Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 47(1): 167-175, 2022 Jan.
Artículo en Chino | MEDLINE | ID: mdl-35178924

RESUMEN

Astragali Radix-Curcumae Rhizoma(AR-CR) is a combination commonly used in the clinical treatment of tumors. Based on the T helper 17(Th17)/regulatory T cell(Treg) balance, the present study explored the possible mechanism of AR-CR combined with 5-fluorouracil(5-FU) on the tumor growth of orthotopic xenograft model mice of colorectal carcinoma. Ninety male BALB/c mice were randomly divided into nine groups, i.e., a blank group, a model group, a 5-FU group, high-, medium-, and low-dose AR-CR(2∶1) groups, and high-, medium-, and low-dose AR-CR+5-FU groups, with 10 mice in each group. The orthotopic xenograft model of CT26.WT colorectal carcinoma was induced in mice except those in the blank group. Twenty-four hours after the ope-ration, mice in the blank group and the model group received normal saline by gavage(10 mL·kg~(-1), once per day), and those in the 5-FU group received 5-FU by intraperitoneal injection(25 mg·kg~(-1), once every other day). Mice in the AR-CR groups received AR and CR decoctions by gavage(12, 6, and 3 g·kg~(-1), once a day) and those in the combination groups received AR and CR decoctions and 5-FU(doses and administration methods were the same as above). After intervention for three weeks, all mice were sacrificed and tumor tissues were collected. The tumor mass was weighed and the average tumor weight was calculated. The changing trend of Th17/Treg(%) in the CD4~+T lymphocytes of the spleen tissues of the mice in each group was detected. The mRNA expression in the blood and protein expression in the tumor tissues of transforming growth factor-ß(TGF-ß), tumor necrosis factor-α(TNF-α), interferon-γ(IFN-γ), Smad4, N-cadherin, matrix metalloproteinase-7(MMP-7) were detected. The experimental results revealed that compared with the model group, the groups with drug intervention showed reduced tumor mass(P<0.01), decreased CD4~+IL-17~+ in the spleen tissues to varying degrees(P<0.001), and increased proportion of CD4~+Foxp3~+(P<0.001 or P<0.05), indicating that Th17/Treg maintained dynamic balance, and the effect of the combination groups was predominant. Additionally, the mRNA expression in the blood and protein expression in the tumor tissues of TGF-ß, TNF-α, IFN-γ, Smad4, N-cadherin, and MMP-7 declined to varying degrees in a dose-dependent manner(P<0.01 or P<0.001). The AR-CR combined with 5-FU can inhibit the tumor growth of orthotopic xenograft model mice of CT26.WT colorectal carcinoma. The mechanism may be related to maintenance of Th17/Treg dynamic balance in the body and down-regulation of TGF-ß, TNF-α, IFN-γ, Smad4, N-cadherin, and MMP-7 expression.


Asunto(s)
Neoplasias Colorrectales , Medicamentos Herbarios Chinos , Animales , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Medicamentos Herbarios Chinos/farmacología , Fluorouracilo/farmacología , Xenoinjertos , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , ARN Mensajero/metabolismo , Linfocitos T Reguladores , Células Th17
2.
Biomaterials ; 281: 121369, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35026671

RESUMEN

Tumor cells obtain energy supply from different metabolic pathways to maintain survival. In this study, a tumor acidity-responsive spherical nanoparticle (called as LMGC) was designed by attaching glucose oxidase (GOx) and mineralizing calcium carbonate on the surface of liquid metal nanoparticles to integrate the synergistic effect of adenosine triphosphate (ATP) generation inhibition and photothermal therapy (PTT) for enhanced tumor therapy. After GOx catalysis, the process of glycolysis was inhibited, and the increased H2O2 level enhanced the intratumoral oxidative stress. Besides, the gluconic acid production accelerated the degradation of LMGC and promoted Ca2+-mediated mitochondrial dysfunction. The inhibition of glycolysis and mitochondrial metabolism could significantly reduce ATP production and down-regulate heat shock protein (HSP) expression, which would reduce tumor cells heat resistance and improve PTT therapeutic effect. This liquid metal-based ATP inhibition system with enhanced therapeutic effect will find great potential for tumor treatment.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Neoplasias , Adenosina Trifosfato/metabolismo , Línea Celular Tumoral , Glucosa Oxidasa/metabolismo , Glucólisis , Humanos , Peróxido de Hidrógeno/metabolismo , Mitocondrias/metabolismo , Neoplasias/tratamiento farmacológico , Terapia Fototérmica
3.
Small Methods ; 5(7): e2100361, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34927984

RESUMEN

Advances in enzymes involve an efficient biocatalytic process, which has demonstrated great potential in biomedical applications. However, designing a functional carrier for enzymes equipped with satisfactory degradability and loading efficiency, remains a challenge. Here, based on transformable liquid metal (LM), a spinose nanodrum is designed as protein carrier to deliver enzyme for tumor treatment. With the assistance of spines and a special drum-like shape, it is found that the spiny LM can carry much more enzymes than spherical LM under the same condition. Benefiting from the satisfactory enzyme loading efficiency of spiny LM, a plasma amine oxidase immobilized spinose LM nanosystem enveloped with epigallocatechin gallate (EGCG)-Fe3+ (LMPE) is fabricated for photothermal and cascade catalytic tumor therapy. Activated by the acidic condition in the tumor microenvironment, the LMPE can oxidize spermine (Spm) and spermidine (Spd) to generate hydrogen peroxide (H2 O2 ) for Fenton catalytic reaction to produce the lethal hydroxyl radical (•OH) for tumor cell killing. Combined with remarkable photothermal performance of LM, LMPE exhibits significant inhibition of tumor in vivo.


Asunto(s)
Peróxido de Hidrógeno , Microambiente Tumoral , Catálisis , Línea Celular Tumoral , Peróxido de Hidrógeno/metabolismo , Espermina
5.
Molecules ; 23(9)2018 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-30200213

RESUMEN

This study investigated the influence of Canarium album extract (CAext) on intestinal microbiota composition of mice fed a high-fat diet (HFD). Kun Ming (KM) mice were fed either a normal chow diet or a HFD for six weeks. At the seventh week, HFD-fed mice were gavaged daily with saline, or a different dose of CAext for four weeks, respectively. Then, the composition of the gut microbiota was analyzed by high-throughput sequencing technology. Analysis of fecal microbial populations, grouped by phyla, showed significant increases of Firmicutes and Verrucomicrobia, but a decrease of Bacteroidetes in all CAext-fed mice. Particularly, CAext gavage in a low dose or a medium dose caused a significant increase in the proportion of Akkermansia. These findings suggested that CAext can alter the gut microbiota composition of HFD-fed mice, and had a potential prebiotic effects on Akkermansia.


Asunto(s)
Burseraceae/química , Microbioma Gastrointestinal/efectos de los fármacos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Polifenoles/química , Polifenoles/farmacología , Animales , Biodiversidad , Dieta Alta en Grasa , Masculino , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA