Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Life Sci Alliance ; 7(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38570190

RESUMEN

Cardiovascular system develops from the lateral plate mesoderm. Its three primary cell lineages (hematopoietic, endothelial, and muscular) are specified by the sequential actions of conserved transcriptional factors. ETV2, a master regulator of mammalian hemangioblast development, however, is absent in the chicken genome and acts downstream of NPAS4L in zebrafish. Here, we investigated the epistatic relationship between NPAS4L and ETV2 in avian hemangioblast development. We showed that ETV2 is deleted in all 363 avian genomes analyzed. Mouse ETV2 induced LMO2, but not NPAS4L or SCL, expression in chicken mesoderm. Squamate (lizards, geckos, and snakes) genomes contain both NPAS4L and ETV2 In Madagascar ground gecko, both genes were expressed in developing hemangioblasts. Gecko ETV2 induced only LMO2 in chicken mesoderm. We propose that both NPAS4L and ETV2 were present in ancestral amniote, with ETV2 acting downstream of NPAS4L in endothelial lineage specification. ETV2 may have acted as a pioneer factor by promoting chromatin accessibility of endothelial-specific genes and, in parallel with NPAS4L loss in ancestral mammals, has gained similar function in regulating blood-specific genes.


Asunto(s)
Células Madre Hematopoyéticas , Pez Cebra , Animales , Ratones , Diferenciación Celular/genética , Células Madre Hematopoyéticas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Aves , Mamíferos/metabolismo
2.
Cell Stress Chaperones ; 29(3): 425-436, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38608858

RESUMEN

Anhydrobiotic species can survive virtually complete water loss by entering a reversible ametabolic glassy state that may persist for years in ambient conditions. The Pv11 cell line was derived from the egg mass of the anhydrobiotic midge, Polypedilum vanderplanki, and is currently the only available anhydrobiotic cell line. Our results demonstrate that the necessary preconditioning for Pv11 cells to enter anhydrobiosis causes autophagy and reduces mitochondrial respiration by over 70%. We speculate that reorganizing cellular bioenergetics to create and conserve energy stores may be valuable to successfully recover after rehydration. Furthermore, mitochondria in preconditioned cells lose their membrane potential during desiccation but rapidly restore it within 30 min upon rehydration, demonstrating that the inner mitochondrial membrane integrity is well-preserved. Strikingly, the nucleolus remains visible immediately upon rehydration in preconditioned cells while absent in control cells. In contrast, a preconditioning-induced membraneless organelle reformed after rehydration, demonstrating that membraneless organelles in Pv11 cells can be either stabilized or recovered. Staining the endoplasmic reticulum and the Golgi apparatus revealed that these organelles fragment during preconditioning. We hypothesize that this process reduces sheering stress caused by rapid changes in cellular volume during desiccation and rehydration. Additionally, preconditioning was found to cause the filamentous-actin (F-actin) network to disassemble significantly and reduce the fusion of adjacent plasma membranes. This study offers several exciting avenues for future studies in the animal model and Pv11 cell line that will further our understanding of anhydrobiosis and may lead to advancements in storing sensitive biologics at ambient temperatures for months or years.


Asunto(s)
Desecación , Mitocondrias , Animales , Línea Celular , Mitocondrias/metabolismo , Orgánulos/metabolismo , Autofagia , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(14): e2317254121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38551840

RESUMEN

Pv11 is the only animal cell line that, when preconditioned with a high concentration of trehalose, can be preserved in the dry state at room temperature for more than one year while retaining the ability to resume proliferation. This extreme desiccation tolerance is referred to as anhydrobiosis. Here, we identified a transporter that contributes to the recovery of Pv11 cells from anhydrobiosis. In general, the solute carrier 5 (SLC5)-type secondary active transporters cotransport Na+ and carbohydrates including glucose. The heterologous expression systems showed that the transporter belonging to the SLC5 family, whose expression increases upon rehydration, exhibits Na+-dependent trehalose transport activity. Therefore, we named it STRT1 (sodium-ion trehalose transporter 1). We report an SLC5 family member that transports a naturally occurring disaccharide, such as trehalose. Knockout of the Strt1 gene significantly reduced the viability of Pv11 cells upon rehydration after desiccation. During rehydration, when intracellular trehalose is no longer needed, Strt1-knockout cells released the disaccharide more slowly than the parental cell line. During rehydration, Pv11 cells became roughly spherical due to osmotic pressure changes, but then returned to their original spindle shape after about 30 min. Strt1-knockout cells, however, required about 50 min to adopt their normal morphology. STRT1 probably regulates intracellular osmolality by releasing unwanted intracellular trehalose with Na+, thereby facilitating the recovery of normal cell morphology during rehydration. STRT1 likely improves the viability of dried Pv11 cells by rapidly alleviating the significant physical stresses that arise during rehydration.


Asunto(s)
Chironomidae , Desecación , Animales , Trehalosa/metabolismo , Larva/metabolismo , Chironomidae/genética , Insectos/metabolismo , Línea Celular
4.
HLA ; 103(1): e15337, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38180311

RESUMEN

One nucleotide substitution in codon 67 of HLA-A*74:41 results in the novel allele, HLA-A*74:46.


Asunto(s)
Células Madre Hematopoyéticas , Donantes de Tejidos , Humanos , Alelos , Nucleótidos , Antígenos HLA-A/genética
5.
Mitochondrion ; 73: 84-94, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37956777

RESUMEN

The sleeping chironomid (Polypedilum vanderplanki) is the only insect capable of surviving complete desiccation in an ametabolic state called anhydrobiosis. Here, we focused on the role of oxidative stress and we observed the production of reactive oxygen species (ROS) in desiccating larvae and in those exposed to salinity stress. Oxidative stress occurs to some extent in desiccating larvae, inducing carbonylation of proteins. Oxidative stress overcomes the antioxidant defenses of the larvae during the first hour following rehydration of anhydrobiotic larvae. It facilitates the oxidation of DNA and cell membrane lipids; however, these damages are quickly repaired after a few hours. In addition to its deleterious effects, we demonstrated that artificial exposure to oxidative stress could induce a response similar to desiccation stress, at the transcriptome and protein levels. Furthermore, the response of anhydrobiosis-related genes to desiccation and salinity stress was inhibited by antioxidant treatment. Thus, we conclude that oxidative stress is an essential trigger for inducing the expression of protective genes during the onset of anhydrobiosis in desiccating of P. vanderplanki larvae.


Asunto(s)
Chironomidae , Animales , Chironomidae/genética , Chironomidae/metabolismo , Desecación , Antioxidantes/metabolismo , Estrés Oxidativo , Larva/genética , Larva/metabolismo
6.
Genome Biol Evol ; 15(10)2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37708413

RESUMEN

The sleeping chironomid Polypedilum vanderplanki is capable of anhydrobiosis, a striking example of adaptation to extreme desiccation. Tolerance to complete desiccation in this species is associated with emergence of multiple paralogs of protective genes. One of the gene families highly expressed under anhydrobiosis and involved in this process is protein-L-isoaspartate (D-aspartate) O-methyltransferases (PIMTs). Recently, another closely related midge was discovered, Polypedilum pembai, which is able not only to tolerate desiccation but also to survive multiple desiccation-rehydration cycles. To investigate the evolution of anhydrobiosis in these species, we sequenced and assembled the genome of P. pembai and compared it with P. vanderplanki and also performed a population genomics analysis of several populations of P. vanderplanki and one population of P. pembai. We observe positive selection and radical changes in the genetic architecture of the PIMT locus between the two species, including its amplification in the P. pembai lineage. In particular, PIMT-4, the most highly expressed of these PIMTs, is present in six copies in the P. pembai; these copies differ in expression profiles, suggesting possible sub- or neofunctionalization. The nucleotide diversity of the genomic region carrying these new genes is decreased in P. pembai, but not in the orthologous region carrying the ancestral gene in P. vanderplanki, providing evidence for a selective sweep associated with postduplication adaptation in the former. Overall, our results suggest an extensive relatively recent and likely ongoing adaptation of the mechanisms of anhydrobiosis.

7.
Curr Issues Mol Biol ; 45(8): 6383-6394, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37623222

RESUMEN

Gastric cancer is a major challenge in modern oncology due to its high detection rate and prevalence. While sporadic cases make up the majority of gastric cancer, hereditary gastric cancer is caused by germline mutations in several genes linked to different syndromes. Thus, identifying hereditary forms of gastric cancer is considered crucial globally. A survey study using NGS-based analysis was conducted to determine the frequency of different types of hereditary gastric cancer in the yet-unstudied Kyrgyz population. The study cohort included 113 patients with diagnosed gastric cancer from Kyrgyzstan. The age of patients was 57.6 ± 8.9. Next-generation sequencing analysis of genomic DNA was performed using a custom Roche NimbleGen enrichment panel. The results showed that 6.2% (7/113) of the patients had pathogenic or likely pathogenic genetic variants. Additionally, 3.5% (4/113) of the patients carried heterozygous pathogenic/likely pathogenic variants in high penetrance genes, such as TP53, POLD1, RET, and BRCA2. Moreover, 2.7% (3/113) of the patients carried heterozygous mutations in genes linked to autosomal recessive conditions, specifically PALB2, FANCA, and FANCD2. We have not identified any genetic variants in hereditary GC-associated genes: CDH1, STK11, SMAD4, BMPRIA, APC, MLH1, and others. Our study included patients with sporadic features of GC. The use of recognized criteria (NCCN, Gastric Cancer, Version 2.2022) would increase the number of identified genetic variants in hereditary GC-associated genes. Further research is required to determine the clinical relevance of the genetic variants identified in the current study.

8.
Cancers (Basel) ; 16(1)2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38201513

RESUMEN

Cancer is a major global public health challenge, affecting both quality of life and mortality. Recent advances in genetic research have uncovered hereditary cancer syndromes (HCS) that predispose individuals to malignant neoplasms. While traditional single-gene testing has focused on high-penetrance genes, the past decade has seen a shift toward multigene panels, which facilitate the analysis of multiple genes associated with specific HCS. This approach reveals variants in less-studied gene regions and improves our understanding of cancer predisposition. In a study composed of Russian patients with clinical signs of HCS, we used a multigene hereditary cancer panel and revealed 21.6% individuals with pathogenic or likely pathogenic genetic variants. BRCA1/BRCA2 mutations predominated, followed by the CHEK2 and ATM variants. Of note, 16 previously undescribed variants were identified in the MUTYH, GALNT12, MSH2, MLH1, MLH3, EPCAM, and POLE genes. The implications of the study extend to personalized cancer prevention and treatment strategies, especially in populations lacking extensive epidemiological data, such as Russia. Overall, our research provides valuable genetic insights that give the way for further investigation and advances in the understanding and management of hereditary cancer syndromes.

9.
Biology (Basel) ; 11(10)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36290365

RESUMEN

BACKGROUND: Approximately 5-10% of all cancers are associated with hereditary cancer predisposition syndromes (HCPS). Early identification of HCPS is facilitated by widespread use of next-generation sequencing (NGS) and brings significant benefits to both the patient and their relatives. This study aims to evaluate the landscape of genetic variants in patients with personal and/or family history of cancer using NGS-based multigene panel testing. MATERIALS AND METHODS: The study cohort included 1117 probands from Russia: 1060 (94.9%) patients with clinical signs of HCPS and 57 (5.1%) healthy individuals with family history of cancer. NGS analysis of 76 HCPS genes was performed using a custom Roche NimbleGen enrichment panel. RESULTS: Pathogenic/likely pathogenic variants were identified in 378 of 1117 individuals (33.8%). The predominant number (59.8%) of genetic variants was identified in BRCA1/BRCA2 genes. CHEK2 was the second most commonly altered gene with a total of 28 (7.4%) variants, and 124 (32.8%) genetic variants were found in other 35 cancer-associated genes with variable penetrance. CONCLUSIONS: Multigene panel testing allows for a differential diagnosis and identification of high-risk group for oncological diseases. Our results demonstrate that inclusion of non-coding gene regions into HCPS gene panels is highly important for the identification of rare spliceogenic variants with high penetrance.

10.
iScience ; 25(8): 104639, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36039361

RESUMEN

African chironomid (Polypedilum vanderplanki) larvae can suspend their metabolism by undergoing severe desiccation and then resume this activity by simple rehydration. We present a microdevice using interdigital comb electrodes to detect the larval motion using the natural surface charge of the living larvae in water. The larvae were most active 2 h after soaking them in water at 30°C; they exhibited motions with 2 Hz frequency. This was comparable to the signal obtained from the microdevice via fast Fourier transform (FFT) processing. The amplitude of the voltage and current were 0.11 mV and 730 nA, respectively. They would be enough to be detected by a low power consumption microcomputer. Temperature and pH sensing were demonstrated by detecting the vital motions of the revived larvae under different conditions. This multi-functional biosensor will be a useful microdevice to search for survivable locations under extreme environmental conditions like those on other planets.

11.
Biology (Basel) ; 11(4)2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35453687

RESUMEN

Anhydrobiosis, an adaptive ability to withstand complete desiccation, in the nonbiting midge Polypedilum vanderplanki, is associated with the emergence of new multimember gene families, including a group of 27 genes of late embryogenesis abundant (LEA) proteins (PvLea). To obtain new insights into the possible functional specialization of these genes, we investigated the expression and localization of PvLea genes in a P. vanderplanki-derived cell line (Pv11), capable of anhydrobiosis. We confirmed that all but two PvLea genes identified in the genome of P. vanderplanki are expressed in Pv11 cells. Moreover, PvLea genes are induced in Pv11 cells in response to anhydrobiosis-inducing trehalose treatment in a manner highly similar to the larvae of P. vanderplanki during the real induction of anhydrobiosis. Then, we expanded our previous data on PvLEA proteins localization in mammalian cells that were obtained using C-terminal fusions of PvLEA proteins and green fluorescent protein (GFP). We investigated PvLEA localization using N- and C-terminal fusions with GFP in Pv11 cells and the Sf9 insect cell line. We observed an inconsistency of PvLEA localization between different fusion types and different cell cultures, that needs to be taken into account when using PvLEA in the engineering of anhydrobiotic cell lines.

12.
NAR Genom Bioinform ; 4(2): lqac029, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35387384

RESUMEN

Non-biting midges (Chironomidae) are known to inhabit a wide range of environments, and certain species can tolerate extreme conditions, where the rest of insects cannot survive. In particular, the sleeping chironomid Polypedilum vanderplanki is known for the remarkable ability of its larvae to withstand almost complete desiccation by entering a state called anhydrobiosis. Chromosome numbers in chironomids are higher than in other dipterans and this extra genomic resource might facilitate rapid adaptation to novel environments. We used improved sequencing strategies to assemble a chromosome-level genome sequence for P. vanderplanki for deep comparative analysis of genomic location of genes associated with desiccation tolerance. Using whole genome-based cross-species and intra-species analysis, we provide evidence for the unique functional specialization of Chromosome 4 through extensive acquisition of novel genes. In contrast to other insect genomes, in the sleeping chironomid a uniquely high degree of subfunctionalization in paralogous anhydrobiosis genes occurs in this chromosome, as well as pseudogenization in a highly duplicated gene family. Our findings suggest that the Chromosome 4 in Polypedilum is a site of high genetic turnover, allowing it to act as a 'sandbox' for evolutionary experiments, thus facilitating the rapid adaptation of midges to harsh environments.

13.
Genes (Basel) ; 13(3)2022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-35327960

RESUMEN

Genomic safe harbors (GSHs) provide ideal integration sites for generating transgenic organisms and cells and can be of great benefit in advancing the basic and applied biology of a particular species. Here we report the identification of GSHs in a dry-preservable insect cell line, Pv11, which derives from the sleeping chironomid, Polypedilum vanderplanki, and similar to the larvae of its progenitor species exhibits extreme desiccation tolerance. To identify GSHs, we carried out genome analysis of transgenic cell lines established by random integration of exogenous genes and found four candidate loci. Targeted knock-in was performed into these sites and the phenotypes of the resulting transgenic cell lines were examined. Precise integration was achieved for three candidate GSHs, and in all three cases integration did not alter the anhydrobiotic ability or the proliferation rate of the cell lines. We therefore suggest these genomic loci represent GSHs in Pv11 cells. Indeed, we successfully constructed a knock-in system and introduced an expression unit into one of these GSHs. We therefore identified several GSHs in Pv11 cells and developed a new technique for producing transgenic Pv11 cells without affecting the phenotype.


Asunto(s)
Chironomidae , Animales , Línea Celular , Chironomidae/genética , Genómica , Insectos , Larva
14.
Curr Opin Insect Sci ; 49: 101-107, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34990872

RESUMEN

Extremophiles often undergo marked changes in genomic architecture, likely as a result of adaptation to the harsh environments they inhabit. These changes can involve gene duplications that affect subsequent gene evolution and the regulation of gene expression. Excellent examples of this are provided by two non-biting chironomid midges (Diptera, Chironomidae): Polypedilum vanderplanki, which in its larval form can withstand almost complete water loss, and Belgica antarctica, which exhibits freeze tolerance. This review presents recent studies on the molecular adaptations and evolutionary features of these and other extremophile chironomid genomes, as well as biotechnological applications of a cell line derived from P. vanderplanki that can survive air-drying. We highlight the importance of genomics in identifying molecular pathways and genomic modifications associated with adaptation to extreme environmental conditions.


Asunto(s)
Chironomidae , Adaptación Fisiológica/genética , Animales , Chironomidae/genética , Evolución Molecular , Ambientes Extremos , Larva/fisiología
15.
Sci Rep ; 11(1): 19698, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34611198

RESUMEN

Pv11 is an insect cell line established from the midge Polypedilum vanderplanki, whose larval form exhibits an extreme desiccation tolerance known as anhydrobiosis. Pv11 itself is also capable of anhydrobiosis, which is induced by trehalose treatment. Here we report the successful construction of a genome editing system for Pv11 cells and its application to the identification of signaling pathways involved in anhydrobiosis. Using the Cas9-mediated gene knock-in system, we established Pv11 cells that stably expressed GCaMP3 to monitor intracellular Ca2+ mobilization. Intriguingly, trehalose treatment evoked a transient increase in cytosolic Ca2+ concentration, and further experiments revealed that the calmodulin-calcineurin-NFAT pathway contributes to tolerance of trehalose treatment as well as desiccation tolerance, while the calmodulin-calmodulin kinase-CREB pathway conferred only desiccation tolerance on Pv11 cells. Thus, our results show a critical contribution of the trehalose-induced Ca2+ surge to anhydrobiosis and demonstrate temporally different roles for each signaling pathway.


Asunto(s)
Sistemas CRISPR-Cas , Señalización del Calcio , Deshidratación , Edición Génica , Animales , Calcio/metabolismo , Línea Celular , Biología Computacional/métodos , Perfilación de la Expresión Génica , Técnicas de Sustitución del Gen , Ontología de Genes , Insectos , Larva , ARN Guía de Kinetoplastida , Estrés Fisiológico , Trehalosa/metabolismo , Trehalosa/farmacología
16.
Int J Mol Sci ; 22(11)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071490

RESUMEN

The Pv11, an insect cell line established from the midge Polypedilum vanderplanki, is capable of extreme hypometabolic desiccation tolerance, so-called anhydrobiosis. We previously discovered that heat shock factor 1 (HSF1) contributes to the acquisition of desiccation tolerance by Pv11 cells, but the mechanistic details have yet to be elucidated. Here, by analyzing the gene expression profiles of newly established HSF1-knockout and -rescue cell lines, we show that HSF1 has a genome-wide effect on gene regulation in Pv11. The HSF1-knockout cells exhibit a reduced desiccation survival rate, but this is completely restored in HSF1-rescue cells. By comparing mRNA profiles of the two cell lines, we reveal that HSF1 induces anhydrobiosis-related genes, especially genes encoding late embryogenesis abundant proteins and thioredoxins, but represses a group of genes involved in basal cellular processes, thus promoting an extreme hypometabolism state in the cell. In addition, HSF1 binding motifs are enriched in the promoters of anhydrobiosis-related genes and we demonstrate binding of HSF1 to these promoters by ChIP-qPCR. Thus, HSF1 directly regulates the transcription of anhydrobiosis-related genes and consequently plays a pivotal role in the induction of anhydrobiotic ability in Pv11 cells.


Asunto(s)
Adaptación Fisiológica/genética , Chironomidae/genética , Desecación , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo/métodos , Factores de Transcripción del Choque Térmico/genética , Proteínas de Insectos/genética , Animales , Línea Celular , Chironomidae/citología , Análisis por Conglomerados , Perfilación de la Expresión Génica/métodos
17.
Nat Genet ; 53(5): 694-706, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33833454

RESUMEN

Characterization of the progression of cellular states during human embryogenesis can provide insights into the origin of pediatric diseases. We examined the transcriptional states of neural crest- and mesoderm-derived lineages differentiating into adrenal glands, kidneys, endothelium and hematopoietic tissue between post-conception weeks 6 and 14 of human development. Our results reveal transitions connecting the intermediate mesoderm and progenitors of organ primordia, the hematopoietic system and endothelial subtypes. Unexpectedly, by using a combination of single-cell transcriptomics and lineage tracing, we found that intra-adrenal sympathoblasts at that stage are directly derived from nerve-associated Schwann cell precursors, similarly to local chromaffin cells, whereas the majority of extra-adrenal sympathoblasts arise from the migratory neural crest. In humans, this process persists during several weeks of development within the large intra-adrenal ganglia-like structures, which may also serve as reservoirs of originating cells in neuroblastoma.


Asunto(s)
Linaje de la Célula , Embrión de Mamíferos/metabolismo , Neuroblastoma/embriología , Neuroblastoma/genética , Análisis de la Célula Individual , Sistema Simpatoadrenal/embriología , Transcriptoma/genética , Animales , Células Cromafines/metabolismo , Células Cromafines/patología , Análisis por Conglomerados , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Lactante , Ratones , Células-Madre Neurales/metabolismo , Neuroblastoma/patología , Células de Schwann/metabolismo , Células de Schwann/patología , Microambiente Tumoral
18.
Data Brief ; 33: 106527, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33294522

RESUMEN

The ability of larvae of a non-biting midge Polypedilum vanderplanki (Chironomidae) to withstand complete desiccation is a remarkable natural example of adaptation to extreme environment. In anhydrobiosis the larvae lose up to 99.2% of water and stay in a dry form until rainfall in natural environment or up to several decades in laboratory maintaining ability to restore activity soon after rehydration [1]. In the desiccated state, the larvae tolerate a variety of abiotic stresses, including high radiation exposure (7000Gry of 60Co gamma rays) [2]. Such a cross-resistance to desiccation and ionizing radiation is a characteristic of many anhydrobiotic organisms and believed to be based on similar molecular mechanisms. Microorganisms associated with the anhydrobiotic midge can also sustain desiccation and thus be radiation-resistant because desiccation-resistant prokaryotes are shown to be cross-resistant to ionizing radiation [3]. Microorganisms inhabiting larvae of the anhydrobiotic midge can also sustain desiccation and probably can sustain high doses of ionizing radiation. Therefore, it would be of interest to analyze the taxonomic and functional composition of microbiome of the anhydrobiotic midge. Sequencing data for the total DNA of anhydrobiotic organisms, which also contain reads derived from symbiotic microorganisms provide a promising opportunity to identify microorganisms with remarkable adaptation. It is known that at least some protective genes, such as late embryogenesis abundant (LEA) genes appeared in the genome of the midge by probable horizontal gene transfer from bacteria [1]. We performed shotgun sequencing of imago and larvae DNA samples using HiSeq 2000 and Genome Analyzer IIX System platforms. To assess microbiome diversity specific to anhydrobiotic midges, we analyzed Pool-seq data of the natural population of imago and Pool-seq data of final instar larvae. Data has been deposited in NCBI BioProject repository at NCBI under the accession number PRJNA659554 and consists of raw sequence data.

19.
Genes (Basel) ; 11(12)2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33317063

RESUMEN

Nuclear pollution is an urgent environmental issue and is a consequence of rapid industrialization and nuclear accidents in the past. Remediation of nuclear polluted sites using microbial vital activity (bioremediation) is a promising approach to recover contaminated areas in an environmentally friendly and cost-saving way. At the same time, the number of known bacterial and archaeal species able to withstand extremely high doses of ionizing radiation (IR) is steadily growing every year, together with growing knowledge about mechanisms of radioresistance that opens up opportunities for developing new biotechnological solutions. However, these data are often not systemized, and can be difficult to access. Here, we present the Determinants of Radioresistance Database, or DetR DB, gathering a comprehensive catalog of radioresistant microbes and their molecular and genetic determinants of enhanced IR tolerance. The database provides search tools, including taxonomy, common gene name, and BLAST. DetR DB will be a useful tool for the research community by facilitating the extraction of the necessary information to help further analysis of radiation-resistant mechanisms.


Asunto(s)
Archaea/efectos de la radiación , Bacterias/efectos de la radiación , Bases de Datos Factuales , Tolerancia a Radiación/genética , Archaea/genética , Bacterias/genética , Biodegradación Ambiental/efectos de la radiación , Contaminantes Ambientales , Tolerancia a Radiación/fisiología , Radiación Ionizante
20.
Insects ; 11(11)2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33187095

RESUMEN

The Pv11 cell line established from an African chironomid, Polypedilum vanderplanki, is the only cell line tolerant to complete desiccation. In Pv11 cells, a constitutive expression system for Pv11 cells was previously exploited and several reporter genes were successfully expressed. Here we report the identification of an effective minimal promoter for Pv11 cells and its application to the Tet-On inducible expression system. First, using a luciferase reporter assay, we showed that a 202 bp deletion fragment derived from the constitutively active 121-promoter functions in Pv11 cells as an appropriate minimal promoter with the Tet-On inducible expression system. The AcGFP1 (Aequorea coerulescens green fluorescent protein) was also successfully expressed in Pv11 cells using the inducible system. In addition to these reporter genes, the avian myeloblastosis virus reverse transcriptase α subunit (AMV RTα), which is one of the most widely commercially available RNA-dependent DNA polymerases, was successfully expressed through the inducible expression system and its catalytic activity was verified. These results demonstrate the establishment of an inducible expression system in cells that can be preserved in the dry state and highlight a possible application to the production of large and complex proteins.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA