Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
BMC Cancer ; 24(1): 414, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38570770

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) presents with a high mortality rate. Two important features of PDAC contribute to this poor outcome. The first is metastasis which occurs in ~ 80% of PDAC patients. The second is cachexia, which compromises treatment tolerance for patients and reduces their quality of life. Although various mouse models of PDAC exist, recapitulating both metastatic and cachectic features have been challenging. METHODS: Here, we optimize an orthotopic mouse model of PDAC by altering several conditions, including the subcloning of parental murine PDAC cells, implantation site, number of transplanted cells, and age of recipient mice. We perform spatial profiling to compare primary and metastatic immune microenvironments and RNA sequencing to gain insight into the mechanisms of muscle wasting in PDAC-induced cachexia, comparing non-metastatic to metastatic conditions. RESULTS: These modifications extend the time course of the disease and concurrently increase the rate of metastasis to approximately 70%. Furthermore, reliable cachexia endpoints are achieved in both PDAC mice with and without metastases, which is reminiscent of patients. We also find that cachectic muscles from PDAC mice with metastasis exhibit a similar transcriptional profile to muscles derived from mice and patients without metastasis. CONCLUSION: Together, this model is likely to be advantageous in both advancing our understanding of the mechanism of PDAC cachexia, as well as in the evaluation of novel therapeutics.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Ratones , Animales , Caquexia/genética , Calidad de Vida , Neoplasias Pancreáticas/complicaciones , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Fenotipo , Microambiente Tumoral
2.
Front Immunol ; 14: 1207746, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38022578

RESUMEN

The development of cachexia in the setting of cancer or other chronic diseases is a significant detriment for patients. Cachexia is associated with a decreased ability to tolerate therapies, reduction in ambulation, reduced quality of life, and increased mortality. Cachexia appears intricately linked to the activation of the acute phase response and is a drain on metabolic resources. Work has begun to focus on the important inflammatory factors associated with the acute phase response and their role in the immune activation of cachexia. Furthermore, data supporting the liver, lung, skeletal muscle, and tumor as all playing a role in activation of the acute phase are emerging. Although the acute phase is increasingly being recognized as being involved in cachexia, work in understanding underlying mechanisms of cachexia associated with the acute phase response remains an active area of investigation and still lack a holistic understanding and a clear causal link. Studies to date are largely correlative in nature, nonetheless suggesting the possibility for a role for various acute phase reactants. Herein, we examine the current literature regarding the acute phase response proteins, the evidence these proteins play in the promotion and exacerbation of cachexia, and current evidence of a therapeutic potential for patients.


Asunto(s)
Caquexia , Neoplasias , Humanos , Caquexia/etiología , Caquexia/metabolismo , Reacción de Fase Aguda/metabolismo , Calidad de Vida , Inflamación/metabolismo , Neoplasias/complicaciones , Neoplasias/metabolismo , Proteínas de Fase Aguda
3.
Cancer Cell ; 41(3): 581-584, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36868225

RESUMEN

Advanced cancers often present with the cachexia syndrome that impacts peripheral tissues, leading to involuntary weight loss and reduced prognosis. The central tissues undergoing depletion are skeletal muscle and adipose, but recent findings reveal an expanding tumor macroenvironment involving organ crosstalks that underlie the cachectic state.


Asunto(s)
Caquexia , Neoplasias , Humanos , Caquexia/etiología , Caquexia/patología , Neoplasias/complicaciones , Neoplasias/patología , Músculo Esquelético , Pronóstico
4.
Cell Rep ; 42(4): 112314, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37000627

RESUMEN

Elucidating the mechanisms of resistance to immunotherapy and developing strategies to improve its efficacy are challenging goals. Bioinformatics analysis demonstrates that high CDK6 expression in melanoma is associated with poor progression-free survival of patients receiving single-agent immunotherapy. Depletion of CDK6 or cyclin D3 (but not of CDK4, cyclin D1, or D2) in cells of the tumor microenvironment inhibits tumor growth. CDK6 depletion reshapes the tumor immune microenvironment, and the host anti-tumor effect depends on cyclin D3/CDK6-expressing CD8+ and CD4+ T cells. This occurs by CDK6 phosphorylating and increasing the activities of PTP1B and T cell protein tyrosine phosphatase (TCPTP), which, in turn, decreases tyrosine phosphorylation of CD3ζ, reducing the signal transduction for T cell activation. Administration of a PTP1B and TCPTP inhibitor prove more efficacious than using a CDK6 degrader in enhancing T cell-mediated immunotherapy. Targeting protein tyrosine phosphatases (PTPs) might be an effective strategy for cancer patients who resist immunotherapy treatment.


Asunto(s)
Quinasa 6 Dependiente de la Ciclina , Neoplasias , Humanos , Ciclina D3/metabolismo , Quinasa 6 Dependiente de la Ciclina/metabolismo , Transducción de Señal , Fosforilación , Inmunoterapia , Quinasa 4 Dependiente de la Ciclina/metabolismo , Microambiente Tumoral
5.
Mol Cancer Ther ; 22(4): 539-550, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36696581

RESUMEN

Antibodies targeting insulin-like growth factor 1 receptor (IGF-1R) induce objective responses in only 5% to 15% of children with sarcoma. Understanding the mechanisms of resistance may identify combination therapies that optimize efficacy of IGF-1R-targeted antibodies. Sensitivity to the IGF-1R-targeting antibody TZ-1 was determined in rhabdomyosarcoma and Ewing sarcoma cell lines. Acquired resistance to TZ-1 was developed and characterized in sensitive Rh41 cells. The BRD4 inhibitor, JQ1, was evaluated as an agent to prevent acquired TZ-1 resistance in Rh41 cells. The phosphorylation status of receptor tyrosine kinases (RTK) was assessed. Sensitivity to TZ-1 in vivo was determined in Rh41 parental and TZ-1-resistant xenografts. Of 20 sarcoma cell lines, only Rh41 was sensitive to TZ-1. Cells intrinsically resistant to TZ-1 expressed multiple (>10) activated RTKs or a relatively less complex set of activated RTKs (∼5). TZ-1 decreased the phosphorylation of IGF-1R but had little effect on other phosphorylated RTKs in all resistant lines. TZ-1 rapidly induced activation of RTKs in Rh41 that was partially abrogated by knockdown of SOX18 and JQ1. Rh41/TZ-1 cells selected for acquired resistance to TZ-1 constitutively expressed multiple activated RTKs. TZ-1 treatment caused complete regressions in Rh41 xenografts and was significantly less effective against the Rh41/TZ-1 xenograft. Intrinsic resistance is a consequence of redundant signaling in pediatric sarcoma cell lines. Acquired resistance in Rh41 cells is associated with rapid induction of multiple RTKs, indicating a dynamic response to IGF-1R blockade and rapid development of resistance. The TZ-1 antibody had greater antitumor activity against Rh41 xenografts compared with other IGF-1R-targeted antibodies tested against this model.


Asunto(s)
Proteínas Nucleares , Sarcoma , Niño , Humanos , Factores de Transcripción , Receptor IGF Tipo 1 , Sarcoma/tratamiento farmacológico , Receptores de Somatomedina , Anticuerpos Monoclonales/farmacología , Línea Celular Tumoral , Proteínas de Ciclo Celular , Factores de Transcripción SOXF
6.
Life Sci Alliance ; 5(11)2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35803738

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is associated with an incredibly dense stroma, which contributes to its recalcitrance to therapy. Cancer-associated fibroblasts (CAFs) are one of the most abundant cell types within the PDAC stroma and have context-dependent regulation of tumor progression in the tumor microenvironment (TME). Therefore, understanding tumor-promoting pathways in CAFs is essential for developing better stromal targeting therapies. Here, we show that disruption of the STAT3 signaling axis via genetic ablation of Stat3 in stromal fibroblasts in a Kras G12D PDAC mouse model not only slows tumor progression and increases survival, but re-shapes the characteristic immune-suppressive TME by decreasing M2 macrophages (F480+CD206+) and increasing CD8+ T cells. Mechanistically, we show that loss of the tumor suppressor PTEN in pancreatic CAFs leads to an increase in STAT3 phosphorylation. In addition, increased STAT3 phosphorylation in pancreatic CAFs promotes secretion of CXCL1. Inhibition of CXCL1 signaling inhibits M2 polarization in vitro. The results provide a potential mechanism by which CAFs promote an immune-suppressive TME and promote tumor progression in a spontaneous model of PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Linfocitos T CD8-positivos/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Fibroblastos/metabolismo , Ratones , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral , Neoplasias Pancreáticas
7.
Trends Cancer ; 8(5): 397-403, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35190301

RESUMEN

The cachexia syndrome in cancer is characterized by weight loss resulting from the combination of anorexia and atrophy of adipose and skeletal muscle. For decades, inflammatory circulatory factors have been identified to regulate wasting, but inhibitors of these factors have not yielded the same clinical benefit as in animal models. Therefore, additional mediators of cachexia likely regulate this syndrome, and such factors might be more suitable for targeted intervention. We highlight several anorexia-cachexia signaling mediators, including activin A, myostatin, GDF15, and lipocalin-2. We discuss current evidence that these factors associate with cachexia in cancer patients, and summarize translational efforts including essential early-phase clinical trials. We conclude with thoughts on targeted and personalized approaches for future anti-cachexia treatments.


Asunto(s)
Caquexia , Neoplasias , Tejido Adiposo , Animales , Anorexia/etiología , Anorexia/terapia , Caquexia/etiología , Humanos , Neoplasias/terapia , Transducción de Señal
8.
JCSM Rapid Commun ; 5(2): 254-265, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36591536

RESUMEN

Background: Cancer patients who exhibit cachexia lose weight and have low treatment tolerance and poor outcomes compared to cancer patients without weight loss. Despite the clear increased risk for patients, diagnosing cachexia still often relies on self-reported weight loss. A reliable biomarker to identify patients with cancer cachexia would be a valuable tool to improve clinical decision making and identification of patients at risk of adverse outcomes. Methods: Targeted metabolomics, that included panels of amino acids, tricarboxylic acids, fatty acids, acylcarnitines, and sphingolipids, were conducted on plasma samples from patients with confirmed pancreatic ductal adenocarcinoma (PDAC) with and without cachexia and control patients without cancer (n=10/group, equally divided by sex). Additional patient samples were analyzed (total n=95) and Receiver Operating Characteristic (ROC) analyses were performed to establish if any metabolite could effectively serve as a biomarker of cachexia. Results: Targeted profiling revealed that cachectic patients had decreased circulating levels of three sphingolipids compared to either non-cachectic PDAC patients or patients without cancer. The ratio of C18-ceramide to C24-ceramide (C18:C24) outperformed a number of other previously proposed biomarkers of cachexia (area under ROC = 0.810). It was notable that some biomarkers, including C18:C24, were only altered in cachectic males. Conclusions: Our findings identify C18:C24 as a potentially new biomarker of PDAC-induced cachexia that also highlight a previously unappreciated sexual dimorphism in cancer cachexia.

11.
Cell Rep ; 28(6): 1612-1622.e4, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31390573

RESUMEN

Cachexia is a wasting syndrome characterized by pronounced skeletal muscle loss. In cancer, cachexia is associated with increased morbidity and mortality and decreased treatment tolerance. Although advances have been made in understanding the mechanisms of cachexia, translating these advances to the clinic has been challenging. One reason for this shortcoming may be the current animal models, which fail to fully recapitulate the etiology of human cancer-induced tissue wasting. Because pancreatic ductal adenocarcinoma (PDA) presents with a high incidence of cachexia, we engineered a mouse model of PDA that we named KPP. KPP mice, similar to PDA patients, progressively lose skeletal and adipose mass as a consequence of their tumors. In addition, KPP muscles exhibit a similar gene ontology as cachectic patients. We envision that the KPP model will be a useful resource for advancing our mechanistic understanding and ability to treat cancer cachexia.


Asunto(s)
Caquexia/etiología , Modelos Animales de Enfermedad , Neoplasias Pancreáticas/complicaciones , Animales , Caquexia/genética , Caquexia/metabolismo , Progresión de la Enfermedad , Femenino , Ontología de Genes , Xenoinjertos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Trasplante de Neoplasias , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , RNA-Seq , Transcriptoma , Neoplasias Pancreáticas
12.
Life Sci Alliance ; 1(5): e201800190, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30456390

RESUMEN

The contribution of the tumor microenvironment to pancreatic ductal adenocarcinoma (PDAC) development is currently unclear. We therefore examined the consequences of disrupting paracrine Hedgehog (HH) signaling in PDAC stroma. Herein, we show that ablation of the key HH signaling gene Smoothened (Smo) in stromal fibroblasts led to increased proliferation of pancreatic tumor cells. Furthermore, Smo deletion resulted in proteasomal degradation of the tumor suppressor PTEN and activation of oncogenic protein kinase B (AKT) in fibroblasts. An unbiased proteomic screen identified RNF5 as a novel E3 ubiquitin ligase responsible for degradation of phosphatase and tensin homolog (PTEN) in Smo-null fibroblasts. Ring Finger Protein 5 (Rnf5) knockdown or pharmacological inhibition of glycogen synthase kinase 3ß (GSKß), the kinase that marks PTEN for ubiquitination, rescued PTEN levels and reversed the oncogenic phenotype, identifying a new node of PTEN regulation. In PDAC patients, low stromal PTEN correlated with reduced overall survival. Mechanistically, PTEN loss decreased hydraulic permeability of the extracellular matrix, which was reversed by hyaluronidase treatment. These results define non-cell autonomous tumor-promoting mechanisms activated by disruption of the HH/PTEN axis and identifies new targets for restoring stromal tumor-suppressive functions.

13.
Cancer Res ; 78(23): 6680-6690, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30209066

RESUMEN

: Muscle wasting is a feature of the cachexia syndrome, which contributes significantly to the mortality of patients with cancer. We have previously demonstrated that miR-21 is secreted through extracellular vesicles (EV) by lung and pancreatic cancer cells and promotes JNK-dependent cell death through its binding to the TLR7 receptor in murine myoblasts. Here, we evaluate the ability of IMO-8503, a TLR7, 8, and 9 antagonist, to inhibit cancer-induced cachexia. Using EVs isolated from lung and pancreatic cancer cells and from patient plasma samples, we demonstrate that IMO-8503 inhibits cell death induced by circulating miRNAs with no significant toxicity. Intraperitoneal administration of the antagonist in a murine model for Lewis lung carcinoma (LLC-induced cachexia) strongly impaired several cachexia-related features, such as the expression of Pax7 as well as caspase-3 and PARP cleavage in skeletal muscles, and significantly prevented the loss of lean mass in tumor-bearing mice. IMO-8503 also impaired circulating miRNA-induced cell death in human primary myoblasts. Taken together, our findings strongly indicate that IMO-8503 serves as a potential therapy for the treatment of cancer cachexia. SIGNIFICANCE: Cancer-associated cachexia is a significant problem for patients with cancer that remain poorly understood, understudied, and inadequately treated; these findings report a potential new therapeutic for the treatment of TLR7-mediated cancer cachexia.


Asunto(s)
Antineoplásicos/farmacología , Caquexia/etiología , Caquexia/metabolismo , Neoplasias/complicaciones , Receptor Toll-Like 7/antagonistas & inhibidores , Receptor Toll-Like 8/antagonistas & inhibidores , Receptor Toll-Like 9/antagonistas & inhibidores , Animales , Autofagia/efectos de los fármacos , Caquexia/tratamiento farmacológico , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Vesículas Extracelulares/metabolismo , Xenoinjertos , Humanos , Ratones , MicroARNs/genética , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo
14.
Cancer Cell Int ; 18: 89, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29983640

RESUMEN

BACKGROUND: Sarcomas are malignant heterogeneous tumors of mesenchymal derivation. Dedifferentiated liposarcoma (DDLPS) is aggressive with recurrence in 80% and metastasis in 20% of patients. We previously found that miR-133a was significantly underexpressed in liposarcoma tissues. As this miRNA has recently been shown to be a tumor suppressor in many cancers, the objective of this study was to characterize the biological and molecular consequences of miR-133a underexpression in DDLPS. METHODS: Real-time PCR was used to evaluate expression levels of miR-133a in human DDLPS tissue, normal fat tissue, and human DDLPS cell lines. DDLPS cells were stably transduced with miR-133a vector to assess the effects in vitro on proliferation, cell cycle, cell death, migration, and metabolism. A Seahorse Bioanalyzer system was also used to assess metabolism in vivo by measuring glycolysis and oxidative phosphorylation (OXPHOS) in subcutaneous xenograft tumors from immunocompromised mice. RESULTS: miR-133a expression was significantly decreased in human DDLPS tissue and cell lines. Enforced expression of miR-133a decreased cell proliferation, impacted cell cycle progression kinetics, decreased glycolysis, and increased OXPHOS. There was no significant effect on cell death or migration. Using an in vivo xenograft mouse study, we showed that tumors with increased miR-133a expression had no difference in tumor growth compared to control, but did exhibit an increase in OXPHOS metabolic respiration. CONCLUSIONS: Based on our collective findings, we propose that in DDPLS, loss of miR-133a induces a metabolic shift due to a reduction in oxidative metabolism favoring a Warburg effect in DDLPS tumors, but this regulation on metabolism was not sufficient to affect DDPLS.

15.
Eur J Transl Myol ; 28(2): 7590, 2018 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-29991992

RESUMEN

A compounding feature of greater than 50% of all cancers is the high incidence of the cachexia syndrome, a complex metabolic disorder characterized by extreme weight loss due mainly to the gross depletion of skeletal muscle tissue. Although studies into the cause of cancer cachexia has spanned over multiple decades, little is known about the effects of various cancer treatments themselves on cachexia. For example, chemotherapy agents induce side effects such as nausea and anorexia, but these symptoms do not fully account for the changes seen with cancer cachexia. In this study we examine the effects of chemotherapeutic compounds, specifically, cisplatin in the colon-26 adenocarcinoma model of cancer cachexia. We find that although cisplatin is able to reduce tumor burden as expected, muscle wasting in mice nevertheless persists. Strikingly, cisplatin alone was seen to regulate muscle atrophy, which was independent of the commonly implicated ubiquitin proteasome system. Finally, we show that cisplatin is able to induce NF-κB activity in both mouse muscles and myotube cultures, suggesting that an additional side effect of cancer treatment is the regulation of muscle wasting that may be mediated through activation of the NF-κB signaling pathway.

16.
Proc Natl Acad Sci U S A ; 115(16): E3798-E3807, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29610295

RESUMEN

Sterile alpha motif and HD-domain-containing protein 1 (SAMHD1) blocks replication of retroviruses and certain DNA viruses by reducing the intracellular dNTP pool. SAMHD1 has been suggested to down-regulate IFN and inflammatory responses to viral infections, although the functions and mechanisms of SAMHD1 in modulating innate immunity remain unclear. Here, we show that SAMHD1 suppresses the innate immune responses to viral infections and inflammatory stimuli by inhibiting nuclear factor-κB (NF-κB) activation and type I interferon (IFN-I) induction. Compared with control cells, infection of SAMHD1-silenced human monocytic cells or primary macrophages with Sendai virus (SeV) or HIV-1, or treatment with inflammatory stimuli, induces significantly higher levels of NF-κB activation and IFN-I induction. Exogenous SAMHD1 expression in cells or SAMHD1 reconstitution in knockout cells suppresses NF-κB activation and IFN-I induction by SeV infection or inflammatory stimuli. Mechanistically, SAMHD1 inhibits NF-κB activation by interacting with NF-κB1/2 and reducing phosphorylation of the NF-κB inhibitory protein IκBα. SAMHD1 also interacts with the inhibitor-κB kinase ε (IKKε) and IFN regulatory factor 7 (IRF7), leading to the suppression of the IFN-I induction pathway by reducing IKKε-mediated IRF7 phosphorylation. Interactions of endogenous SAMHD1 with NF-κB and IFN-I pathway proteins were validated in human monocytic cells and primary macrophages. Comparing splenocytes from SAMHD1 knockout and heterozygous mice, we further confirmed SAMHD1-mediated suppression of NF-κB activation, suggesting an evolutionarily conserved property of SAMHD1. Our findings reveal functions of SAMHD1 in down-regulating innate immune responses to viral infections and inflammatory stimuli, highlighting the importance of SAMHD1 in modulating antiviral immunity.


Asunto(s)
Inmunidad Innata , Inflamación/inmunología , Interferón-alfa/biosíntesis , FN-kappa B/metabolismo , Proteína 1 que Contiene Dominios SAM y HD/fisiología , Virosis/inmunología , Animales , Células Cultivadas , Regulación hacia Abajo , Regulación de la Expresión Génica/efectos de los fármacos , Silenciador del Gen , Células HEK293 , VIH/fisiología , Humanos , Quinasa I-kappa B/antagonistas & inhibidores , Factor 7 Regulador del Interferón/antagonistas & inhibidores , Interferón-alfa/genética , Macrófagos/inmunología , Macrófagos/virología , Masculino , Ratones , Inhibidor NF-kappaB alfa/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/inmunología , Virus Sendai/fisiología , Transducción de Señal/inmunología , Células THP-1
17.
Front Oncol ; 8: 104, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29696133

RESUMEN

BACKGROUND: Metabolic reprogramming has emerged as a cancer hallmark, and one of the well-known cancer-associated metabolic alterations is the increase in the rate of glycolysis. Recent reports have shown that both the classical and alternative signaling pathways of nuclear factor κB (NF-κB) play important roles in controlling the metabolic profiles of normal cells and cancer cells. However, how these signaling pathways affect the metabolism of sarcomas, specifically rhabdomyosarcoma (RMS) and osteosarcoma (OS), has not been characterized. METHODS: Classical NF-κB activity was inhibited through overexpression of the IκBα super repressor of NF-κB in RMS and OS cells. Global gene expression analysis was performed using Affymetrix GeneChip Human Transcriptome Array 2.0, and data were interpreted using gene set enrichment analysis. Seahorse Bioscience XFe24 was used to analyze oxygen consumption rate as a measure of aerobic respiration. RESULTS: Inhibition of classical NF-κB activity in sarcoma cell lines restored alternative signaling as well as an increased oxidative respiratory metabolic phenotype in vitro. In addition, microarray analysis indicated that inhibition of NF-κB in sarcoma cells reduced glycolysis. We showed that a glycolytic gene, hexokinase (HK) 2, is a direct NF-κB transcriptional target. Knockdown of HK2 shifted the metabolic profile in sarcoma cells away from aerobic glycolysis, and re-expression of HK2 rescued the metabolic shift induced by inhibition of NF-κB activity in OS cells. CONCLUSION: These findings suggest that classical signaling of NF-κB plays a crucial role in the metabolic profile of pediatric sarcomas potentially through the regulation of HK2.

18.
J Cachexia Sarcopenia Muscle ; 9(2): 358-368, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29316343

RESUMEN

BACKGROUND: Cancer-associated wasting, termed cancer cachexia, has a profound effect on the morbidity and mortality of cancer patients but remains difficult to recognize and diagnose. While increases in circulating levels of a number of inflammatory cytokines have been associated with cancer cachexia, these associations were generally made in patients with advanced disease and thus may be associated with disease progression rather than directly with the cachexia syndrome. Thus, we sought to assess potential biomarkers of cancer-induced cachexia in patients with earlier stages of disease. METHODS: A custom multiplex array was used to measure circulating levels of 25 soluble factors from 70 pancreatic cancer patients undergoing attempted tumour resections. A high-sensitivity multiplex was used for increased sensitivity for nine cytokines. RESULTS: Resectable pancreatic cancer patients with cachexia had low levels of canonical pro-inflammatory cytokines including interleukin-6 (IL-6), interleukin-1ß (IL-1ß), interferon-γ (IFN-γ), and tumour necrosis factor (TNF). Even in our more sensitive analysis, these cytokines were not associated with cancer cachexia. Of the 25 circulating factors tested, only monocyte chemoattractant protein-1 (MCP-1) was increased in treatment-naïve cachectic patients compared with weight stable patients and identified as a potential biomarker for cancer cachexia. Although circulating levels of leptin and granulocyte-macrophage colony-stimulating factor (GM-CSF) were found to be decreased in the same cohort of treatment-naïve cachectic patients, these factors were closely associated with body mass index, limiting their utility as cancer cachexia biomarkers. CONCLUSIONS: Unlike in advanced disease, it is possible that cachexia in patients with resectable pancreatic cancer is not associated with high levels of classical markers of systemic inflammation. However, cachectic, treatment-naïve patients have higher levels of MCP-1, suggesting that MCP-1 may be useful as a biomarker of cancer cachexia.


Asunto(s)
Caquexia/genética , Quimiocina CCL2/efectos adversos , Quimiocina CCL2/genética , Fragmentos de Péptidos/efectos adversos , Fragmentos de Péptidos/genética , Anciano , Caquexia/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neoplasias Pancreáticas , Neoplasias Pancreáticas
19.
Nat Rev Dis Primers ; 4: 17105, 2018 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-29345251

RESUMEN

Cancer-associated cachexia is a disorder characterized by loss of body weight with specific losses of skeletal muscle and adipose tissue. Cachexia is driven by a variable combination of reduced food intake and metabolic changes, including elevated energy expenditure, excess catabolism and inflammation. Cachexia is highly associated with cancers of the pancreas, oesophagus, stomach, lung, liver and bowel; this group of malignancies is responsible for half of all cancer deaths worldwide. Cachexia involves diverse mediators derived from the cancer cells and cells within the tumour microenvironment, including inflammatory and immune cells. In addition, endocrine, metabolic and central nervous system perturbations combine with these mediators to elicit catabolic changes in skeletal and cardiac muscle and adipose tissue. At the tissue level, mechanisms include activation of inflammation, proteolysis, autophagy and lipolysis. Cachexia associates with a multitude of morbidities encompassing functional, metabolic and immune disorders as well as aggravated toxicity and complications of cancer therapy. Patients experience impaired quality of life, reduced physical, emotional and social well-being and increased use of healthcare resources. To date, no effective medical intervention completely reverses cachexia and there are no approved drug therapies. Adequate nutritional support remains a mainstay of cachexia therapy, whereas drugs that target overactivation of catabolic processes, cell injury and inflammation are currently under investigation.


Asunto(s)
Caquexia/diagnóstico , Neoplasias/complicaciones , Índice de Masa Corporal , Caquexia/enzimología , Caquexia/etiología , Humanos , Tamizaje Masivo/métodos , Neoplasias/enzimología , Obesidad/complicaciones , Obesidad/fisiopatología , Calidad de Vida/psicología , Investigación Biomédica Traslacional
20.
Curr Top Dev Biol ; 126: 285-297, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29305002

RESUMEN

Rhabdomyosarcoma is a mesenchymal malignancy associated with the skeletal muscle lineage and is also the most common pediatric soft tissue cancer. Between the two pediatric subtypes, embryonal and alveolar rhabdomyosarcoma, the alveolar subtype is generally more aggressive and high-risk. Despite intensive multimodal therapy, patients with high-risk rhabdomyosarcoma continue to have poor prognosis. In this chapter we address the mechanisms underlying the dysregulation of myogenesis in rhabdomyosarcoma. We specifically focus on recently identified signaling pathways that function to inhibit myogenesis and how similar functions have been shown to overlap in rhabdomyosarcoma, potentially contributing to the disease.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Desarrollo de Músculos/genética , Rabdomiosarcoma/genética , Diferenciación Celular/genética , Humanos , MicroARNs/genética , Modelos Genéticos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Rabdomiosarcoma/patología , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA