Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Biomaterials ; 309: 122623, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38797121

RESUMEN

Photobiomodulation (PBM), the use of biocompatible tissue-penetrating light to interact with intracellular chromophores to modulate the fates of cells and tissues, has emerged as a promising non-invasive approach to enhancing tissue regeneration. Unlike photodynamic or photothermal therapies that require the use of photothermal agents or photosensitizers, PBM treatment does not need external agents. With its non-harmful nature, PBM has demonstrated efficacy in enhancing molecular secretions and cellular functions relevant to tissue regeneration. The utilization of low-level light from various sources in PBM targets cytochrome c oxidase, leading to increased synthesis of adenosine triphosphate, induction of growth factor secretion, activation of signaling pathways, and promotion of direct or indirect gene expression. When integrated with stem cell populations, bioactive molecules or nanoparticles, or biomaterial scaffolds, PBM proves effective in significantly improving tissue regeneration. This review consolidates findings from in vitro, in vivo, and human clinical outcomes of both PBM alone and PBM-combined therapies in tissue regeneration applications. It encompasses the background of PBM invention, optimization of PBM parameters (such as wavelength, irradiation, and exposure time), and understanding of the mechanisms for PBM to enhance tissue regeneration. The comprehensive exploration concludes with insights into future directions and perspectives for the tissue regeneration applications of PBM.


Asunto(s)
Terapia por Luz de Baja Intensidad , Regeneración , Humanos , Terapia por Luz de Baja Intensidad/métodos , Animales , Regeneración/efectos de la radiación , Ingeniería de Tejidos/métodos , Materiales Biocompatibles/química , Andamios del Tejido/química
2.
Adv Sci (Weinh) ; 11(19): e2306684, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38482992

RESUMEN

Cryotherapy leverages controlled freezing temperature interventions to engender a cascade of tumor-suppressing effects. However, its bottleneck lies in the standalone ineffectiveness. A promising strategy is using nanoparticle therapeutics to augment the efficacy of cryotherapy. Here, a cold-responsive nanoplatform composed of upconversion nanoparticles coated with silica - chlorin e6 - hyaluronic acid (UCNPs@SiO2-Ce6-HA) is designed. This nanoplatform is employed to integrate cryotherapy with photodynamic therapy (PDT) in order to improve skin cancer treatment efficacy in a synergistic manner. The cryotherapy appeared to enhance the upconversion brightness by suppressing the thermal quenching. The low-temperature treatment afforded a 2.45-fold enhancement in the luminescence of UCNPs and a 3.15-fold increase in the photodynamic efficacy of UCNPs@SiO2-Ce6-HA nanoplatforms. Ex vivo tests with porcine skins and the subsequent validation in mouse tumor tissues revealed the effective HA-mediated transdermal delivery of designed nanoplatforms to deep tumor tissues. After transdermal delivery, in vivo photodynamic therapy using the UCNPs@SiO2-Ce6-HA nanoplatforms resulted in the optimized efficacy of 79% in combination with cryotherapy. These findings underscore the Cryo-PDT as a truly promising integrated treatment paradigm and warrant further exploring the synergistic interplay between cryotherapy and PDT with bright upconversion to unlock their full potential in cancer therapy.


Asunto(s)
Ácido Hialurónico , Nanopartículas , Fotoquimioterapia , Animales , Fotoquimioterapia/métodos , Ratones , Ácido Hialurónico/química , Nanopartículas/química , Neoplasias Cutáneas/terapia , Neoplasias Cutáneas/tratamiento farmacológico , Crioterapia/métodos , Clorofilidas , Porfirinas/química , Porfirinas/administración & dosificación , Modelos Animales de Enfermedad , Fármacos Fotosensibilizantes/administración & dosificación , Administración Cutánea , Dióxido de Silicio/química , Porcinos
3.
Front Cell Dev Biol ; 11: 1253274, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38020889

RESUMEN

The aberrant function of ATP-dependent chromatin remodeler INO80 has been implicated in multiple types of cancers by altering chromatin architecture and gene expression; however, the underlying mechanism of the functional involvement of INO80 mutation in cancer etiology, especially in breast cancer, remains unclear. In the present study, we have performed a weighted gene co-expression network analysis (WCGNA) to investigate links between INO80 expression and breast cancer sub-classification and progression. Our analysis revealed that INO80 repression is associated with differential responsiveness of estrogen receptors (ERs) depending upon breast cancer subtype, ER networks, and increased risk of breast carcinogenesis. To determine whether INO80 loss induces breast tumors, a conditional INO80-knockout (INO80 cKO) mouse model was generated using the Cre-loxP system. Phenotypic characterization revealed that INO80 cKO led to reduced branching and length of the mammary ducts at all stages. However, the INO80 cKO mouse model had unaltered lumen morphology and failed to spontaneously induce tumorigenesis in mammary gland tissue. Therefore, our study suggests that the aberrant function of INO80 is potentially associated with breast cancer by modulating gene expression. INO80 mutation alone is insufficient for breast tumorigenesis.

4.
Reprod Domest Anim ; 58(11): 1583-1594, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37696770

RESUMEN

Notoginsenoside R1 (NGR1), derived from the Panax notoginseng root and rhizome, exhibits diverse pharmacological influences on the brain, neurons, and osteoblasts, such as antioxidant effects, mitochondrial function protection, energy metabolism regulation, and inhibition of oxygen radicals, apoptosis, and cellular autophagy. However, its effect on early porcine embryonic development remains unclear. Therefore, we investigated NGR1's effects on blastocyst quality, reactive oxygen species (ROS) levels, glutathione (GSH) levels, mitochondrial function, and embryonic development-related gene expression in porcine embryos by introducing NGR1 during the in vitro culture (IVC) of early porcine embryos. Our results indicate that an addition of 1 µM NGR1 significantly increased glutathione (GSH) levels, blastocyst formation rate, and total cell number and proliferation capacity; decreased ROS levels and apoptosis rates in orphan-activated porcine embryos; and improved intracellular mitochondrial distribution, enhanced membrane potential, and reduced autophagy. In addition, pluripotency-related factor levels were elevated (NANOG and octamer-binding transcription factor 4 [OCT4]), antioxidant-related genes were upregulated (nuclear factor-erythroid 2-related factor 2 [NRF2]), and apoptosis- (caspase 3 [CAS3]) and autophagy-related genes (light chain 3 [LC3B]) were downregulated. These results indicate that NGR1 can enhance early porcine embryonic development by protecting mitochondrial function.


Asunto(s)
Desarrollo Embrionario , Partenogénesis , Porcinos , Animales , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/farmacología , Mitocondrias/metabolismo , Blastocisto , Glutatión/metabolismo , Apoptosis
5.
Int J Biol Sci ; 19(11): 3595-3613, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37497008

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) and its progressive form non-alcoholic steatohepatitis (NASH) have presented a major and common health concern worldwide due to their increasing prevalence and progressive development of severe pathological conditions such as cirrhosis and liver cancer. Although a large number of drug candidates for the treatment of NASH have entered clinical trial testing, all have not been released to market due to their limited efficacy, and there remains no approved treatment for NASH available to this day. Recently, organoid technology that produces 3D multicellular aggregates with a liver tissue-like cytoarchitecture and improved functionality has been suggested as a novel platform for modeling the human-specific complex pathophysiology of NAFLD and NASH. In this review, we describe the cellular crosstalk between each cellular compartment in the liver during the pathogenesis of NAFLD and NASH. We also summarize the current state of liver organoid technology, describing the cellular diversity that could be recapitulated in liver organoids and proposing a future direction for liver organoid technology as an in vitro platform for disease modeling and drug discovery for NAFLD and NASH.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/patología , Hígado/patología , Cirrosis Hepática/etiología , Descubrimiento de Drogas , Organoides/patología
6.
Cells ; 12(11)2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37296569

RESUMEN

In recent years, bone tissue engineering (BTE) has made significant progress in promoting the direct and functional connection between bone and graft, including osseointegration and osteoconduction, to facilitate the healing of damaged bone tissues. Herein, we introduce a new, environmentally friendly, and cost-effective method for synthesizing reduced graphene oxide (rGO) and hydroxyapatite (HAp). The method uses epigallocatechin-3-O-gallate (EGCG) as a reducing agent to synthesize rGO (E-rGO), and HAp powder is obtained from Atlantic bluefin tuna (Thunnus thynnus). The physicochemical analysis indicated that the E-rGO/HAp composites had exceptional properties for use as BTE scaffolds, as well as high purity. Moreover, we discovered that E-rGO/HAp composites facilitated not only the proliferation, but also early and late osteogenic differentiation of human mesenchymal stem cells (hMSCs). Our work suggests that E-rGO/HAp composites may play a significant role in promoting the spontaneous osteogenic differentiation of hMSCs, and we envision that E-rGO/HAp composites could serve as promising candidates for BTE scaffolds, stem-cell differentiation stimulators, and implantable device components because of their biocompatible and bioactive properties. Overall, we suggest a new approach for developing cost-effective and environmentally friendly E-rGO/HAp composite materials for BTE application.


Asunto(s)
Durapatita , Células Madre Mesenquimatosas , Animales , Humanos , Durapatita/farmacología , Durapatita/química , Osteogénesis , Atún , Huesos , Diferenciación Celular
7.
Antioxidants (Basel) ; 12(4)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37107277

RESUMEN

Reactive oxygen species (ROS) promote oxidative stress, which directly causes molecular damage and disrupts cellular homeostasis, leading to skin aging. Baicalein, a flavonoid compound isolated from the root of Scutellaria baicalensis Georgi has antioxidant, anticancer, anti-inflammatory, and other medicinal properties. We aimed to investigate the protective effect of baicalein on the disruption of tight junctions and mitochondrial dysfunction caused by H2O2-induced oxidative stress in HaCaT keratinocytes. The cells were pretreated with 20 and 40 µM baicalein followed by treatment with 500 µM H2O2. The results revealed that baicalein exerted antioxidant effects by reducing intracellular ROS production. Baicalein attenuated the degradation of the ECM (MMP-1 and Col1A1) and the disruption of tight junctions (ZO-1, occludin, and claudin-4). In addition, baicalein prevented mitochondrial dysfunction (PGC-1α, PINK1, and Parkin) and restored mitochondrial respiration. Furthermore, baicalein regulated the expression of antioxidant enzymes, including NQO-1 and HO-1, via the Nrf2 signaling pathway. Our data suggest that the cytoprotective effects of baicalein against H2O2-induced oxidative stress may be mediated through the Nrf2/NQO-1/HO-1 signaling pathway. In conclusion, baicalein exerts potent antioxidant effects against H2O2-induced oxidative stress in HaCaT keratinocytes by maintaining mitochondrial homeostasis and cellular tight junctions.

8.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36430821

RESUMEN

In mice, zygotic genome activation (ZGA) occurs in two steps: minor ZGA at the one-cell stage and major ZGA at the two-cell stage. Regarding the regulation of gene transcription, minor ZGA is known to have unique features, including a transcriptionally permissive state of chromatin and insufficient splicing processes. The molecular characteristics may originate from extremely open chromatin states in the one-cell stage zygotes, yet the precise underlying mechanism has not been well studied. Recently, the R-loop, a triple-stranded nucleic acid structure of the DNA/RNA hybrid, has been implicated in gene transcription and DNA replication. Therefore, in the present study, we examined the changes in R-loop dynamics during mouse zygotic development, and its roles in zygotic transcription or DNA replication. Our analysis revealed that R-loops persist in the genome of metaphase II oocytes and preimplantation embryos from the zygote to the blastocyst stage. In particular, zygotic R-loop levels dynamically change as development proceeds, showing that R-loop levels decrease as pronucleus maturation occurs. Mechanistically, R-loop dynamics are likely linked to ZGA, as inhibition of either DNA replication or transcription at the time of minor ZGA decreases R-loop levels in the pronuclei of zygotes. However, the induction of DNA damage by treatment with anticancer agents, including cisplatin or doxorubicin, does not elicit genome-wide changes in zygotic R-loop levels. Therefore, our study suggests that R-loop formation is mechanistically associated with the regulation of mouse ZGA, especially minor ZGA, by modulating gene transcription and DNA replication.


Asunto(s)
Estructuras R-Loop , Cigoto , Ratones , Animales , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Cromatina/genética
9.
Nat Biomed Eng ; 6(4): 435-448, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35347276

RESUMEN

Human spinal-cord-like tissues induced from human pluripotent stem cells are typically insufficiently mature and do not mimic the morphological features of neurulation. Here, we report a three-dimensional culture system and protocol for the production of human spinal-cord-like organoids (hSCOs) recapitulating the neurulation-like tube-forming morphogenesis of the early spinal cord. The hSCOs exhibited neurulation-like tube-forming morphogenesis, cellular differentiation into the major types of spinal-cord neurons as well as glial cells, and mature synaptic functional activities, among other features of the development of the spinal cord. We used the hSCOs to screen for antiepileptic drugs that can cause neural-tube defects. hSCOs may also facilitate the study of the development of the human spinal cord and the modelling of diseases associated with neural-tube defects.


Asunto(s)
Defectos del Tubo Neural , Neurulación , Humanos , Morfogénesis/fisiología , Neurulación/fisiología , Organoides , Médula Espinal
10.
Adv Exp Med Biol ; 1351: 3-22, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35175609

RESUMEN

Two-dimensional graphene family nanomaterials (GFNs) are extensively studied by the researchers for their quantum size effect, large surface area, numerous reactive functional sites, and biocompatibility. The hybrid materials of GFNs exhibit an increased level of mechanical strength, optical, electronic, and catalytic activity due to their incorporation. The application of GFNs in the energy, environment, electric and electronic, personal care, and health sectors is abundant, which is not only by their unique physicochemical properties but also by their ease and large production by various synthetic approaches and economically inexpensiveness. Their general biomedical applications include bioimaging, biosensing, drug delivery, tissue engineering, killing the microbes, and demolishing the cancer tumor. The first chapter of this book describes definitions, synthetic methods, unique properties, and biomedical applications of GFNs, including graphene, graphene oxide, and reduced graphene oxide.


Asunto(s)
Grafito , Nanoestructuras , Preparaciones Farmacéuticas , Sistemas de Liberación de Medicamentos/métodos , Grafito/química , Nanoestructuras/química , Ingeniería de Tejidos/métodos
11.
Adv Exp Med Biol ; 1351: 65-87, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35175612

RESUMEN

With the emerging trends and recent advances in nanotechnology, it has become increasingly possible to overcome current hurdles for bone and cartilage regeneration. Among the wide type of nanomaterials, graphene (G) and its derivatives (graphene-based materials, GBMs) have been highlighted due to the specific physicochemical and biological properties. In this review, we present the recent development of GBM-based scaffolds for bone and cartilage engineering, focusing on the formulation/shape/size-dependent characteristics, types of scaffold and modification, biocompatibility, bioactivity and underlying mechanism, drawback and prospect of each study. From the findings described herein, mechanical property, biocompatibility, osteogenic and chondrogenic property of GBM-based scaffolds could be significantly enhanced through various scaffold fabrication methods and conjugation with polymers/nanomaterials/drugs. In conclusion, the results presented in this review support the promising prospect of using GBM-based scaffolds for improved bone and cartilage tissue engineering. Although GBM-based scaffolds have some limitations to be overcome by future research, we expect further developments to provide innovative results and improve their clinical potential for bone and cartilage regeneration.


Asunto(s)
Grafito , Células Madre Mesenquimatosas , Nanoestructuras , Diferenciación Celular , Condrogénesis , Osteogénesis , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
12.
Adv Exp Med Biol ; 1351: 149-176, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35175616

RESUMEN

Graphene has drawn tremendous interest in the field of nanoscience as a superior theranostic agent owing to its high photostability, aqueous solubility, and low toxicity. This monoatomic thick building block of a carbon allotrope exhibits zero to two-dimensional characteristics with a unique size range within the nanoscale. Their high biocompatibility, quantum yield, and photoluminescent properties make them more demandable in biomedical research. Its application in biomedical sciences has been limited due to its small-scale production. Large-scale production with an easy synthesis process is urgently required to overcome the problem associated with its translational application. Despite all possible drawbacks, the graphene-based drug/gene delivery system is gaining popularity day by day. To date, various studies suggested its application as a theranostic agent for target-specific delivery of chemotherapeutics or antibiotics against various diseases like cancer, Alzheimer's diseases, multidrug resistance diseases, and more. Also, studying the toxicological profile of graphene derivatives is very important before starting its practical use in clinical applications. This chapter has tried to abbreviate several methods and their possible incoming perspective as claimed by researchers for mass production and amplifying graphene-based treatment approaches.


Asunto(s)
Grafito , Carbono , Sistemas de Liberación de Medicamentos , Técnicas de Transferencia de Gen , Medicina de Precisión
13.
Adv Exp Med Biol ; 1351: 253-264, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35175620

RESUMEN

Two-dimensional nanomaterials have been widely explored by researchers due to their nanosized thickness and quantum size effect. They were layered double hydroxides, transition metal dichalcogenides, transition metal oxides, and synthetic silicate clays. Among the 2D nanomaterials, graphene and their derivatives were investigated extensively at first as they exhibited exceptional conductivity and a zero-band gap semimetal nature. Though graphene family nanomaterials (GFNs) were utilized for several physicochemical applications, including electronic, electric, mechanic, photonic, magnetic, and catalytic devices, their biomedical applications are still meritorious. Biosensor, bioimaging, drug delivery, tumor ablation, and tissue regeneration are some of them. The outlook of the present book chapters encompasses the preparation of GFNs, physicochemical properties, biomedical applications, biosafety, and their future directions.


Asunto(s)
Técnicas Biosensibles , Grafito , Nanoestructuras , Sistemas de Liberación de Medicamentos , Grafito/química , Nanoestructuras/química , Óxidos
14.
Biomater Res ; 25(1): 29, 2021 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-34563260

RESUMEN

Bone is a complex structure with unique cellular and molecular process in its formation. Bone tissue regeneration is a well-organized and routine process at the cellular and molecular level in humans through the activation of biochemical pathways and protein expression. Though many forms of biomaterials have been applied for bone tissue regeneration, electrospun nanofibrous scaffolds have attracted more attention among researchers with their physicochemical properties such as tensile strength, porosity, and biocompatibility. When drugs, antibiotics, or functional nanoparticles are taken as additives to the nanofiber, its efficacy towards the application gets increased. Polyphenol is a versatile green/phytochemical small molecule playing a vital role in several biomedical applications, including bone tissue regeneration. When polyphenols are incorporated as additives to the nanofibrous scaffold, their combined properties enhance cell attachment, proliferation, and differentiation in bone tissue defect. The present review describes bone biology encompassing the composition and function of bone tissue cells and exemplifies the series of biological processes associated with bone tissue regeneration. We have highlighted the molecular mechanism of bioactive polyphenols involved in bone tissue regeneration and specified the advantage of electrospun nanofiber as a wound healing scaffold. As the polyphenols contribute to wound healing with their antioxidant and antimicrobial properties, we have compiled a list of polyphenols studied, thus far, for bone tissue regeneration along with their in vitro and in vivo experimental biological results and salient observations. Finally, we have elaborated on the importance of polyphenol-loaded electrospun nanofiber in bone tissue regeneration and discussed the possible challenges and future directions in this field.

15.
Cell Stem Cell ; 28(7): 1291-1306.e10, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33848472

RESUMEN

Generation of induced oligodendrocyte progenitor cells (iOPCs) from somatic fibroblasts is a strategy for cell-based therapy of myelin diseases. However, iOPC generation is inefficient, and the resulting iOPCs exhibit limited expansion and differentiation competence. Here we overcome these limitations by transducing an optimized transcription factor combination into a permissive donor phenotype, the pericyte. Pericyte-derived iOPCs (PC-iOPCs) are stably expandable and functionally myelinogenic with high differentiation competence. Unexpectedly, however, we found that PC-iOPCs are metastable so that they can produce myelination-competent oligodendrocytes or revert to their original identity in a context-dependent fashion. Phenotypic reversion of PC-iOPCs is tightly linked to memory of their original transcriptome and epigenome. Phenotypic reversion can be disconnected from this donor cell memory effect, and in vivo myelination can eventually be achieved by transplantation of O4+ pre-oligodendrocytes. Our data show that donor cell source and memory can contribute to the fate and stability of directly converted cells.


Asunto(s)
Vaina de Mielina , Oligodendroglía , Diferenciación Celular , Fibroblastos , Células Madre
16.
J Hazard Mater ; 409: 124915, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33422758

RESUMEN

Low dimensional nanomaterials (LDNMs) have earned attention among researchers as they exhibit a larger surface area to volume and quantum confinement effect compared to high dimensional nanomaterials. LDNMs, including 0-D and 1-D, possess several beneficial biomedical properties such as bioimaging, sensor, cosmetic, drug delivery, and cancer tumors ablation. However, they threaten human beings with the adverse effects of cytotoxicity, carcinogenicity, and genotoxicity when exposed for a prolonged time in industry or laboratory. Among different toxicities, genotoxicity must be taken into consideration with utmost importance as they inherit DNA related disorders causing congenital disabilities and malignancy to human beings. Many researchers have performed NMs' genotoxicity using various cell lines and animal models and reported the effect on various physicochemical and biological factors. In the present work, we have compiled a comparative study on the genotoxicity of the same or different kinds of NMs. Notwithstanding, we have included the classification of genotoxicity, mechanism, assessment, and affecting factors. Further, we have highlighted the importance of studying the genotoxicity of LDNMs and signified the perceptions, future challenges, and possible directives in the field.


Asunto(s)
Nanoestructuras , Animales , Línea Celular , Daño del ADN , Humanos , Nanoestructuras/toxicidad
17.
Pharmaceutics ; 12(8)2020 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-32722426

RESUMEN

Research on cancer theragnosis with gold nanoparticles (AuNPs) has rapidly increased, as AuNPs have many useful characteristics for various biomedical applications, such as biocompatibility, tunable optical properties, enhanced permeability and retention (EPR), localized surface plasmon resonance (LSPR), photothermal properties, and surface enhanced Raman scattering (SERS). AuNPs have been widely utilized in cancer theragnosis, including phototherapy and photoimaging, owing to their enhanced solubility, stability, biofunctionality, cancer targetability, and biocompatibility. In this review, specific characteristics and recent modifications of AuNPs over the past decade are discussed, as well as their application in cancer theragnostics and future perspectives. In the future, AuNP-based cancer theragnosis is expected to facilitate the development of innovative and novel strategies for cancer therapy.

18.
Cancers (Basel) ; 12(6)2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32580528

RESUMEN

As the combination of therapies enhances the performance of biocompatible materials in cancer treatment, theranostic therapies are attracting increasing attention rather than individual approaches. In this review, we describe a variety of two-dimensional (2D) theranostic nanomaterials and their efficacy in ablating tumors. Though many literature reports are available to demonstrate the potential application of 2D nanomaterials, we have reviewed here cancer-treating therapies based on such multifunctional nanomaterials abstracting the content from literature works which explain both the in vitro and in vivo level of applications. In addition, we have included a discussion about the future direction of 2D nanomaterials in the field of theranostic cancer treatment.

19.
Cancers (Basel) ; 12(4)2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-32290285

RESUMEN

Hyaluronic acid (HA) is a natural mucopolysaccharide and has many useful advantages, including biocompatibility, non-immunogenicity, chemical versatility, non-toxicity, biodegradability, and high hydrophilicity. Numerous tumor cells overexpress several receptors that have a high binding affinity for HA, while these receptors are poorly expressed in normal body cells. HA-based drug delivery carriers can offer improved solubility and stability of anticancer drugs in biological environments and allow for the targeting of cancer treatments. Based on these benefits, HA has been widely investigated as a promising material for developing the advanced clinical cancer therapies in various formulations, including nanoparticles, micelles, liposomes, and hydrogels, combined with other materials. We describe various approaches and findings showing the feasibility of improvement in theragnosis probes through the application of HA.

20.
Colloids Surf B Biointerfaces ; 189: 110839, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32036333

RESUMEN

From senescence and frailty that may result from various biological, mechanical, nutritional, and metabolic processes, the human body has its own antioxidant defense enzymes to remove by-products of oxygen metabolism, and if unregulated, can cause several types of cell damage. Herein, an antioxidant, artificial nanoscale enzyme, called nanozyme (NZs), is introduced that is composed of Au nanoparticles (NPs) synthesized with a mixture of two representative phytochemicals, namely, gallic acid (GA) and isoflavone (IF), referred to as GI-Au NZs. Their unique antioxidant and anti-aging effects are monitored using Cell Counting Kit-8 and senescence-associated ß-galactosidase assays on neonatal human dermal fibroblasts (nHDFs). Furthermore, alterations in epidermal thickness and SOD activity are measured under ultraviolet light to investigate the effects of the topical application of NZs on the histological structure and antioxidant activity in hairless mice skin. Then, hepatotoxicity and nephrotoxicity in the hairless mice are monitored. It is concluded that the NZs can effectively prevent serial passage-induced senescence in nHDFs, as well as oxidative stress in mice skin, suggesting a range of strategies to further develop novel therapeutics for acute frailty.


Asunto(s)
Antioxidantes/farmacología , Fragilidad/prevención & control , Compuestos Orgánicos de Oro/farmacología , Animales , Antioxidantes/química , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Senescencia Celular/efectos de los fármacos , Ácido Gálico/química , Ácido Gálico/farmacología , Humanos , Isoflavonas/química , Isoflavonas/farmacología , Masculino , Ratones , Ratones Pelados , Microscopía Fluorescente , Compuestos Orgánicos de Oro/química , Tamaño de la Partícula , Propiedades de Superficie , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA