Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Mol Pharm ; 21(7): 3240-3255, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38785196

RESUMEN

Inhibitors of a DNA repair enzyme known as polynucleotide kinase 3'-phosphatase (PNKP) are expected to show synergistic cytotoxicity in combination with topoisomerase I (TOP1) inhibitors in cancer. In this study, the synergistic cytotoxicity of a novel inhibitor of PNKP, i.e., A83B4C63, with a potent TOP1 inhibitor, i.e., SN-38, against colorectal cancer cells was investigated. Polymeric micelles (PMs) for preferred tumor delivery of A83B4C63, developed through physical encapsulation of this compound in methoxy poly(ethylene oxide)-poly(α-benzyl carboxylate-ε-caprolactone) (mPEO-b-PBCL) micelles, were combined with SN-38 in free or PM form. The PM form of SN-38 was prepared through chemical conjugation of SN-38 to the functional end group of mPEO-b-PBCL and further assembly of mPEO-b-PBCL-SN-38 in water. Moreover, mixed micelles composed of mPEO-b-PBCL and mPEO-b-PBCL-SN-38 were used to co-load A83B4C63 and SN-38 in the same nanoformulation. The loading content (% w/w) of the SN-38 and A83B4C63 to mPEO-b-PBCL in the co-loaded formulation was 7.91 ± 0.66 and 16.13 ± 0.11% (w/w), respectively, compared to 15.67 ± 0.34 (% w/w) and 23.06 ± 0.63 (% w/w) for mPEO-b-PBCL micelles loading individual drugs. Notably, the average diameter of PMs co-encapsulating both SN-38 and A83B4C63 was larger than that of PMs encapsulating either of these compounds alone but still lower than 60 nm. The release of A83B4C63 from PMs co-encapsulating both drugs was 76.36 ± 1.41% within 24 h, which was significantly higher than that of A83B4C63-encapsulated micelles (42.70 ± 0.72%). In contrast, the release of SN-38 from PMs co-encapsulating both drugs was 44.15 ± 2.61% at 24 h, which was significantly lower than that of SN-38-conjugated PMs (74.16 ± 3.65%). Cytotoxicity evaluations by the MTS assay as analyzed by the Combenefit software suggested a clear synergy between PM/A83B4C63 (at a concentration range of 10-40 µM) and free SN-38 (at a concentration range of 0.001-1 µM). The synergistic cytotoxic concentration range for SN-38 was narrowed down to 0.1-1 or 0.01-1 µM when combined with PM/A83B4C63 at 10 or 20-40 µM, respectively. In general, PMs co-encapsulating A83B4C63 and SN-38 at drug concentrations within the synergistic range (10 µM for A83B4C63 and 0.05-1 µM for SN-38) showed slightly less enhancement of SN-38 anticancer activity than a combination of individual micelles, i.e., A83B4C63 PMs + SN-38 PMs at the same molar concentrations. This was attributed to the slower release of SN-38 from the SN-38 and A83B4C63 co-encapsulated PMs compared to PMs only encapsulating SN-38. Cotreatment of cells with TOP1 inhibitors and A83B4C63 formulation enhanced the expression level of γ-HA2X, cleaved PARP, caspase-3, and caspase-7 in most cases. This trend was more consistent and notable for PMs co-encapsulating both A83B4C63 and SN-38. The overall result from the study shows a synergy between PMs of SN-38 and A83B4C63 as a mixture of two PMs for individual drugs or PMs co-encapsulating both drugs.


Asunto(s)
Neoplasias Colorrectales , Irinotecán , Micelas , Inhibidores de Topoisomerasa I , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Irinotecán/farmacología , Irinotecán/administración & dosificación , Inhibidores de Topoisomerasa I/farmacología , Inhibidores de Topoisomerasa I/administración & dosificación , Inhibidores de Topoisomerasa I/química , Línea Celular Tumoral , Animales , Ratones , Nanomedicina/métodos , Sinergismo Farmacológico , ADN-Topoisomerasas de Tipo I/metabolismo , Nanopartículas/química , Ensayos Antitumor por Modelo de Xenoinjerto , Poliésteres/química , Fosfotransferasas (Aceptor de Grupo Alcohol) , Enzimas Reparadoras del ADN
2.
J Med Chem ; 66(19): 13768-13787, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37752013

RESUMEN

New chemotypes and bioisosteres can open a new chemical space in drug discovery and help meet an urgent demand for novel agents to fight infections and other diseases. With the aim of identifying new boron-containing drug chemotypes, this article details a comprehensive evaluation of the pseudoaromatic hemiboronic naphthoids, benzoxaza- and benzodiazaborines. Relevant physical properties in aqueous media (acidity, solubility, log P, and stability) of prototypic members of four subclasses were determined. Both scaffolds are amenable to common reactions used in drug discovery, such as chemoselective Suzuki-Miyaura, Chan-Lam, and amidation reactions. Small model libraries were prepared to assess the scope of these transformations, and the entire collection was screened for antifungal (Candida albicans) and antibacterial activity (MRSA, Escherichia coli), unveiling promising benzoxazaborines with low micromolar minimum inhibitory concentration values. Select DMPK assays of representative compounds suggest promising drug-like behavior for all four subclasses. Moreover, several drug isosteres were evaluated for anti-inflammatory and anticancer activity as appropriate.

3.
Mol Pharm ; 19(6): 1825-1838, 2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35271294

RESUMEN

The disruption of polynucleotide kinase/phosphatase (PNKP) in colorectal cancer (CRC) cells deficient in phosphatase and tensin homolog (PTEN) is expected to lead to the loss of cell viability by a process known as synthetic lethality. In previous studies, we have reported on the encapsulation of a novel inhibitor of PNKP, namely, A83B4C63, in polymeric micelles and its activity in slowing the growth of PTEN-deficient CRC cells as well as subcutaneous xenografts. In this study, to enhance drug delivery and specificity to CRC tumors, the surface of polymeric micelles carrying A83B4C63 was modified with GE11, a peptide targeting epidermal growth factor receptor (EGFR) overexpressed in about 70% of CRC tumors. Using molecular dynamics (MD) simulations, we assessed the binding site and affinity of GE11 for EGFR. The GE11-modified micelles, tagged with a near-infrared fluorophore, showed enhanced internalization by EGFR-overexpressing CRC cells in vitro and a trend toward increased primary tumor homing in an orthotopic CRC xenograft in vivo. In line with these observations, the GE11 modification of polymeric micelles was shown to positively contribute to the improved therapeutic activity of encapsulated A83B4C63 against HCT116-PTEN-/- cells in vitro and that of orthotopic CRC xenograft in vivo. In conclusion, our results provided proof of principle evidence for the potential benefit of EGFR targeted polymeric micellar formulations of A83B4C63 as monotherapeutics for aggressive and metastatic CRC tumors but at the same time highlighted the need for the development of EGFR ligands with improved physiological stability and EGFR binding.


Asunto(s)
Neoplasias Colorrectales , Micelas , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Reparación del ADN , Enzimas Reparadoras del ADN/metabolismo , Receptores ErbB/metabolismo , Xenoinjertos , Humanos , Fosfotransferasas (Aceptor de Grupo Alcohol) , Polímeros/química , Distribución Tisular
4.
J Control Release ; 334: 335-352, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-33933518

RESUMEN

Phosphatase and TENsin homolog deleted on chromosome 10 (PTEN) is a major tumor-suppressor protein that is lost in up to 75% of aggressive colorectal cancers (CRC). The co-depletion of PTEN and a DNA repair protein, polynucleotide kinase 3'-phosphatase (PNKP), has been shown to lead to synthetic lethality in several cancer types including CRC. This finding inspired the development of novel PNKP inhibitors as potential new drugs against PTEN-deficient CRC. Here, we report on the in vitro and in vivo evaluation of a nano-encapsulated potent, but poorly water-soluble lead PNKP inhibitor, A83B4C63, as a new targeted therapeutic for PTEN-deficient CRC. Our data confirmed the binding of A83B4C63, as free or nanoparticle (NP) formulation, to intracellular PNKP using the cellular thermal shift assay (CETSA), in vitro and in vivo. Dose escalating toxicity studies in healthy CD-1 mice, based on measurement of animal weight changes and biochemical blood analysis, revealed the safety of both free and nano-encapsulated A83B4C63, at assessed doses of ≤50 mg/kg. Nano-carriers of A83B4C63 effectively inhibited the growth of HCT116/PTEN-/- xenografts in NIH-III nude mice following intravenous (IV) administration, but not that of wild-type HCT116/PTEN+/+ xenografts. This was in contrast to IV administration of A83B4C63 solubilized with the aid of Cremophor EL: Ethanol (CE), which led to similar tumor growth to that of formulation excipients (NP or CE without drug) or 5% dextrose. This observation was attributed to the higher levels of A83B4C63 delivered to tumor tissue by its NP formulation. Our data provide evidence for the success of NPs of A83B4C63, as novel synthetically lethal nano-therapeutics in the treatment of PTEN-deficient CRC. This research also highlights the potential of successful application of nanomedicine in the drug development process.


Asunto(s)
Neoplasias Colorrectales , Polinucleótido 5'-Hidroxil-Quinasa , Animales , Neoplasias Colorrectales/tratamiento farmacológico , Ratones , Ratones Desnudos , Nanomedicina , Fosfohidrolasa PTEN/deficiencia , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores
5.
Front Oncol ; 11: 772920, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35004293

RESUMEN

Inhibition of the DNA repair enzyme polynucleotide kinase/phosphatase (PNKP) increases the sensitivity of cancer cells to DNA damage by ionizing radiation (IR). We have developed a novel inhibitor of PNKP, i.e., A83B4C63, as a potential radio-sensitizer for the treatment of solid tumors. Systemic delivery of A83B4C63, however, may sensitize both cancer and normal cells to DNA damaging therapeutics. Preferential delivery of A83B4C63 to solid tumors by nanoparticles (NP) was proposed to reduce potential side effects of this PNKP inhibitor to normal tissue, particularly when combined with DNA damaging therapies. Here, we investigated the radio-sensitizing activity of A83B4C63 encapsulated in NPs (NP/A83) based on methoxy poly(ethylene oxide)-b-poly(α-benzyl carboxylate-ε-caprolactone) (mPEO-b-PBCL) or solubilized with the aid of Cremophor EL: Ethanol (CE/A83) in human HCT116 colorectal cancer (CRC) models. Levels of γ-H2AX were measured and the biodistribution of CE/A83 and NP/A83 administered intravenously was determined in subcutaneous HCT116 CRC xenografts. The radio-sensitization effect of A83B4C63 was measured following fractionated tumor irradiation using an image-guided Small Animal Radiation Research Platform (SARRP), with 24 h pre-administration of CE/A83 and NP/A83 to Luc+/HCT116 bearing mice. Therapeutic effects were analyzed by monitoring tumor growth and functional imaging using Positron Emission Tomography (PET) and [18F]-fluoro-3'-deoxy-3'-L:-fluorothymidine ([18F]FLT) as a radiotracer for cell proliferation. The results showed an increased persistence of DNA damage in cells treated with a combination of CE/A83 or NP/A83 and IR compared to those only exposed to IR. Significantly higher tumor growth delay in mice treated with a combination of IR and NP/A83 than those treated with IR plus CE/A83 was observed. [18F]FLT PET displayed significant functional changes for tumor proliferation for the drug-loaded NP. This observation was attributed to the higher A83B4C63 levels in the tumors for NP/A83-treated mice compared to those treated with CE/A83. Overall, the results demonstrated a potential for A83B4C63-loaded NP as a novel radio-sensitizer for the treatment of CRC.

6.
Org Biomol Chem ; 18(18): 3492-3500, 2020 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-32338262

RESUMEN

This study describes the design and synthesis of arylboronic acid 2, the first example of a permanently open "frustrated" benzoxaborole, along with an exploration of its application in bioconjugation. An efficient and high yielding seven-step synthesis was optimized. NMR experiments confirmed that compound 2 exists in the open ortho-hydroxyalkyl arylboronic acid structure 2-I, a form that is effectively prevented to undergo a dehydrative cyclization as a result of unfavorable geometry. Compound 2-I conjugates effectively with amines to form stable hemiaminal ether structures, including a highly effective reaction with lysozyme. Complexation with cysteine induces an open structure containing a free hydroxymethyl arm, with the amino and thiol groups reacting preferentially with the formyl group to form a N,S-acetal.


Asunto(s)
Aminas/química , Aminoácidos/química , Compuestos de Boro/química , Ácidos Borónicos/síntesis química , Diseño de Fármacos , Muramidasa/química , Ácidos Borónicos/química , Ciclización , Estructura Molecular , Muramidasa/metabolismo
7.
ACS Appl Mater Interfaces ; 11(47): 44742-44750, 2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31682100

RESUMEN

Nanocomposite hydrogels with multiresponsiveness and self-healing property are attracting extensive interest due to their enhanced performance for a wide range of applications. In this work, we have successfully developed novel hydrogels based on interfacial polymer-nanogel benzoxaborolate cross-linking at physiological pH. Temperature-sensitive nanogels (NG-Gal) containing galactose residues on the nanosurface were prepared and subsequently used as macro-cross-linkers to form a hydrogel network through formation of dynamic adducts with benzoxaborole groups of a hydrophilic copolymer poly(DMA-st-MAABO). Benefiting from the low pKa value of benzoxaborole (∼7.2), hydrogels can be constructed rapidly at physiological pH, which is of great significance for biomedical applications. Changing the molar ratio between benzoxaborole and galactose was found to alter the mechanical properties of hydrogels as confirmed by rheological measurements. The dynamic nature of benzoxaborole esters endowed the hydrogel with moldability and self-healing ability after disruption. Moreover, the hydrogel showed multiresponsiveness toward pH, sugar, adenosine triphosphate (ATP), hydrogen peroxide (H2O2), and temperature. Therefore, the novel nanocomposite hydrogel we demonstrated here exhibits great potential for biomedical applications such as tissue engineering and controlled drug delivery.


Asunto(s)
Hidrogeles/química , Nanogeles/química , Sistemas de Liberación de Medicamentos/instrumentación , Ésteres/química , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Polímeros/química , Temperatura , Ingeniería de Tejidos/instrumentación
8.
Angew Chem Int Ed Engl ; 57(40): 13028-13044, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29723444

RESUMEN

Over the past two decades, bioorthogonal chemistry has become a preferred tool to achieve site-selective modifications of proteins. However, there are only a handful of commonly applied bioorthogonal reactions and they display some limitations, such as slow rates, use of unstable or cytotoxic reagents, and side reactions. Hence, there is significant interest in expanding the bioorthogonal chemistry toolbox. In this regard, boronic acids have recently been introduced in bioorthogonal chemistry and are exploited in three different strategies: 1) boronic ester formation between a boronic acid and a 1,2-cis diol; 2) iminoboronate formation between 2-acetyl/formyl-arylboronic acids and hydrazine/hydroxylamine/semicarbazide derivatives; 3) use of boronic acids as transient groups in a Suzuki-Miyaura cross-coupling or other reactions that leave the boronyl group off the conjugation product. In this Review, we summarize progress made in the use of boronic acids in bioorthogonal chemistry to enable site-selective labeling of proteins and compare these methods with the most commonly utilized bioorthogonal reactions.


Asunto(s)
Ácidos Borónicos/química , Proteínas/química , Colorantes Fluorescentes/química , Humanos , Hidrazinas/química , Hidroxilamina/química , Péptidos/química , Péptidos/metabolismo , Proteínas/metabolismo , Semicarbacidas/química
9.
Mol Pharm ; 15(6): 2316-2326, 2018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29688721

RESUMEN

There is increasing interest in developing and applying DNA repair inhibitors in cancer treatment to augment the efficacy of radiation and conventional genotoxic chemotherapy. However, targeting the inhibitor is required to avoid reducing the repair capacity of normal tissue. The aim of this study was to develop nanodelivery systems for the encapsulation of novel imidopiperidine-based inhibitors of the DNA 3'-phosphatase activity of polynucleotide kinase/phosphatase (PNKP), a DNA repair enzyme that plays a critical role in rejoining DNA single- and double-strand breaks. For this purpose, newly identified hit compounds with potent PNKP inhibitory activity, imidopiperidines A12B4C50 and A83B4C63 were encapsulated in polymeric micelles of different poly(ethylene oxide)- b-poly(ε-caprolactone) (PEO- b-PCL)-based structures. Our results showed efficient loading of A12B4C50 and A83B4C63 in PEO- b-PCLs with pendent carboxyl and benzyl carboxylate groups, respectively, and relatively slow release over 24 h. Both free and encapsulated inhibitors were able to sensitize HCT116 cells to radiation and the topoisomerase I poison, irinotecan. In addition, the encapsulated inhibitors were capable of inducing synthetic lethalilty in phosphatase and tensin homologue (PTEN)-deficient cells. We also established the validity of the peptide GE11 as a suitable ligand for active targeted delivery of nanoencapsulated drugs to colorectal cancer cells overexpressing epidermal growth factor receptor (EGFR). Our results show the potential of nanoencapsulated inhibitors of PNKP as either mono or combined therapeutic agents for colorectal cancer.


Asunto(s)
Neoplasias Colorrectales/terapia , Enzimas Reparadoras del ADN/antagonistas & inhibidores , Nanocápsulas/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Piperidinas/administración & dosificación , Mutaciones Letales Sintéticas/efectos de los fármacos , Quimioradioterapia/métodos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Reparación del ADN/efectos de los fármacos , Reparación del ADN/efectos de la radiación , Enzimas Reparadoras del ADN/metabolismo , Composición de Medicamentos/métodos , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Células HCT116 , Humanos , Irinotecán/farmacología , Micelas , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Piperidinas/farmacología , Radiación Ionizante
10.
Biomacromolecules ; 19(2): 596-605, 2018 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-29338209

RESUMEN

Dynamic hydrogels based on arylboronic esters have been considered as ideal platforms for biomedical applications given their self-healing and injectable characteristics. However, there still exist some critical issues that need to be addressed or improved, including hydrogel biocompatibility, physiological usability, and tunability of mechanical properties. Here, two kinds of phospholipid bioinspired MPC copolymers, one is zwitterionic copolymer (PMB) containing a fixed 15 mol % of benzoxaborole (pKa ≈ 7.2) groups and the other is zwitterionic glycopolymers (PMG) with varied ratios of sugar groups (20%, 50%, 80%), were synthesized respectively via one-pot facile reversible addition-fragmentation chain transfer (RAFT) polymerization. PMBG hydrogels were formed spontaneously after mixing 10 wt % of PMB and PMG copolymer solutions because of dynamic benzoxaborole-sugar interactions. The mechanical properties of nine hydrogels (3 × 3) with different sugar contents and pHs (7.4, 8.4, 9.4) were carefully studied by rheological measurements, and hydrogels with higher sugar content and higher pH were found to have higher strength. Moreover, similar to other arylboronic ester-based hydrogels, PMBG hydrogels possessed not only self-healing and injectable properties but also pH/sugar responsiveness. Additionally, in vitro cytotoxicity tests of gel extracts on both normal and cancer cells further confirmed the excellent biocompatibility of the hydrogels, which should be ascribed to the biomimetic nature of phosphorylcholine (PC) and sugar residues of the copolymers. Consequently, the zwitterionic dynamic hydrogels provide promising future for diverse biomedical applications.


Asunto(s)
Benzoatos , Ácidos Borónicos , Carbohidratos , Hidrogel de Polietilenoglicol-Dimetacrilato , Ensayo de Materiales , Benzoatos/química , Benzoatos/farmacología , Ácidos Borónicos/química , Ácidos Borónicos/farmacología , Carbohidratos/química , Carbohidratos/farmacología , Células HeLa , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacología
11.
Acc Chem Res ; 49(11): 2489-2500, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27753496

RESUMEN

Multicomponent reactions (MCR), transformations employing three or more simple substrates in a single and highly atom-economical operation, are very attractive in both natural product synthesis and diversity-oriented synthesis of druglike molecules. Several popular multicomponent reactions were designed by combining two well-established individual reactions that utilize mutually compatible substrates. In this regard, it is not surprising that the merging of two reactions deemed as workhorses of stereoselective synthesis, the Diels-Alder cycloaddition and carbonyl allylboration, would produce a powerful and highly versatile tandem MCR process. The idea of using 1,3-dienylboronates in [4 + 2] cycloadditions as a means to produce cyclic allylic boronates was first reported by Vaultier and Hoffmann in 1987. In their seminal study, a 1-boronodiene was reacted with electron-poor alkenes, and the intermediate cycloadducts were isolated and added to aldehydes in a separate step leading to α-hydroxyalkylated carbocycles via a highly diastereoselective allylboration reaction. The one-pot three-component variant was realized in 1999 by Lallemand and co-workers, and soon after groups led by Hall and Carboni reported heterocyclic variants of the tandem [4 + 2] cycloaddition/allylboration to prepare α-hydroxyalkylated piperidine and pyran containing compounds, respectively. These classes of heterocycles are ubiquitous in Nature and are important components of pharmaceuticals. This Account summarizes the development and evolution of this powerful multicomponent reaction for accessing nonaromatic heterocycles and its many applications in natural products synthesis and drug discovery. The aza[4 + 2]cycloaddition/allylboration MCR was first optimized in our laboratory using 4-boronylhydrazonobutadienes and N-substituted maleimides, and it was exploited in the preparation of combinatorial libraries of polysubstituted imidopiperidines that feature as many as four elements of chemical diversity. Biological screening of these druglike imidopiperidine libraries unveiled promising bioactive agents such as A12B4C3, the first reported inhibitor of the human DNA repair enzyme, polynucleotide kinase-phosphatase (hPNKP). Related applications of this MCR in target-oriented synthesis also led to total syntheses of palustrine alkaloids. The inverse electron-demand oxa[4 + 2] cycloaddition/allyboration variant can take advantage of Jacobsen's chiral Cr(III)salen catalyst, affording a rare example of catalytic enantioselective MCR, one that provides a rapid access to α-hydroxyalkyl dihydropyrans in high enantio- and diastereoselectivity. This process exploits 3-boronoacrolein pinacolate as the heterodiene with ethyl vinyl ether or various 2-substituted enol ethers, along with a wide variety of aldehydes in the allylation stage. This versatile methodology was deployed in total syntheses of thiomarinol antibiotics, goniodiol and its derivatives, and the complex anticancer macrolide palmerolide A. More recent work from our laboratory centered on the regio- and stereoselective Suzuki-Miyaura cross-coupling of the dihydropyranyl boronates, thus providing a glimpse of the potential for new multicomponent variants that merge hetero[4 + 2] cycloadditions of 1-borylated heterodienes with transition metal-catalyzed transformations. This stereoselective MCR strategy holds great promise for provoking continuing applications in complex molecule synthesis and drug discovery, and is likely to inspire new and innovative MCR-based approaches to nonaromatic heterocycles.


Asunto(s)
Productos Biológicos/síntesis química , Descubrimiento de Drogas , Piperidinas/síntesis química , Piranos/síntesis química , Antibacterianos/síntesis química , Antibacterianos/farmacología , Productos Biológicos/farmacología , Técnicas de Química Sintética/métodos , Reacción de Cicloadición , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Humanos , Piperidinas/farmacología , Piranos/farmacología
12.
PLoS One ; 10(6): e0128587, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26053039

RESUMEN

Infections with the bacteria Burkholderia cepacia complex (Bcc) are very difficult to eradicate in cystic fibrosis patients due the intrinsic resistance of Bcc to most available antibiotics and the emergence of multiple antibiotic resistant strains during antibiotic treatment. In this work, we used a whole-cell based assay to screen a diverse collection of small molecules for growth inhibitors of a relevant strain of Bcc, B. cenocepacia K56-2. The primary screen used bacterial growth in 96-well plate format and identified 206 primary actives among 30,259 compounds. From 100 compounds with no previous record of antibacterial activity secondary screening and data mining selected a total of Bce bioactives that were further analyzed. An experimental pipeline, evaluating in vitro antibacterial and antibiofilm activity, toxicity and in vivo antibacterial activity using C. elegans was used for prioritizing compounds with better chances to be further investigated as potential Bcc antibacterial drugs. This high throughput screen, along with the in vitro and in vivo analysis highlights the utility of this experimental method to quickly identify bioactives as a starting point of antibacterial drug discovery.


Asunto(s)
Burkholderia cenocepacia/efectos de los fármacos , Burkholderia cenocepacia/crecimiento & desarrollo , Evaluación Preclínica de Medicamentos/métodos , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Antibacterianos/farmacología , Caenorhabditis elegans/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Hemólisis/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Ovinos , Bibliotecas de Moléculas Pequeñas/toxicidad
13.
J Org Chem ; 77(19): 8386-400, 2012 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-23013456

RESUMEN

The importance of amides as a component of biomolecules and synthetic products motivates the development of catalytic, direct amidation methods employing free carboxylic acids and amines that circumvent the need for stoichiometric activation or coupling reagents. ortho-Iodophenylboronic acid 4a has recently been shown to catalyze direct amidation reactions at room temperature in the presence of 4A molecular sieves as dehydrating agent. Herein, the arene core of ortho-iodoarylboronic acid catalysts has been optimized with regards to the electronic effects of ring substitution. Contrary to the expectation, it was found that electron-donating substituents are preferable, in particular, an alkoxy substituent positioned para to the iodide. The optimal new catalyst, 5-methoxy-2-iodophenylboronic acid (MIBA, 4f), was demonstrated to be kinetically more active than the parent des-methoxy catalyst 4a, providing higher yields of amide products in shorter reaction times under mild conditions at ambient temperature. Catalyst 4f is recyclable and promotes the formation of amides from aliphatic carboxylic acids and amines, and from heteroaromatic carboxylic acids and other functionalized substrates containing moieties like a free phenol, indole and pyridine. Mechanistic studies demonstrated the essential role of molecular sieves in this complex amidation process. The effect of substrate stoichiometry, concentration, and measurement of the catalyst order led to a possible catalytic cycle based on the presumed formation of an acylborate intermediate. The need for an electronically enriched ortho-iodo substituent in catalyst 4f supports a recent theoretical study (Marcelli, T. Angew. Chem. Int. Ed.2010, 49, 6840-6843) with a purported role for the iodide as a hydrogen-bond acceptor in the orthoaminal transition state.


Asunto(s)
Compuestos de Boro/química , Ácidos Carboxílicos/química , Halógenos/química , Yodobencenos/química , Catálisis , Enlace de Hidrógeno , Estructura Molecular
15.
J Biol Chem ; 285(4): 2351-60, 2010 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-19940137

RESUMEN

The small molecule, 2-(1-hydroxyundecyl)-1-(4-nitrophenylamino)-6-phenyl-6,7a-dihydro-1H-pyrrolo[3,4-b]pyridine-5,7(2H,4aH)-dione (A12B4C3), is a potent inhibitor of the phosphatase activity of human polynucleotide kinase/phosphatase (PNKP) in vitro. Kinetic analysis revealed that A12B4C3 acts as a noncompetitive inhibitor, and this was confirmed by fluorescence quenching, which showed that the inhibitor can form a ternary complex with PNKP and a DNA substrate, i.e. A12B4C3 does not prevent DNA from binding to the phosphatase DNA binding site. Conformational analysis using circular dichroism, UV difference spectroscopy, and fluorescence resonance energy transfer all indicate that A12B4C3 disrupts the secondary structure of PNKP. Investigation of the potential site of binding of A12B4C3 to PNKP using site-directed mutagenesis pointed to interaction between Trp(402) of PNKP and the inhibitor. Cellular studies revealed that A12B4C3 sensitizes A549 human lung cancer cells to the topoisomerase I poison, camptothecin, but not the topoisomerase II poison, etoposide, in a manner similar to small interfering RNA against PNKP. A12B4C3 also inhibits the repair of DNA single and double strand breaks following exposure of cells to ionizing radiation, but does not inhibit two other key strand-break repair enzymes, DNA polymerase beta or DNA ligase III, providing additional evidence that PNKP is the cellular target of the inhibitor.


Asunto(s)
Enzimas Reparadoras del ADN/antagonistas & inhibidores , Resistencia a Antineoplásicos/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Piperidinas/farmacología , Pirroles/farmacología , Adenosina Trifosfato/metabolismo , Antineoplásicos Fitogénicos/farmacología , Sitios de Unión , Camptotecina/farmacología , Supervivencia Celular/efectos de los fármacos , Dicroismo Circular , ADN Ligasa (ATP) , ADN Ligasas/antagonistas & inhibidores , ADN Ligasas/metabolismo , ADN Polimerasa beta/antagonistas & inhibidores , ADN Polimerasa beta/metabolismo , Reparación del ADN/efectos de los fármacos , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/genética , Etopósido/farmacología , Transferencia Resonante de Energía de Fluorescencia , Humanos , Neoplasias Pulmonares/metabolismo , Mutagénesis Sitio-Dirigida , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Espectroscopía de Fotoelectrones , Proteínas de Unión a Poli-ADP-Ribosa , Conformación Proteica , Pirroles/química , Fármacos Sensibilizantes a Radiaciones/farmacología , Células Tumorales Cultivadas , Proteínas de Xenopus
16.
Cancer Res ; 69(19): 7739-46, 2009 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-19773431

RESUMEN

Human polynucleotide kinase/phosphatase (hPNKP) is a 57.1-kDa enzyme that phosphorylates DNA 5'-termini and dephosphorylates DNA 3'-termini. hPNKP is involved in both single- and double-strand break repair, and cells depleted of hPNKP show a marked sensitivity to ionizing radiation. Therefore, small molecule inhibitors of hPNKP should potentially increase the sensitivity of human tumors to gamma-radiation. To identify small molecule inhibitors of hPNKP, we modified a novel fluorescence-based assay to measure the phosphatase activity of the protein, and screened a diverse library of over 200 polysubstituted piperidines. We identified five compounds that significantly inhibited hPNKP phosphatase activity. Further analysis revealed that one of these compounds, 2-(1-hydroxyundecyl)-1-(4-nitrophenylamino)-6-phenyl-6,7a-dihydro-1H-pyrrolo[3,4-b]pyridine-5,7(2H,4aH)-dione (A12B4C3), was the most effective, with an IC50 of 0.06 micromol/L. When tested for its specificity, A12B4C3 displayed no inhibition of two well-known eukaryotic protein phosphatases, calcineurin and protein phosphatase-1, or APTX, another human DNA 3'-phosphatase, and only limited inhibition of the related PNKP from Schizosaccharomyces pombe. At a nontoxic dose (1 micromol/L), A12B4C3 enhanced the radiosensitivity of human A549 lung carcinoma and MDA-MB-231 breast adenocarcinoma cells by a factor of two, which was almost identical to the increased sensitivity resulting from shRNA-mediated depletion of hPNKP. Importantly, A12B4C3 failed to increase the radiosensitivity of the hPNKP-depleted cells, implicating hPNKP as the principal cellular target of A12B4C3 responsible for increasing the response to radiation. A12B4C3 is thus a useful reagent for probing hPNKP cellular function and will serve as the lead compound for further development of PNKP-targeting drugs.


Asunto(s)
Reparación del ADN , Inhibidores Enzimáticos/farmacología , Polinucleótido 5'-Hidroxil-Quinasa/antagonistas & inhibidores , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/enzimología , Adenocarcinoma/genética , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/genética , Línea Celular Tumoral , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/genética , Ratones , Especificidad por Sustrato
17.
J Am Chem Soc ; 131(28): 9612-3, 2009 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-19552416

RESUMEN

An efficient catalytic enantioselective preparation of synthetically useful pyranyl and piperidinyl allylic boronates was achieved via a palladium-catalyzed borylation/isomerization reaction on the corresponding alkenyl triflates. The influence of the base and solvent was found to be crucial on the regio- and enantioselectivity of this reaction. The overall borylation process constitutes a successful example of formal asymmetric isomerization of allylic ether/amine. The resulting allylic boronate reagents add to various aldehydes in a one-pot process to give synthetically useful alpha-hydroxyalkyl derivatives in high stereoselectivity.


Asunto(s)
Alcanos/química , Aminas/química , Ácidos Borónicos/química , Éteres/química , Compuestos Heterocíclicos/química , Paladio/química , Catálisis , Concentración de Iones de Hidrógeno , Isomerismo , Especificidad por Sustrato , Temperatura
18.
Mol Cancer Ther ; 7(9): 2672-80, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18790749

RESUMEN

Inappropriate activation of JAK/STAT signaling occurs with high frequency in human cancers and is associated with cancer cell survival and proliferation. Therefore, the development of pharmacologic STAT signaling inhibitors has therapeutic potential in the treatment of human cancers. Here, we report 2-[(3,5-bis-trifluoromethyl-phenyl)-hydroxy-methyl]-1-(4-nitro-phenylamino)-6-phenyl-1,2,4a,7a-tetrahydro-pyrrolo[3,4-b]-pyridine-5,7-dione (AUH-6-96) as a novel small-molecule inhibitor of JAK/STAT signaling that we initially identified through a cell-based high-throughput screening using cultured Drosophila cells. Treatment of Drosophila cells with AUH-6-96 resulted in a reduction of Unpaired-induced transcriptional activity and tyrosine phosphorylation of STAT92E, the sole Drosophila STAT homologue. In human cancer cell lines, AUH-6-96 inhibited both constitutive and interleukin-6-induced STAT3 phosphorylation. Specifically, in Hodgkin lymphoma L540 cells, treatment with AUH-6-96 resulted in reduced levels of tyrosine phosphorylated STAT3 and of the STAT3 downstream target gene SOCS3 in a dose- and time-dependent manner. In addition, AUH-6-96-treated L540 cells showed decreased expression of persistently activated JAK3, suggesting that AUH-6-96 inhibits the JAK/STAT pathway signaling in L540 cells by affecting JAK3 activity and subsequently blocking STAT3 signaling. Importantly, AUH-6-96 selectively affected cell viability only of cancer cells harboring aberrant JAK/STAT signaling. In support of the specificity of AUH-6-96 for inhibition of JAK/STAT signaling, treatment with AUH-6-96 decreased cancer cell survival by inducing programmed cell death by down-regulating the expression of STAT3 downstream target antiapoptotic genes, such as Bcl-xL. In summary, this study shows that AUH-6-96 is a novel small-molecule inhibitor of JAK/STAT signaling and may have therapeutic potential in the treatment of human cancers harboring aberrant JAK/STAT signaling.


Asunto(s)
Antineoplásicos/análisis , Antineoplásicos/farmacología , Imidas/análisis , Imidas/farmacología , Janus Quinasa 3/antagonistas & inhibidores , Piperidinas/análisis , Piperidinas/farmacología , Factor de Transcripción STAT3/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Animales , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Drosophila , Ensayos de Selección de Medicamentos Antitumorales , Activación Enzimática/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genes Relacionados con las Neoplasias , Humanos , Imidas/química , Interleucina-6/farmacología , Janus Quinasa 3/metabolismo , Fosforilación/efectos de los fármacos , Piperidinas/química , Factor de Transcripción STAT3/metabolismo , Factores de Tiempo
20.
J Comb Chem ; 8(4): 551-61, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16827568

RESUMEN

The biological activity of natural polyamines is due in large part to their ability to form ion-pairing interactions with polyanionic biomolecules, such as proteins, oligonucleotides, and sulfated oligosaccharides. Unfortunately, the diversity of biogenic polyamines is compromised by their limitation to only just a few internitrogen spacers. As a proof-of-principle study, a synthetic split-pool library of linear triamines was screened in an on-bead assay against a selection of model trisulfonated azo dyes (1, 2, and 3) and a short glutamate-rich nonameric peptide (4) to demonstrate its use in the discovery of selective ligands via multivalent ion pairing. From screening a 196-membered split-pool library against the dyes in aqueous organic solutions, with or without spermidine as competing ligand, it was found that the most frequent residues possessed internitrogen distances that were very similar to the sulfonate distances on the dyes. The results from these screening assays were used in the design of two polyamine sequences (8, 8Aoc(R)-8Aoc(R), and 12, 2Acc(R)-epsilonAhx(R)) for follow-up studies in solution phase. These triamines demonstrated the same selectively toward dyes 2 and 3 as observed by the solid-phase approach. In addition, resin-supported triamines, synthesized as discrete compounds, were able to selectively extract either dye 2 or 3 from a mixture of the two, further verifying the observations made from the library screening efforts. With peptide 4, containing three glutamate residues, a preference was found for rather long residues (12 and 8 carbons long), which is suggestive of a linear peptide, rather than a helical motif under the conditions of the screening.


Asunto(s)
Técnicas Químicas Combinatorias , Biblioteca de Péptidos , Poliaminas/síntesis química , Polímeros/química , Compuestos Azo/química , Cromatografía Líquida de Alta Presión , Ligandos , Modelos Químicos , Oligonucleótidos/química , Péptidos/síntesis química , Polielectrolitos , Proteínas/química , Resinas Sintéticas/química , Soluciones/química , Espectrofotometría Ultravioleta , Sulfatos/química , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA