Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Intervalo de año de publicación
1.
Circulation ; 148(2): 144-158, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37125593

RESUMEN

BACKGROUND: Inhibition of PCSK9 (proprotein convertase subtilisin/kexin type 9)-low density lipoprotein receptor interaction with injectable monoclonal antibodies or small interfering RNA lowers plasma low density lipoprotein-cholesterol, but despite nearly 2 decades of effort, an oral inhibitor of PCSK9 is not available. Macrocyclic peptides represent a novel approach to target proteins traditionally considered intractable to small-molecule drug design. METHODS: Novel mRNA display screening technology was used to identify lead chemical matter, which was then optimized by applying structure-based drug design enabled by novel synthetic chemistry to identify macrocyclic peptide (MK-0616) with exquisite potency and selectivity for PCSK9. Following completion of nonclinical safety studies, MK-0616 was administered to healthy adult participants in a single rising-dose Phase 1 clinical trial designed to evaluate its safety, pharmacokinetics, and pharmacodynamics. In a multiple-dose trial in participants taking statins, MK-0616 was administered once daily for 14 days to characterize the safety, pharmacokinetics, and pharmacodynamics (change in low density lipoprotein cholesterol). RESULTS: MK-0616 displayed high affinity (Ki = 5pM) for PCSK9 in vitro and sufficient safety and oral bioavailability preclinically to enable advancement into the clinic. In Phase 1 clinical studies in healthy adults, single oral doses of MK-0616 were associated with >93% geometric mean reduction (95% CI, 84-103) of free, unbound plasma PCSK9; in participants on statin therapy, multiple-oral-dose regimens provided a maximum 61% geometric mean reduction (95% CI, 43-85) in low density lipoprotein cholesterol from baseline after 14 days of once-daily dosing of 20 mg MK-0616. CONCLUSIONS: This work validates the use of mRNA display technology for identification of novel oral therapeutic agents, exemplified by the identification of an oral PCSK9 inhibitor, which has the potential to be a highly effective cholesterol lowering therapy for patients in need.


Asunto(s)
Anticolesterolemiantes , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Hipercolesterolemia , Adulto , Humanos , Anticolesterolemiantes/efectos adversos , Colesterol , LDL-Colesterol , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Péptidos/uso terapéutico , Proproteína Convertasa 9/genética , Proproteína Convertasa 9/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo
2.
J Med Chem ; 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35853179

RESUMEN

Recent evidence suggests that deletion of STUB1─a pivotal negative regulator of interferon-γ sensing─may potentially clear malignant cells. However, current studies rely primarily on genetic approaches, as pharmacological inhibitors of STUB1 are lacking. Identifying a tool compound will be a step toward validating the target in a broader therapeutic sense. Herein, screening more than a billion macrocyclic peptides resulted in STUB1 binders, which were further optimized by a structure-enabled in silico design. The strategy to replace the macrocyclic peptides' hydrophilic and solvent-exposed region with a hydrophobic scaffold improved cellular permeability while maintaining the binding conformation. Further substitution of the permeability-limiting terminal aspartic acid with a tetrazole bioisostere retained the binding to a certain extent while improving permeability, suggesting a path forward. Although not optimal for cellular study, the current lead provides a valuable template for further development into selective tool compounds for STUB1 to enable target validation.

3.
Molecules ; 24(12)2019 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-31226791

RESUMEN

Stapled α-helical peptides represent an emerging superclass of macrocyclic molecules with drug-like properties, including high-affinity target binding, protease resistance, and membrane permeability. As a model system for probing the chemical space available for optimizing these properties, we focused on dual Mdm2/MdmX antagonist stapled peptides related to the p53 N-terminus. Specifically, we first generated a library of ATSP-7041 (Chang et al., 2013) analogs iteratively modified by L-Ala and D-amino acids. Single L-Ala substitutions beyond the Mdm2/(X) binding interfacial residues (i.e., Phe3, Trp7, and Cba10) had minimal effects on target binding, α-helical content, and cellular activity. Similar binding affinities and cellular activities were noted at non-interfacial positions when the template residues were substituted with their d-amino acid counterparts, despite the fact that d-amino acid residues typically 'break' right-handed α-helices. d-amino acid substitutions at the interfacial residues Phe3 and Cba10 resulted in the expected decreases in binding affinity and cellular activity. Surprisingly, substitution at the remaining interfacial position with its d-amino acid equivalent (i.e., Trp7 to d-Trp7) was fully tolerated, both in terms of its binding affinity and cellular activity. An X-ray structure of the d-Trp7-modified peptide was determined and revealed that the indole side chain was able to interact optimally with its Mdm2 binding site by a slight global re-orientation of the stapled peptide. To further investigate the comparative effects of d-amino acid substitutions we used linear analogs of ATSP-7041, where we replaced the stapling amino acids by Aib (i.e., R84 to Aib4 and S511 to Aib11) to retain the helix-inducing properties of α-methylation. The resultant analog sequence Ac-Leu-Thr-Phe-Aib-Glu-Tyr-Trp-Gln-Leu-Cba-Aib-Ser-Ala-Ala-NH2 exhibited high-affinity target binding (Mdm2 Kd = 43 nM) and significant α-helicity in circular dichroism studies. Relative to this linear ATSP-7041 analog, several d-amino acid substitutions at Mdm2(X) non-binding residues (e.g., d-Glu5, d-Gln8, and d-Leu9) demonstrated decreased binding and α-helicity. Importantly, circular dichroism (CD) spectroscopy showed that although helicity was indeed disrupted by d-amino acids in linear versions of our template sequence, stapled molecules tolerated these residues well. Further studies on stapled peptides incorporating N-methylated amino acids, l-Pro, or Gly substitutions showed that despite some positional dependence, these helix-breaking residues were also generally tolerated in terms of secondary structure, binding affinity, and cellular activity. Overall, macrocyclization by hydrocarbon stapling appears to overcome the destabilization of α-helicity by helix breaking residues and, in the specific case of d-Trp7-modification, a highly potent ATSP-7041 analog (Mdm2 Kd = 30 nM; cellular EC50 = 600 nM) was identified. Our findings provide incentive for future studies to expand the chemical diversity of macrocyclic α-helical peptides (e.g., d-amino acid modifications) to explore their biophysical properties and cellular permeability. Indeed, using the library of 50 peptides generated in this study, a good correlation between cellular permeability and lipophilicity was observed.


Asunto(s)
Aminoácidos/química , Péptidos de Penetración Celular/química , Fragmentos de Péptidos/química , Conformación Proteica , Secuencia de Aminoácidos/genética , Sustitución de Aminoácidos/genética , Aminoácidos/síntesis química , Péptidos de Penetración Celular/síntesis química , Péptidos de Penetración Celular/genética , Péptidos de Penetración Celular/farmacología , Dicroismo Circular , Dipéptidos/química , Humanos , Oligopéptidos/química , Péptidos Cíclicos/farmacología , Permeabilidad/efectos de los fármacos , Estructura Secundaria de Proteína , Proteínas Proto-Oncogénicas c-mdm2/química , Proteínas Proto-Oncogénicas c-mdm2/genética
4.
Bioorg Med Chem ; 26(10): 2807-2815, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29598901

RESUMEN

Macrocyclic α-helical peptides have emerged as a compelling new therapeutic modality to tackle targets confined to the intracellular compartment. Within the scope of hydrocarbon-stapling there has been significant progress to date, including the first stapled α-helical peptide to enter into clinical trials. The principal design concept of stapled α-helical peptides is to mimic a cognate (protein) ligand relative to binding its target via an α-helical interface. However, it was the proclivity of such stapled α-helical peptides to exhibit cell permeability and proteolytic stability that underscored their promise as unique macrocyclic peptide drugs for intracellular targets. This perspective highlights key learnings as well as challenges in basic research with respect to structure-based design, innovative chemistry, cell permeability and proteolytic stability that are essential to fulfill the promise of stapled α-helical peptide drug development.


Asunto(s)
Descubrimiento de Drogas/métodos , Compuestos Macrocíclicos/química , Compuestos Macrocíclicos/farmacología , Péptidos/química , Péptidos/farmacología , Animales , Humanos , Compuestos Macrocíclicos/farmacocinética , Modelos Moleculares , Péptidos/farmacocinética , Conformación Proteica en Hélice alfa
5.
J Chem Theory Comput ; 13(2): 863-869, 2017 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-28042965

RESUMEN

Traditionally, computing the binding affinities of proteins to even relatively small and rigid ligands by free-energy methods has been challenging due to large computational costs and significant errors. Here, we apply a new molecular simulation acceleration method called MELD (Modeling by Employing Limited Data) to study the binding of stapled α-helical peptides to the MDM2 and MDMX proteins. We employ free-energy-based molecular dynamics simulations (MELD-MD) to identify binding poses and calculate binding affinities. Even though stapled peptides are larger and more complex than most protein ligands, the MELD-MD simulations can identify relevant binding poses and compute relative binding affinities. MELD-MD appears to be a promising method for computing the binding properties of peptide ligands with proteins.


Asunto(s)
Simulación de Dinámica Molecular , Péptidos/química , Péptidos/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Proteínas Proto-Oncogénicas c-mdm2/química , Termodinámica
6.
Bioorg Med Chem Lett ; 26(23): 5695-5702, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27839686

RESUMEN

Following the discovery of small molecule acyl piperazine ROMK inhibitors, the acyl octahydropyrazino[2,1-c][1,4]oxazine series was identified. This series displays improved ROMK/hERG selectivity, and as a consequence, the resulting ROMK inhibitors do not evoke QTc prolongation in an in vivo cardiovascular dog model. Further efforts in this series led to the discovery of analogs with improved pharmacokinetic profiles. This new series also retained comparable ROMK potency compared to earlier leads.


Asunto(s)
Oxazinas/química , Oxazinas/farmacología , Canales de Potasio de Rectificación Interna/antagonistas & inhibidores , Animales , Diuresis/efectos de los fármacos , Perros , Insuficiencia Cardíaca/tratamiento farmacológico , Humanos , Hipertensión/tratamiento farmacológico , Macaca mulatta , Oxazinas/farmacocinética , Canales de Potasio de Rectificación Interna/metabolismo , Ratas Sprague-Dawley , Regulador Transcripcional ERG/antagonistas & inhibidores , Regulador Transcripcional ERG/metabolismo
7.
J Biol Chem ; 285(17): 12882-91, 2010 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-20172854

RESUMEN

PCSK9 binds to the low density lipoprotein receptor (LDLR) and leads to LDLR degradation and inhibition of plasma LDL cholesterol clearance. Consequently, the role of PCSK9 in modulating circulating LDL makes it a promising therapeutic target for treating hypercholesterolemia and coronary heart disease. Although the C-terminal domain of PCSK9 is not involved in LDLR binding, the location of several naturally occurring mutations within this region suggests that it has an important role for PCSK9 function. Using a phage display library, we identified an anti-PCSK9 Fab (fragment antigen binding), 1G08, with subnanomolar affinity for PCSK9. In an assay measuring LDL uptake in HEK293 and HepG2 cells, 1G08 Fab reduced 50% the PCSK9-dependent inhibitory effects on LDL uptake. Importantly, we found that 1G08 did not affect the PCSK9-LDLR interaction but inhibited the internalization of PCSK9 in these cells. Furthermore, proteolysis and site-directed mutagenesis studies demonstrated that 1G08 Fab binds a region of beta-strands encompassing Arg-549, Arg-580, Arg-582, Glu-607, Lys-609, and Glu-612 in the PCSK9 C-terminal domain. Consistent with these results, 1G08 fails to bind PCSK9DeltaC, a truncated form of PCSK9 lacking the C-terminal domain. Additional studies revealed that lack of the C-terminal domain compromised the ability of PCSK9 to internalize into cells, and to inhibit LDL uptake. Together, the present study demonstrate that the PCSK9 C-terminal domain contribute to its inhibition of LDLR function mainly through its role in the cellular uptake of PCSK9 and LDLR complex. 1G08 Fab represents a useful new tool for delineating the mechanism of PCSK9 uptake and LDLR degradation.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Fragmentos Fab de Inmunoglobulinas/farmacología , Lipoproteínas LDL/metabolismo , Receptores de LDL/metabolismo , Serina Endopeptidasas/metabolismo , Sustitución de Aminoácidos , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/metabolismo , Células Hep G2 , Humanos , Hipercolesterolemia/tratamiento farmacológico , Hipercolesterolemia/genética , Hipercolesterolemia/inmunología , Hipercolesterolemia/metabolismo , Fragmentos Fab de Inmunoglobulinas/genética , Fragmentos Fab de Inmunoglobulinas/inmunología , Lipoproteínas LDL/genética , Lipoproteínas LDL/inmunología , Mutagénesis Sitio-Dirigida , Proproteína Convertasa 9 , Proproteína Convertasas , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Receptores de LDL/genética , Receptores de LDL/inmunología , Serina Endopeptidasas/genética , Serina Endopeptidasas/inmunología
8.
J Nat Prod ; 72(3): 345-52, 2009 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-19115838

RESUMEN

Bacterial resistance to existing antibiotics continues to grow, necessitating the discovery of new compounds of this type. Antisense-based whole-cell target-based screening is a new and highly sensitive antibiotic discovery approach that has led to a number of new natural product antibiotics. Screening with a rpsD-sensitized strain led to the discovery of a number of natural product polyketides from Streptomyces lucensis. Complete workup of the fermentation extract of this strain allowed for the isolation of seven new compounds, lucensimycins A-G (1-3, 4a, 5-7), with varying degrees of antibacterial activities. Lucensimycin E (5) exhibited the best activity and showed MIC values of 32 microg/mL against Staphylococcus aureus and 8 microg/mL against Streptococcus pneumoniae. The isolation, structure elucidation, and antibacterial activities of four new members, lucensimycins D-G, are described. Lucensimycins D (4a) and E (5) are N-acetyl-l-cysteine adducts of lucensimycin A (1). Semisynthesis of lucensimycins D and E from lucensimycin A has also been described. Lucensimycins F and G are myo-inositolyl-alpha-2-amino-2-deoxy-l-idosyl amide derivatives of lucensimycins D and E, respectively. The relative configuration of these compounds was determined, in part, by molecular dynamics simulations.


Asunto(s)
Antibacterianos , ADN Bacteriano/genética , Compuestos de Espiro , Streptomyces/química , Streptomyces/genética , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Antibacterianos/farmacología , ADN sin Sentido/genética , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Compuestos de Espiro/química , Compuestos de Espiro/aislamiento & purificación , Compuestos de Espiro/farmacología , Staphylococcus aureus/efectos de los fármacos , Streptococcus pneumoniae/efectos de los fármacos , Indias Occidentales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA