Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34001596

RESUMEN

Most human cancer cells harbor loss-of-function mutations in the p53 tumor suppressor gene. Genetic experiments have shown that phosphatidylinositol 5-phosphate 4-kinase α and ß (PI5P4Kα and PI5P4Kß) are essential for the development of late-onset tumors in mice with germline p53 deletion, but the mechanism underlying this acquired dependence remains unclear. PI5P4K has been previously implicated in metabolic regulation. Here, we show that inhibition of PI5P4Kα/ß kinase activity by a potent and selective small-molecule probe disrupts cell energy homeostasis, causing AMPK activation and mTORC1 inhibition in a variety of cell types. Feedback through the S6K/insulin receptor substrate (IRS) loop contributes to insulin hypersensitivity and enhanced PI3K signaling in terminally differentiated myotubes. Most significantly, the energy stress induced by PI5P4Kαß inhibition is selectively toxic toward p53-null tumor cells. The chemical probe, and the structural basis for its exquisite specificity, provide a promising platform for further development, which may lead to a novel class of diabetes and cancer drugs.


Asunto(s)
Neoplasias/tratamiento farmacológico , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Bibliotecas de Moléculas Pequeñas/farmacología , Proteína p53 Supresora de Tumor/genética , Quinasas de la Proteína-Quinasa Activada por el AMP/genética , Animales , Metabolismo Energético/efectos de los fármacos , Humanos , Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones , Fibras Musculares Esqueléticas/efectos de los fármacos , Neoplasias/genética , Fosforilación/efectos de los fármacos , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Fosfotransferasas (Aceptor de Grupo Alcohol)/ultraestructura , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química
2.
Proc Natl Acad Sci U S A ; 117(34): 20794-20802, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32817466

RESUMEN

Cis-prenyltransferase (cis-PTase) catalyzes the rate-limiting step in the synthesis of glycosyl carrier lipids required for protein glycosylation in the lumen of endoplasmic reticulum. Here, we report the crystal structure of the human NgBR/DHDDS complex, which represents an atomic resolution structure for any heterodimeric cis-PTase. The crystal structure sheds light on how NgBR stabilizes DHDDS through dimerization, participates in the enzyme's active site through its C-terminal -RXG- motif, and how phospholipids markedly stimulate cis-PTase activity. Comparison of NgBR/DHDDS with homodimeric cis-PTase structures leads to a model where the elongating isoprene chain extends beyond the enzyme's active site tunnel, and an insert within the α3 helix helps to stabilize this energetically unfavorable state to enable long-chain synthesis to occur. These data provide unique insights into how heterodimeric cis-PTases have evolved from their ancestral, homodimeric forms to fulfill their function in long-chain polyprenol synthesis.


Asunto(s)
Transferasas Alquil y Aril/química , Transferasas Alquil y Aril/metabolismo , Receptores de Superficie Celular/química , Receptores de Superficie Celular/metabolismo , Transferasas/química , Transferasas/metabolismo , Transferasas Alquil y Aril/genética , Secuencia de Aminoácidos , Dominio Catalítico , Cromatografía Líquida de Alta Presión/métodos , Cristalografía por Rayos X , Glicosilación , Humanos , Mutación , Dominios Proteicos , Estructura Secundaria de Proteína , Receptores de Superficie Celular/genética , Relación Estructura-Actividad , Transferasas/genética
3.
Sci Rep ; 7(1): 10037, 2017 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-28855547

RESUMEN

Tylophorine analogs have been shown to exhibit diverse activities against cancer, inflammation, arthritis, and lupus in vivo. In this study, we demonstrated that two tylophorine analogs, DCB-3503 and rac-cryptopleurine, exhibit potent inhibitory activity against hepatitis C virus (HCV) replication in genotype 1b Con 1 isolate. The inhibition of HCV replication is at least partially mediated through cellular heat shock cognate protein 70 (Hsc70). Hsc70 associates with the HCV replication complex by primarily binding to the poly U/UC motifs in HCV RNA. The interaction of DCB-3503 and rac-cryptopleurine with Hsc70 promotes the ATP hydrolysis activity of Hsc70 in the presence of the 3' poly U/UC motif of HCV RNA. Regulating the ATPase activity of Hsc70 may be one of the mechanisms by which tylophorine analogs inhibit HCV replication. This study demonstrates the novel anti-HCV activity of tylophorine analogs. Our results also highlight the importance of Hsc70 in HCV replication.


Asunto(s)
Alcaloides/farmacología , Sitio Alostérico , Proteínas del Choque Térmico HSC70/metabolismo , Hepacivirus/fisiología , Indolizinas/farmacología , Fenantrenos/farmacología , Replicación Viral/efectos de los fármacos , Alcaloides/química , Regulación Alostérica , Proteínas del Choque Térmico HSC70/química , Humanos , Indolizinas/química , Motivos de Nucleótidos , Fenantrenos/química , Unión Proteica , ARN Viral/química , ARN Viral/metabolismo
4.
Proc Natl Acad Sci U S A ; 113(31): 8711-6, 2016 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-27439870

RESUMEN

The phosphatidylinositol phosphate kinase (PIPK) family of enzymes is primarily responsible for converting singly phosphorylated phosphatidylinositol derivatives to phosphatidylinositol bisphosphates. As such, these kinases are central to many signaling and membrane trafficking processes in the eukaryotic cell. The three types of phosphatidylinositol phosphate kinases are homologous in sequence but differ in catalytic activities and biological functions. Type I and type II kinases generate phosphatidylinositol 4,5-bisphosphate from phosphatidylinositol 4-phosphate and phosphatidylinositol 5-phosphate, respectively, whereas the type III kinase produces phosphatidylinositol 3,5-bisphosphate from phosphatidylinositol 3-phosphate. Based on crystallographic analysis of the zebrafish type I kinase PIP5Kα, we identified a structural motif unique to the kinase family that serves to recognize the monophosphate on the substrate. Our data indicate that the complex pattern of substrate recognition and phosphorylation results from the interplay between the monophosphate binding site and the specificity loop: the specificity loop functions to recognize different orientations of the inositol ring, whereas residues flanking the phosphate binding Arg244 determine whether phosphatidylinositol 3-phosphate is exclusively bound and phosphorylated at the 5-position. This work provides a thorough picture of how PIPKs achieve their exquisite substrate specificity.


Asunto(s)
Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Sitios de Unión/genética , Cristalografía por Rayos X , Modelos Moleculares , Fosfatos de Fosfatidilinositol/química , Fosfatidilinositoles/química , Fosfatidilinositoles/metabolismo , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Unión Proteica , Dominios Proteicos , Especificidad por Sustrato , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/genética
5.
Nat Commun ; 6: 8205, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26365782

RESUMEN

Type I phosphatidylinositol phosphate kinase (PIP5K1) phosphorylates the head group of phosphatidylinositol 4-phosphate (PtdIns4P) to generate PtdIns4,5P2, which plays important roles in a wide range of cellular functions including Wnt signalling. However, the lack of its structural information has hindered the understanding of its regulation. Here we report the crystal structure of the catalytic domain of zebrafish PIP5K1A at 3.3 Å resolution. This molecule forms a side-to-side dimer. Mutagenesis study of PIP5K1A reveals two adjacent interfaces for the dimerization and interaction with the DIX domain of the Wnt signalling molecule dishevelled. Although these interfaces are located distally to the catalytic/substrate-binding site, binding to these interfaces either through dimerization or the interaction with DIX stimulates PIP5K1 catalytic activity. DIX binding additionally enhances PIP5K1 substrate binding. Thus, this study elucidates regulatory mechanisms for this lipid kinase and provides a paradigm for the understanding of PIP5K1 regulation by their interacting molecules.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Dimerización , Fosfoproteínas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Animales , Sitios de Unión , Calorimetría , Dominio Catalítico , Dicroismo Circular , Cristalización , Cristalografía por Rayos X , Proteínas Dishevelled , Células HEK293 , Humanos , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Estructura Terciaria de Proteína , Pez Cebra
6.
Biochemistry ; 51(18): 3723-31, 2012 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-22515733

RESUMEN

Rhomboid protease conducts proteolysis inside the hydrophobic environment of the membrane. The conformational flexibility of the protease is essential for the enzyme mechanism, but the nature of this flexibility is not completely understood. Here we describe the crystal structure of rhomboid protease GlpG in complex with a phosphonofluoridate inhibitor, which is covalently bonded to the catalytic serine and extends into the S' side of the substrate binding cleft. Inhibitor binding causes subtle but extensive changes in the membrane protease. Many transmembrane helices tilt and shift positions, and the gap between S2 and S5 is slightly widened so that the inhibitor can bind between them. The side chain of Phe-245 from a loop (L5) that acts as a cap rotates and uncovers the opening of the substrate binding cleft to the lipid bilayer. A concurrent turn of the polypeptide backbone at Phe-245 moves the rest of the cap and exposes the catalytic serine to the aqueous solution. This study, together with earlier crystallographic investigation of smaller inhibitors, suggests a simple model for explaining substrate binding to rhomboid protease.


Asunto(s)
Alanina/análogos & derivados , Proteínas de Unión al ADN/química , Endopeptidasas/química , Proteínas de Escherichia coli/química , Proteínas de la Membrana/química , Compuestos Organofosforados/metabolismo , Inhibidores de Proteasas/metabolismo , Conformación Proteica/efectos de los fármacos , Alanina/metabolismo , Alanina/farmacología , Sitios de Unión , Catálisis , Cristalización , Cristalografía por Rayos X , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de la Membrana/antagonistas & inhibidores , Modelos Moleculares , Compuestos Organofosforados/farmacología , Estructura Terciaria de Proteína , Serina/metabolismo
7.
Semin Cell Dev Biol ; 20(2): 240-50, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19059492

RESUMEN

Many functionally important membrane proteins are cleaved within their transmembrane helices to become activated. This unusual reaction is catalyzed by a group of highly specialized and membrane-bound proteases. Here I briefly summarize current knowledge about their structure and mechanism, with a focus on the rhomboid family. It has now become clear that rhomboid protease can cleave substrates not only within transmembrane domains, but also in the solvent-exposed juxtamembrane region. This dual specificity seems possible because the protease active site is positioned in a shallow pocket that can directly open to aqueous solution through the movement of a flexible capping loop. The narrow membrane-spanning region of the protease suggests a possible mechanism for accessing scissile bonds that are located near the end of substrate transmembrane helices. Similar principles may apply to the metalloprotease family, where a crystal structure has also become available. Although how the GxGD proteases work is still less clear, recent results indicate that presenilin also appears to clip substrate from the end of transmembrane helices.


Asunto(s)
Receptores ErbB/clasificación , Proteínas de la Membrana/química , Proteínas de la Membrana/fisiología , Serina Endopeptidasas/química , Serina Endopeptidasas/fisiología , Animales , Humanos , Metaloproteasas/química , Metaloproteasas/fisiología , Modelos Biológicos , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA