficient tumour inhibition and to early prediction of radiotherapy outcomes. This study uses a chemical targeting strategy to measure the in situ activity of T cells for cancer theranostics and may provide further understanding on engineering T cells for cancer treatment.


Asunto(s)
Liposomas , Neoplasias , Animales , Ratones , Medicina de Precisión , Linfocitos T , Oxidación-Reducción , Neoplasias/diagnóstico , Neoplasias/terapia
12.
ACS Appl Mater Interfaces ; 14(51): 56471-56482, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36519432

RESUMEN

Metastasis of breast cancer is key to poor prognosis and high mortality. However, the excess reactive oxygen species (ROS) and inflammatory response induced by photothermal therapy (PTT) further aggravate tumor metastasis. Meanwhile, the hypoxic tumor microenvironment promotes tumor cells to metastasize to distant organs. Herein, the intrinsic limitations of PTT for metastatic tumor have been addressed by fabricating polyethylene glycol modified iridium tungstate (IrWOx-PEG) nanoparticles. The as-designed IrWOx-PEG nanoparticles displayed good photothermal (PT) conversion ability for duplex photoacoustic/PT imaging guided PTT and multienzyme mimetic feature for broad-spectrum ROS scavenging. On the one hand, IrWOx-PEG effectively removed excess ROS generated during PTT and reduced inflammation. On the other hand, owing to the catalase-like activity, it preferentially triggered the catalytic production of oxygen by decomposing ROS, leading to relieving of the hypoxic microenvironment. Hence, under bimodal imaging guidance, IrWOx-PEG induced PTT completely eliminated in situ breast cancer in 4T1 tumor-bearing mice with no observable system toxicity, as well as further restricting tumor metastasis to other vital organs (lungs) by ROS scavenging, anti-inflammation, and regulating hypoxic microenvironment. We anticipate that this work will lead to new treatment strategies for other metastatic cancers.


Asunto(s)
Neoplasias Mamarias Animales , Nanopartículas , Neoplasias , Animales , Ratones , Fototerapia/métodos , Terapia Fototérmica , Iridio , Especies Reactivas de Oxígeno , Línea Celular Tumoral , Neoplasias/terapia , Nanopartículas/uso terapéutico , Neoplasias Mamarias Animales/terapia , Microambiente Tumoral
13.
Front Oncol ; 12: 965427, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36119466

RESUMEN

Radiotherapy is an important therapeutic method for patients with cancer. However, radioresistance can cause treatment failure. Thus, there is an urgent need to investigate mechanisms of radioresistance and identity markers that could be used to predict radioresistance and prognosis of post-radiotherapy cancer patients. In the present study, we propose HOXA1 as a candidate biomarker of intrinsic radioresistance in multiple cancer types. By analyzing data from The Cancer Genome Atlas (TCGA), we found that HOXA1 was aberrantly upregulated in multiple cancers, and that elevated HOXA1 was significantly associated with poor prognosis of post-radiotherapy head and neck squamous cell carcinoma (HNSCC) and low-grade glioma (LGG) patients. Correlation analysis showed that HOXA1 expression was positively correlated with expression of EGFR, CDK6, and CAV1, which have been reported to enhance radioresistance. In addition, gene set enrichment analysis (GSEA) showed that the oxidative phosphorylation gene set was negatively enriched in HOXA1 high-expression samples in both HNSCC and LGG. Moreover, immunohistochemical assays indicated that high HOXA1 expression was significantly correlated with a high recurrence rate of nasopharyngeal carcinoma (NPC) after radiotherapy. Further in vitro experiments demonstrated that HOXA1 knockdown markedly attenuated the DNA repair capacity of NPC cells and sensibilized NPC cells to irradiation. Taken together, the results of this study demonstrate that HOXA1 has potential to be a predictive marker for radioresistance and post-radiotherapy prognosis that could help to guide individualized treatment in multiple cancer types.

14.
Expert Opin Drug Deliv ; 19(8): 985-996, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35929954

RESUMEN

INTRODUCTION: Nanomedicines (NMs) have emerged as a promising approach for revolutionizing cancer treatment outcomes, mainly due to their benefits in the tumor-targeted delivery of therapeutics. The preferential accumulation of NMs in tumors has been widely verified by macroscopical technologies. Accordingly, several classic and emerging targeting mechanisms have been proposed to support the tumor-specific delivery of NMs. The targeting mechanism has been a topic of intense interest and controversy in the field of NMs development. Especially, the mechanisms by which NMs target tumor remain elusive. AREA COVERED: This topical review mainly discussed the evolution of the targeting mechanisms, crucial issues associated with each mechanism, and confused debates among the mechanisms. The targeting mechanisms of tumor-specific NMs discussed here include the enhanced permeability and retention (EPR) effect, protein corona-mediated targeting delivery, circulating cell mediated transportation, and transcytosis. EXPERT OPINION: It is of great significance for ultimate clinical translation to have more comprehensive considerations on the mechanism driving the pathway of NMs toward tumors. Our thoughts in this review are expected to provide a comprehensive understanding of the mechanisms and elicit thorough explorations of new mechanisms to renovate the knowledge framework of NMs delivery. [Figure: see text].


Asunto(s)
Antineoplásicos , Neoplasias , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Sistemas de Liberación de Medicamentos , Humanos , Nanomedicina , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Permeabilidad
15.
Adv Sci (Weinh) ; 9(21): e2200353, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35585670

RESUMEN

Diffuse intrinsic pontine glioma (DIPG) is a rare and fatal pediatric brain tumor. Mutation of p53-induced protein phosphatase 1 (PPM1D) in DIPG cells promotes tumor cell proliferation, and inhibition of PPM1D expression in DIPG cells with PPM1D mutation effectively reduces the proliferation activity of tumor cells. Panobinostat effectively kills DIPG tumor cells, but its systemic toxicity and low blood-brain barrier (BBB) permeability limits its application. In this paper, a nano drug delivery system based on functionalized macrophage exosomes with panobinostat and PPM1D-siRNA for targeted therapy of DIPG with PPM1D mutation is prepared. The nano drug delivery system has higher drug delivery efficiency and better therapeutic effect than free drugs. In vivo and in vitro experimental results show that the nano drug delivery system can deliver panobinostat and siRNA across the BBB and achieve a targeted killing effect of DIPG tumor cells, resulting in the prolonged survival of orthotopic DIPG mice. This study provides new ideas for the delivery of small molecule drugs and gene drugs for DIPG therapy.


Asunto(s)
Glioma Pontino Intrínseco Difuso , Exosomas , Glioma , Proteína Fosfatasa 2C , ARN Interferente Pequeño , Animales , Astrocitoma/tratamiento farmacológico , Astrocitoma/genética , Neoplasias del Tronco Encefálico/tratamiento farmacológico , Neoplasias del Tronco Encefálico/genética , Glioma Pontino Intrínseco Difuso/tratamiento farmacológico , Glioma Pontino Intrínseco Difuso/genética , Exosomas/química , Exosomas/genética , Glioma/tratamiento farmacológico , Glioma/genética , Humanos , Macrófagos/química , Macrófagos/metabolismo , Ratones , Panobinostat/uso terapéutico , Proteína Fosfatasa 2C/genética , Proteína Fosfatasa 2C/uso terapéutico , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/uso terapéutico
16.
ACS Nano ; 16(4): 5704-5718, 2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35352557

RESUMEN

Ionic liquid (IL)-loaded or metal ions-enriched nanoparticles have been witnessed to assist microwave ablation (MWA) and heighten heat utilization for tumor treatment, which, however, inevitably brings about cell dys-homeostasis and severely endangers normal cells or tissues. In this report, a nonionic MWA sensitizer that encapsulates ethyl formate (EF) and doxorubicin (DOX) in liposomes (EF-DOX-Lips) was constructed to reinforce MWA and combined therapy against incomplete MWA-induced tumor recurrence. EF in EF-DOX-Lips as the nonionic liquid can perform like IL to accelerate energy transformation from electromagnetic energy to heat for strengthening MWA. More significantly, EF metabolite, that is, ethanol, also enables chemical ablation, which further enhances MWA. As well, the EF gasification-enhanced lipid rupture and cavitation can promote DOX delivery into a liver tumor for magnifying MWA & chemotherapy combined therapy. By virtue of these contributions, this nonionic MWA nanosensitizer exerts robust antitumor effects to inhibit tumor proliferation and angiogenesis for repressing tumor growth and recurrence or metastasis via downregulating the Epha2 gene and unconventional PI3K/Akt & MAPK signal pathways that the incomplete MWA activated, which provides an avenue to elevate an MWA-based antitumor outcome.


Asunto(s)
Neoplasias Hepáticas , Microondas , Humanos , Microondas/uso terapéutico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Resultado del Tratamiento
17.
Adv Drug Deliv Rev ; 183: 114136, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35143894

RESUMEN

As fundamental immune cells in innate and adaptive immunity, macrophages engage in a double-edged relationship with cancer. Dissecting the character of macrophages in cancer development facilitates the emergence of macrophages-based new strategies that encompass macrophages as theranostic targets/tools of interest for treating cancer. Herein, we provide a concise overview of the mixed roles of macrophages in cancer pathogenesis and invasion as a foundation for the review discussions. We survey the latest progress on macrophage-based cancer theranostic strategies, emphasizing two major strategies, including targeting the endogenous tumor-associated macrophages (TAMs) and engineering the adoptive macrophages to reverse the immunosuppressive environment and augment the cancer theranostic efficacy. We also discuss and provide insights on the major challenges along with exciting opportunities for the future of macrophage-based cancer theranostic approaches.


Asunto(s)
Neoplasias , Medicina de Precisión , Humanos , Inmunoterapia , Macrófagos , Neoplasias/patología , Microambiente Tumoral , Macrófagos Asociados a Tumores
18.
Sci Adv ; 7(13)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33771859

RESUMEN

Various cancers treated with cisplatin almost invariably develop drug resistance that is frequently caused by substantial DNA repair. We searched for acquired vulnerabilities of cisplatin-resistant cancers to identify undiscovered therapy. We herein found that cisplatin resistance of cancer cells comes at a fitness cost of increased intracellular hypoxia. Then, we conceived an inspired strategy to combat the tumor drug resistance by exploiting the increased intracellular hypoxia that occurs as the cells develop drug resistance. Here, we constructed a hypoxia-amplifying DNA repair-inhibiting liposomal nanomedicine (denoted as HYDRI NM), which is formulated from a platinum(IV) prodrug as a building block and payloads of glucose oxidase (GOx) and hypoxia-activatable tirapazamine (TPZ). In studies on clinically relevant models, including patient-derived organoids and patient-derived xenograft tumors, the HYDRI NM is able to effectively suppress the growth of cisplatin-resistant tumors. Thus, this study provides clinical proof of concept for the therapy identified here.


Asunto(s)
Antineoplásicos , Neoplasias , Antineoplásicos/farmacología , Línea Celular Tumoral , Cisplatino/farmacología , Reparación del ADN , Humanos , Hipoxia , Nanomedicina , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Tirapazamina/farmacología
19.
ACS Nano ; 14(10): 13681-13690, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-32926626

RESUMEN

Pharmaceutical evaluations of nanomedicines are of great significance for their further launch into industry and clinic. Near-infrared (NIR) fluorescence imaging plays essential roles in preclinical drug development by providing important insights into the biodistributions of drugs in vivo with deep tissue penetration and high spatiotemporal resolution. However, NIR-II fluorescence imaging has rarely been exploited for in vivo real-time pharmaceutical evaluations of nanomedicine. Herein, we developed a highly emissive NIR-II luminophore to establish a versatile nanoplatform to noninvasively monitor the in vivo metabolism of nanomedicines bound various polyethylene glycol (PEG) ligands in a real-time manner. An alternative D-A-D conjugated oligomer (DTTB) was synthesized to achieve NIR-II emission peaked at ∼1050 nm with high fluorescence QYs of 13.4% and a large absorption coefficient. By anchoring with the DTTB molecule, intrinsically fluorescent micelles were fabricated and bound with PEG ligands at various chain lengths. In vivo NIR-II fluorescence and photoacoustic imaging results revealed that an appropriate PEG chain length could effectively contribute to the longer blood circulation and better tumor targeting. In vivo therapeutic experiments also confirmed the optimized nanomedicines have efficient photothermal elimination of tumors and good biosafety. This work offered an alternative highly fluorescent NIR-II material and demonstrated a promising approach for real-time pharmaceutical evaluation of nanomedicine in vivo.


Asunto(s)
Hipertermia Inducida , Neoplasias , Técnicas Fotoacústicas , Humanos , Ligandos , Nanomedicina , Neoplasias/terapia , Fototerapia , Polietilenglicoles , Nanomedicina Teranóstica
20.
Cancer Manag Res ; 12: 7291-7303, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32884344

RESUMEN

BACKGROUND: Circular RNAs have been emerging as biomarkers in diagnosis and prognosis of pancreatic ductal adenocarcinoma (PDAC). The hsa_circ_0013912 (circ_0013912) has been retrieved to be upregulated in PDAC. Here, we further investigated its role in PDAC cells, as well as its mechanism via serving as competing endogenous RNA (ceRNA) for miRNA (miR)-7-5p, which is abundant in pancreas and suppresses the development of PDAC. MATERIALS AND METHODS: The clinical human tissues were harvested from Gene Expression Omnibus (GEO) database and PDAC patients, and expression of circ_0013912 and miR-7-5p was detected by real-time quantitative PCR. The interaction between both was confirmed by dual-luciferase reporter assay, RNA immunoprecipitation and biotin-miRNA pull-down assay. Functional experiments were performed using Cell Counting Kit-8 assay, colony formation assay, fluorescence-activated cell separation method, caspase 3 activity assay kit, Western blotting, transwell assays, and xenograft tumor model. RESULTS: circ_0013912 was upregulated in PDAC tumors and cells; besides, circ_0013912 upregulation was associated with TNM stage and lymph node metastasis. Silencing circ_0013912 inhibited cell viability, colony formation ability, cell cycle entrance, migration and invasion, but facilitated apoptosis rate and caspase 3 activity in PANC-1 and AsPC-1 cells, accompanied with decreased c-myc, cyclin D1 and vimentin, and increased E-cadherin. Furthermore, miR-7-5p was a target of circ_0013912. Blocking miR-7-5p could promote cell growth, migration and invasion of PANC-1 and AsPC-1 cells with circ_0013912 silencing or not. Tumor growth was also restrained by circ_0013912 downregulation. CONCLUSION: Circ_0013912 knockdown could suppress cell growth and metastasis of PDAC cells via sponging miR-7-5p.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA