Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nat Cell Biol ; 25(5): 643-657, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37106060

RESUMEN

During embryonic development, naive pluripotent epiblast cells transit to a formative state. The formative epiblast cells form a polarized epithelium, exhibit distinct transcriptional and epigenetic profiles and acquire competence to differentiate into all somatic and germline lineages. However, we have limited understanding of how the transition to a formative state is molecularly controlled. Here we used murine embryonic stem cell models to show that ESRRB is both required and sufficient to activate formative genes. Genetic inactivation of Esrrb leads to illegitimate expression of mesendoderm and extra-embryonic markers, impaired formative expression and failure to self-organize in 3D. Functionally, this results in impaired ability to generate formative stem cells and primordial germ cells in the absence of Esrrb. Computational modelling and genomic analyses revealed that ESRRB occupies key formative genes in naive cells and throughout the formative state. In so doing, ESRRB kickstarts the formative transition, leading to timely and unbiased capacity for multi-lineage differentiation.


Asunto(s)
Células Madre Embrionarias , Células Madre Pluripotentes , Ratones , Animales , Diferenciación Celular/genética , Células Madre Pluripotentes/metabolismo , Estratos Germinativos/metabolismo , Células Germinativas/metabolismo , Receptores de Estrógenos/metabolismo
2.
Sci Rep ; 9(1): 19214, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31844114

RESUMEN

Gene delivery using vector or viral-based methods is often limited by technical and safety barriers. A promising alternative that circumvents these shortcomings is the direct delivery of proteins into cells. Here we introduce a non-viral, ligand-mediated protein delivery system capable of selectively targeting primary skin cells in-vivo. Using orthologous self-labelling tags and chemical cross-linkers, we conjugate large proteins to ligands that bind their natural receptors on the surface of keratinocytes. Targeted CRE-mediated recombination was achieved by delivery of ligand cross-linked CRE protein to the skin of transgenic reporter mice, but was absent in mice lacking the ligand's cell surface receptor. We further show that ligands mediate the intracellular delivery of Cas9 allowing for CRISPR-mediated gene editing in the skin more efficiently than adeno-associated viral gene delivery. Thus, a ligand-based system enables the effective and receptor-specific delivery of large proteins and may be applied to the treatment of skin-related genetic diseases.


Asunto(s)
Proteínas/genética , Proteínas/metabolismo , Animales , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Dependovirus/genética , Edición Génica/métodos , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Queratinocitos/metabolismo , Ligandos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Piel/metabolismo
3.
Stem Cell Reports ; 8(6): 1645-1658, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28591649

RESUMEN

Embryonic stem cells (ESCs) are characterized by the pluripotent capacity to generate all embryonic lineages. Here, we show that ESCs can occupy a spectrum of distinct transcriptional and epigenetic states in response to varied extrinsic conditions. This spectrum broadly corresponds to a developmental continuum of pluripotency and is coupled with a gradient of increasing global DNA methylation. Each pluripotent state is linked with activation of distinct classes of transposable elements (TEs), which in turn influence ESCs through generating chimeric transcripts. Moreover, varied ESC culture parameters differentially license heterogeneous activation of master lineage regulators, including Sox1, Gata4, or Blimp1, and influence differentiation. Activation of Blimp1 is prevalent in 2i (without LIF) conditions, and marks a dynamic primordial germ cell (PGC)-like sub-state that is directly repressed by Klf4 downstream of LIF/STAT3 signaling. Thus, extrinsic cues establish a spectrum of pluripotent states, in part by modulating sub-populations, as well as directing the transcriptome, epigenome, and TE.


Asunto(s)
Elementos Transponibles de ADN/genética , Células Madre Pluripotentes/metabolismo , Animales , Sistemas CRISPR-Cas/genética , Diferenciación Celular , Línea Celular , Linaje de la Célula , Metilación de ADN , Factor de Transcripción GATA4/metabolismo , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Factor Inhibidor de Leucemia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Pluripotentes/citología , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo , Análisis de Componente Principal , Factores de Transcripción SOXB1/metabolismo , Factor de Transcripción STAT3/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Stem Cell Reports ; 1(6): 518-31, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24371807

RESUMEN

Pluripotent stem cells (PSCs) occupy a spectrum of reversible molecular states ranging from a naive ground-state in 2i, to metastable embryonic stem cells (ESCs) in serum, to lineage-primed epiblast stem cells (EpiSCs). To investigate the role of DNA methylation (5mC) across distinct pluripotent states, we mapped genome-wide 5mC and 5-hydroxymethycytosine (5hmC) in multiple PSCs. Ground-state ESCs exhibit an altered distribution of 5mC and 5hmC at regulatory elements and dramatically lower absolute levels relative to ESCs in serum. By contrast, EpiSCs exhibit increased promoter 5mC coupled with reduced 5hmC, which contributes to their developmental restriction. Switch to 2i triggers rapid onset of both the ground-state gene expression program and global DNA demethylation. Mechanistically, repression of de novo methylases by PRDM14 drives DNA demethylation at slow kinetics, whereas TET1/TET2-mediated 5hmC conversion enhances both the rate and extent of hypomethylation. These processes thus act synergistically during transition to ground-state pluripotency to promote a robust hypomethylated state.


Asunto(s)
Diferenciación Celular/genética , Metilación de ADN , Células Madre Pluripotentes/citología , Animales , Técnicas de Cultivo de Célula , Proteínas de Unión al ADN/genética , Dioxigenasas , Células Madre Embrionarias , Femenino , Técnicas de Inactivación de Genes , Impresión Genómica , Masculino , Ratones , Proteínas Proto-Oncogénicas/genética
5.
Science ; 339(6118): 448-52, 2013 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-23223451

RESUMEN

Mouse primordial germ cells (PGCs) undergo sequential epigenetic changes and genome-wide DNA demethylation to reset the epigenome for totipotency. Here, we demonstrate that erasure of CpG methylation (5mC) in PGCs occurs via conversion to 5-hydroxymethylcytosine (5hmC), driven by high levels of TET1 and TET2. Global conversion to 5hmC initiates asynchronously among PGCs at embryonic day (E) 9.5 to E10.5 and accounts for the unique process of imprint erasure. Mechanistically, 5hmC enrichment is followed by its protracted decline thereafter at a rate consistent with replication-coupled dilution. The conversion to 5hmC is an important component of parallel redundant systems that drive comprehensive reprogramming in PGCs. Nonetheless, we identify rare regulatory elements that escape systematic DNA demethylation in PGCs, providing a potential mechanistic basis for transgenerational epigenetic inheritance.


Asunto(s)
Citosina/análogos & derivados , Metilación de ADN , Embrión de Mamíferos/metabolismo , Epigénesis Genética , Impresión Genómica , Células Germinativas/metabolismo , 5-Metilcitosina/metabolismo , Animales , Islas de CpG , Citosina/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dioxigenasas , Desarrollo Embrionario , Femenino , Estratos Germinativos/citología , Masculino , Ratones , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas de Unión al ARN/genética
6.
Genome Biol ; 13(10): R93, 2012 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-23034186

RESUMEN

BACKGROUND: Induction and promotion of liver cancer by exposure to non-genotoxic carcinogens coincides with epigenetic perturbations, including specific changes in DNA methylation. Here we investigate the genome-wide dynamics of 5-hydroxymethylcytosine (5hmC) as a likely intermediate of 5-methylcytosine (5mC) demethylation in a DNA methylation reprogramming pathway. We use a rodent model of non-genotoxic carcinogen exposure using the drug phenobarbital. RESULTS: Exposure to phenobarbital results in dynamic and reciprocal changes to the 5mC/5hmC patterns over the promoter regions of a cohort of genes that are transcriptionally upregulated. This reprogramming of 5mC/5hmC coincides with characteristic changes in the histone marks H3K4me2, H3K27me3 and H3K36me3. Quantitative analysis of phenobarbital-induced genes that are involved in xenobiotic metabolism reveals that both DNA modifications are lost at the transcription start site, while there is a reciprocal relationship between increasing levels of 5hmC and loss of 5mC at regions immediately adjacent to core promoters. CONCLUSIONS: Collectively, these experiments support the hypothesis that 5hmC is a potential intermediate in a demethylation pathway and reveal precise perturbations of the mouse liver DNA methylome and hydroxymethylome upon exposure to a rodent hepatocarcinogen.


Asunto(s)
Citosina/análogos & derivados , Metilación de ADN/efectos de los fármacos , Hígado/metabolismo , Fenobarbital/farmacología , 5-Metilcitosina/análogos & derivados , Animales , Citosina/metabolismo , Epigenómica , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Histonas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas/efectos de los fármacos
7.
Development ; 136(5): 723-7, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19158184

RESUMEN

We demonstrate that a direct interaction between the methyl-CpG-dependent transcription repressor Kaiso and xTcf3, a transducer of the Wnt signalling pathway, results in their mutual disengagement from their respective DNA-binding sites. Thus, the transcription functions of xTcf3 can be inhibited by overexpression of Kaiso in cell lines and Xenopus embryos. The interaction of Kaiso with xTcf3 is highly conserved and is dependent on its zinc-finger domains (ZF1-3) and the corresponding HMG DNA-binding domain of TCF3/4 factors. Our data rule out a model suggesting that xKaiso is a direct repressor of Wnt signalling target genes in early Xenopus development via binding to promoter-proximal CTGCNA sequences as part of a xTcf3 repressor complex. Instead, we propose that mutual inhibition by Kaiso/TCF3 of their DNA-binding functions may be important in developmental or cancer contexts and acts as a regulatory node that integrates epigenetic and Wnt signalling pathways.


Asunto(s)
Proteínas Represoras/metabolismo , Factores de Transcripción TCF/metabolismo , Proteínas Wnt/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Sitios de Unión/genética , ADN/genética , ADN/metabolismo , Epigénesis Genética , Ratones , Modelos Biológicos , Modelos Genéticos , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Transducción de Señal , Factores de Transcripción TCF/genética , Proteína 1 Similar al Factor de Transcripción 7 , Xenopus/embriología , Xenopus/genética , Xenopus/metabolismo , Proteínas de Xenopus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA