Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mol Cell ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39153475

RESUMEN

Nuclear localization of the metabolic enzyme PKM2 is widely observed in various cancer types. We identify nuclear PKM2 as a non-canonical RNA-binding protein (RBP) that specifically interacts with folded RNA G-quadruplex (rG4) structures in precursor mRNAs (pre-mRNAs). PKM2 occupancy at rG4s prevents the binding of repressive RBPs, such as HNRNPF, and promotes the expression of rG4-containing pre-mRNAs (the "rG4ome"). We observe an upregulation of the rG4ome during epithelial-to-mesenchymal transition and a negative correlation of rG4 abundance with patient survival in different cancer types. By preventing the nuclear accumulation of PKM2, we could repress the rG4ome in triple-negative breast cancer cells and reduce migration and invasion of cancer cells in vitro and in xenograft mouse models. Our data suggest that the balance of folded and unfolded rG4s controlled by RBPs impacts gene expression during tumor progression.

2.
Proc Natl Acad Sci U S A ; 116(23): 11111-11112, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31110013

RESUMEN

Germline genes that are aberrantly expressed in nongermline cancer cells have the potential to be ideal targets for diagnosis and therapy due to their restricted physiological expression, their broad reactivation in various cancer types, and their immunogenic properties. Among such cancer/testis genes, components of the PIWI-interacting small RNA (piRNA) pathway are of particular interest, as they control mobile genetic elements (transposons) in germ cells and thus hold great potential to counteract genome instability in cancer. Here, we systematically investigate the potential reactivation of functional piRNA-silencing mechanisms in the aberrant context. While we observe expression of individual piRNA-pathway genes in cancer, we fail to detect the formation of functional piRNA-silencing complexes. Accordingly, the expression of a PIWI protein alone remains inconsequential to the cancer cell transcriptome. Our data provide a framework for the investigation of complex aberrant gene-expression signatures and establish that reactivation of piRNA silencing, if at all, is not a prevalent phenomenon in cancer cells.


Asunto(s)
Silenciador del Gen/fisiología , Neoplasias/genética , ARN Interferente Pequeño/genética , Línea Celular Tumoral , Elementos Transponibles de ADN/genética , Expresión Génica/genética , Inestabilidad Genómica/genética , Células Germinativas/patología , Humanos , Masculino , Testículo/fisiología , Transcriptoma/genética
3.
Mol Cell ; 55(5): 782-90, 2014 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-25175024

RESUMEN

Oncogenic RAS (H-RAS(V12)) induces premature senescence in primary cells by triggering production of reactive oxygen species (ROS), but the molecular role of ROS in senescence remains elusive. We investigated whether inhibition of protein tyrosine phosphatases by ROS contributed to H-RAS(V12)-induced senescence. We identified protein tyrosine phosphatase 1B (PTP1B) as a major target of H-RAS(V12)-induced ROS. Inactivation of PTP1B was necessary and sufficient to induce premature senescence in H-RAS(V12)-expressing IMR90 fibroblasts. We identified phospho-Tyr 393 of argonaute 2 (AGO2) as a direct substrate of PTP1B. Phosphorylation of AGO2 at Tyr 393 inhibited loading with microRNAs (miRNAs) and thus miRNA-mediated gene silencing, which counteracted the function of H-RAS(V12)-induced oncogenic miRNAs. Overall, our data illustrate that premature senescence in H-RAS(V12)-transformed primary cells is a consequence of oxidative inactivation of PTP1B and inhibition of miRNA-mediated gene silencing.


Asunto(s)
Proteínas Argonautas/metabolismo , Silenciador del Gen , Proteína Tirosina Fosfatasa no Receptora Tipo 1/fisiología , Tirosina/metabolismo , Proteínas ras/fisiología , Proteínas Argonautas/química , Línea Celular , Senescencia Celular/genética , Humanos , MicroARNs/metabolismo , Fosforilación , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Tirosina/química , Proteínas ras/genética , Proteínas ras/metabolismo
4.
Nature ; 459(7249): 1010-4, 2009 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-19458619

RESUMEN

Consistent with the role of microRNAs (miRNAs) in down-regulating gene expression by reducing the translation and/or stability of target messenger RNAs, the levels of specific miRNAs are important for correct embryonic development and have been linked to several forms of cancer. However, the regulatory mechanisms by which primary miRNAs (pri-miRNAs) are processed first to precursor miRNAs (pre-miRNAs) and then to mature miRNAs by the multiprotein Drosha and Dicer complexes, respectively, remain largely unknown. The KH-type splicing regulatory protein (KSRP, also known as KHSRP) interacts with single-strand AU-rich-element-containing mRNAs and is a key mediator of mRNA decay. Here we show in mammalian cells that KSRP also serves as a component of both Drosha and Dicer complexes and regulates the biogenesis of a subset of miRNAs. KSRP binds with high affinity to the terminal loop of the target miRNA precursors and promotes their maturation. This mechanism is required for specific changes in target mRNA expression that affect specific biological programs, including proliferation, apoptosis and differentiation. These findings reveal an unexpected mechanism that links KSRP to the machinery regulating maturation of a cohort of miRNAs that, in addition to its role in promoting mRNA decay, independently serves to integrate specific regulatory programs of protein expression.


Asunto(s)
MicroARNs/biosíntesis , Proteínas de Unión al ARN/metabolismo , Transactivadores/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Proliferación Celular , Humanos , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Procesamiento Postranscripcional del ARN , Ribonucleasa III/química , Ribonucleasa III/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA