Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Biol Inorg Chem ; 28(7): 655-667, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37646892

RESUMEN

Isotope fractionation of metals/metalloids in biological systems is an emerging research area that demands the application of state-of-the-art analytical chemistry tools and provides data of relevance to life sciences. In this work, Se uptake and Se isotope fractionation were measured during the biofortification of baker's yeast (Saccharomyces cerevisiae)-a product widely used in dietary Se supplementation and in cancer prevention. On the other hand, metabolic labeling with 15N is a valuable tool in mass spectrometry-based comparative proteomics. For Se-yeast, such labeling would facilitate the assessment of Se impact on yeast proteome; however, the question arises whether the presence of 15N in the microorganisms affects Se uptake and its isotope fractionation. To address the above-mentioned aspects, extracellularly reduced and cell-incorporated Se fractions were analyzed by hydride generation-multi-collector inductively coupled plasma-mass spectrometry (HG MC ICP-MS). It was found that extracellularly reduced Se was enriched in light isotopes; for cell-incorporated Se, the change was even more pronounced, which provides new evidence of mass fractionation during biological selenite reduction. In the presence of 15N, a weaker preference for light isotopes was observed in both, extracellular and cell-incorporated Se. Furthermore, a significant increase in Se uptake for 15N compared to 14N biomass was found, with good agreement between hydride generation microwave plasma-atomic emission spectrometry (HG MP-AES) and quadrupole ICP-MS results. Biological effects observed for heavy nitrogen suggest 15N-driven alteration at the proteome level, which facilitated Se access to cells with decreased preference for light isotopes.


Asunto(s)
Saccharomyces cerevisiae , Selenio , Biofortificación , Proteoma , Transporte Biológico
2.
Molecules ; 25(7)2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32260083

RESUMEN

Relatively few studies have been focused so far on magnesium-isotope fractionation during plant growth, element uptake from soil, root-to-leaves transport and during chlorophylls biosynthesis. In this work, maize and garden cress were hydroponically grown in identical conditions in order to examine if the carbon fixation pathway (C4, C3, respectively) might have impact on Mg-isotope fractionation in chlorophyll-a. The pigment was purified from plants extracts by preparative reversed phase chromatography, and its identity was confirmed by high-resolution mass spectrometry. The green parts of plants and chlorophyll-a fractions were acid-digested and submitted to ion chromatography coupled through desolvation system to multiple collector inductively coupled plasma-mass spectrometry. Clear preference for heavy Mg-isotopes was found in maize green parts (∆26Mgplant-nutrient 0.65, 0.74 for two biological replicates, respectively) and in chlorophyll-a (∆26Mgchlorophyll-plant 1.51, 2.19). In garden cress, heavy isotopes were depleted in green parts (∆26Mgplant-nutrient (-0.87)-(-0.92)) and the preference for heavy isotopes in chlorophyll-a was less marked relative to maize (∆26Mgchlorophyll-plant 0.55-0.52). The observed effect might be ascribed to overall higher production of energy in form of adenosine triphosphate (ATP), required for carbon fixation in C4 compared to C3, which could reduce kinetic barrier and make equilibrium fractionation prevailing during magnesium incorporation to protoporphyrin ring.


Asunto(s)
Clorofila A/análisis , Lepidium sativum/crecimiento & desarrollo , Magnesio/química , Zea mays/crecimiento & desarrollo , Ciclo del Carbono , Fraccionamiento Químico , Clorofila A/química , Cromatografía de Fase Inversa , Hidroponía , Isótopos/química , Lepidium sativum/química , Extractos Vegetales/análisis , Extractos Vegetales/química , Zea mays/química
3.
Rapid Commun Mass Spectrom ; 30(17): 1951-6, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27501429

RESUMEN

RATIONALE: Brominated organic compounds (BOCs) are common persistent toxic pollutants. Compound-specific stable bromine isotope ratio analysis is one of the potential approaches for investigating BOC transformations in the environment. In the present study, we demonstrate that precise bromine isotope analysis of BOCs can be successfully performed by gas chromatography/quadrupole mass spectrometry (GC/qMS) systems that are widely available in analytical laboratories. METHODS: Optimization and validation of the GC/qMS method were performed by analysis of bromoform, 3-bromophenol and 4-bromotoluene. In addition, comparison of the results obtained by GC/qMS and GC/multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS) for 1,2-dibromoethane and 3-bromophenol samples with different bromine isotope composition was carried out to evaluate the analytical performance of the developed method. RESULTS: Precisions in the range 0.2-0.3‰ were attained for sample amounts in the range of tens to thousands pmol. Good correlation between the results obtained by GC/qMS and GC/MC-ICPMS for laboratory standard materials (1,2-dibromoethane and 3-bromophenol) (regression coefficient R(2)  > 0.98) was achieved. CONCLUSIONS: The GC/qMS method for bromine isotope analysis shows a good performance and can be applied routinely for studying transformations of BOCs. Due to the observed dependence of the measured isotope ratios on the amount of the analyte and the calculation scheme applied, normalization of the results versus appropriate standards is required for source attribution applications. Copyright © 2016 John Wiley & Sons, Ltd.

4.
Environ Sci Technol ; 50(18): 9855-63, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27526716

RESUMEN

The present study investigated dual carbon-bromine isotope fractionation of the common groundwater contaminant ethylene dibromide (EDB) during chemical and biological transformations, including aerobic and anaerobic biodegradation, alkaline hydrolysis, Fenton-like degradation, debromination by Zn(0) and reduced corrinoids. Significantly different correlation of carbon and bromine isotope fractionation (ΛC/Br) was observed not only for the processes following different transformation pathways, but also for abiotic and biotic processes with, the presumed, same formal chemical degradation mechanism. The studied processes resulted in a wide range of ΛC/Br values: ΛC/Br = 30.1 was observed for hydrolysis of EDB in alkaline solution; ΛC/Br between 4.2 and 5.3 were determined for dibromoelimination pathway with reduced corrinoids and Zn(0) particles; EDB biodegradation by Ancylobacter aquaticus and Sulfurospirillum multivorans resulted in ΛC/Br = 10.7 and 2.4, respectively; Fenton-like degradation resulted in carbon isotope fractionation only, leading to ΛC/Br ∞. Calculated carbon apparent kinetic isotope effects ((13)C-AKIE) fell with 1.005 to 1.035 within expected ranges according to the theoretical KIE, however, biotic transformations resulted in weaker carbon isotope effects than respective abiotic transformations. Relatively large bromine isotope effects with (81)Br-AKIE of 1.0012-1.002 and 1.0021-1.004 were observed for nucleophilic substitution and dibromoelimination, respectively, and reveal so far underestimated strong bromine isotope effects.


Asunto(s)
Bromo , Dibromuro de Etileno , Biodegradación Ambiental , Carbono , Isótopos de Carbono/metabolismo , Fraccionamiento Químico
5.
Regul Toxicol Pharmacol ; 73(3): 797-801, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26496819

RESUMEN

BACKGROUND: Metal impurities such as nickel and chrome are present in natural ingredients-containing cosmetic products. These traces are unavoidable due to the ubiquitous nature of these elements. Dead Sea mud is a popular natural ingredient of cosmetic products in which nickel and chrome residues are likely to occur. OBJECTIVE: To analyze the potential systemic and local toxicity of Dead Sea mud taking into consideration Dead Sea muds' natural content of nickel and chrome. METHODS: The following endpoints were evaluated: (Regulation No. 1223/20, 21/12/2009) systemic and (SCCS's Notes of Guidance) local toxicity of topical application of Dead Sea mud; health reports during the last five years of commercial marketing of Dead Sea mud. RESULTS AND CONCLUSIONS: Following exposure to Dead Sea mud, MoS (margin of safety) calculations for nickel and chrome indicate no toxicological concern for systemic toxicity. Skin sensitization is also not to be expected by exposure of normal healthy skin to Dead Sea mud. Topical application, however, is not recommended for already nickel-or chrome-sensitized persons. As risk assessment of impurities present in cosmetics may be a difficult exercise, the case of Dead Sea mud is taken here as an example of a natural material that may contain traces of unavoidable metals.


Asunto(s)
Cromo/análisis , Cosméticos/química , Sedimentos Geológicos/química , Peloterapia/métodos , Níquel/análisis , Animales , Cromo/efectos adversos , Seguridad de Productos para el Consumidor , Cosméticos/efectos adversos , Humanos , Peloterapia/efectos adversos , Níquel/efectos adversos , Nivel sin Efectos Adversos Observados , Océanos y Mares , Medición de Riesgo , Pruebas de Toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA