Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Acta Neuropathol Commun ; 11(1): 203, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38115140

RESUMEN

The prognosis of childhood medulloblastoma (MB) is often poor, and it usually requires aggressive therapy that adversely affects quality of life. microRNA-211 (miR-211) was previously identified as an important regulator of cells that descend from neural cells. Since medulloblastomas primarily affect cells with similar ontogeny, we investigated the role and mechanism of miR-211 in MB. Here we showed that miR-211 expression was highly downregulated in cell lines, PDXs, and clinical samples of different MB subgroups (SHH, Group 3, and Group 4) compared to normal cerebellum. miR-211 gene was ectopically expressed in transgenic cells from MB subgroups, and they were subjected to molecular and phenotypic investigations. Monoclonal cells stably expressing miR-211 were injected into the mouse cerebellum. miR-211 forced expression acts as a tumor suppressor in MB both in vitro and in vivo, attenuating growth, promoting apoptosis, and inhibiting invasion. In support of emerging regulatory roles of metabolism in various forms of cancer, we identified the acyl-CoA synthetase long-chain family member (ACSL4) as a direct miR-211 target. Furthermore, lipid nanoparticle-coated, dendrimer-coated, and cerium oxide-coated miR-211 nanoparticles were applied to deliver synthetic miR-211 into MB cell lines and cellular responses were assayed. Synthesizing nanoparticle-miR-211 conjugates can suppress MB cell viability and invasion in vitro. Our findings reveal miR-211 as a tumor suppressor and a potential therapeutic agent in MB. This proof-of-concept paves the way for further pre-clinical and clinical development.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , MicroARNs , Animales , Humanos , Ratones , Línea Celular Tumoral , Proliferación Celular , Neoplasias Cerebelosas/metabolismo , Regulación Neoplásica de la Expresión Génica , Homeostasis , Ligasas/genética , Ligasas/metabolismo , Meduloblastoma/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Calidad de Vida
2.
Nat Commun ; 14(1): 2509, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37130851

RESUMEN

Sustained drug delivery strategies have many potential benefits for treating a range of diseases, particularly chronic diseases that require treatment for years. For many chronic ocular diseases, patient adherence to eye drop dosing regimens and the need for frequent intraocular injections are significant barriers to effective disease management. Here, we utilize peptide engineering to impart melanin binding properties to peptide-drug conjugates to act as a sustained-release depot in the eye. We develop a super learning-based methodology to engineer multifunctional peptides that efficiently enter cells, bind to melanin, and have low cytotoxicity. When the lead multifunctional peptide (HR97) is conjugated to brimonidine, an intraocular pressure lowering drug that is prescribed for three times per day topical dosing, intraocular pressure reduction is observed for up to 18 days after a single intracameral injection in rabbits. Further, the cumulative intraocular pressure lowering effect increases ~17-fold compared to free brimonidine injection. Engineered multifunctional peptide-drug conjugates are a promising approach for providing sustained therapeutic delivery in the eye and beyond.


Asunto(s)
Sistemas de Liberación de Medicamentos , Melaninas , Animales , Conejos , Tartrato de Brimonidina , Péptidos , Aprendizaje Automático
3.
ACS Nano ; 17(11): 10651-10664, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37212741

RESUMEN

A major challenge of cancer immunotherapy is to develop delivery strategies that can effectively and safely augment the immune system's antitumor response. Here, we report on the design and synthesis of a peptide-based supramolecular filament (SF) hydrogel as a universal carrier for localized delivery of three immunomodulating agents of distinct action mechanisms and different molecular weights, including an aPD1 antibody, an IL15 cytokine, and a STING agonist (CDA). We show that in situ hydrogelation can be triggered to occur upon intratumoral injection of SF solutions containing each of aPD1, IL15, or CDA. The formed hydrogel serves as a scaffold depot for sustained and MMP-2-responsive release of immunotherapeutic agents, achieving enhanced antitumor activities and reduced side effects. When administered in combination, the aPD1/IL15 or aPD1/CDA hydrogel led to substantially increased T-cell infiltration and prevented the development of adaptive immune resistance induced by IL15 or CDA alone. These immunotherapy combinations resulted in complete regression of established large GL-261 tumors in all mice and elicited a protective long-acting and systemic antitumor immunity to prevent tumor recurrence while eradicating distant tumors. We believe this SF hydrogel offers a simple yet generalizable strategy for local delivery of diverse immunomodulators for enhanced antitumoral response and improved treatment outcomes.


Asunto(s)
Hidrogeles , Interleucina-15 , Animales , Ratones , Factores Inmunológicos , Inmunoterapia/métodos , Citocinas , Adyuvantes Inmunológicos , Línea Celular Tumoral
4.
Proc Natl Acad Sci U S A ; 120(18): e2204621120, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37098055

RESUMEN

The unique cancer-associated immunosuppression in brain, combined with a paucity of infiltrating T cells, contributes to the low response rate and poor treatment outcomes of T cell-based immunotherapy for patients diagnosed with glioblastoma multiforme (GBM). Here, we report on a self-assembling paclitaxel (PTX) filament (PF) hydrogel that stimulates macrophage-mediated immune response for local treatment of recurrent glioblastoma. Our results suggest that aqueous PF solutions containing aCD47 can be directly deposited into the tumor resection cavity, enabling seamless hydrogel filling of the cavity and long-term release of both therapeutics. The PTX PFs elicit an immune-stimulating tumor microenvironment (TME) and thus sensitizes tumor to the aCD47-mediated blockade of the antiphagocytic "don't eat me" signal, which subsequently promotes tumor cell phagocytosis by macrophages and also triggers an antitumor T cell response. As adjuvant therapy after surgery, this aCD47/PF supramolecular hydrogel effectively suppresses primary brain tumor recurrence and prolongs overall survivals with minimal off-target side effects.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Paclitaxel , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Macrófagos Asociados a Tumores/patología , Recurrencia Local de Neoplasia/tratamiento farmacológico , Hidrogeles/uso terapéutico , Inmunoterapia/métodos , Microambiente Tumoral , Línea Celular Tumoral , Neoplasias Encefálicas/tratamiento farmacológico
5.
Small ; 19(11): e2207278, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36651002

RESUMEN

Drug delivery nanoparticles (NPs) based entirely on materials generally recognized as safe that provide widespread parenchymal distribution following intracranial administration via convection-enhanced delivery (CED) are introduced. Poly(lactic-co-glycolic acid) (PLGA) NPs are coated with various poloxamers, including F68, F98, or F127, via physical adsorption to render particle surfaces non-adhesive, thereby resisting interactions with brain extracellular matrix. F127-coated PLGA (F127/PLGA) NPs provide markedly greater distribution in healthy rat brains compared to uncoated NPs and widespread coverage in orthotopically-established brain tumors. Distribution analysis of variously-sized F127/PLGA NPs determines the average rat brain tissue porosity to be between 135 and 170 nm while revealing unprecedented brain coverage of larger F127/PLGA NPs with an aid of hydraulic pressure provided by CED. Importantly, F127/PLGA NPs can be lyophilized for long-term storage without compromising their ability to penetrate the brain tissue. Further, 65- and 200-nm F127/PLGA NPs lyophilized-reconstituted and administered in a moderately hyperosmolar infusate solution show further enhance particle dissemination in the brain via osmotically-driven enlargement of the brain tissue porosity. Combination of F127/PLGA NPs and osmotic tissue modulation provides a means with a clear regulatory path to maximize the brain distribution of large NPs that enable greater drug loading and prolong drug release.


Asunto(s)
Nanopartículas , Neoplasias , Ratas , Animales , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ácido Poliglicólico , Ácido Láctico , Portadores de Fármacos , Encéfalo , Tamaño de la Partícula
6.
JCI Insight ; 7(23)2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36477356

RESUMEN

In spite of the rollout of oral pre-exposure prophylaxis (PrEP), the rate of new HIV infections remains a major health crisis. In the United States, new infections occur predominantly in men having sex with men (MSM) in rural settings where access to PrEP can be limited. As an alternative congruent with MSM sexual behavior, we have optimized and tested tenofovir (TFV) and analog-based iso-osmolar and hypo-osmolar (HOsm) rectal douches for efficacy against rectal simian/human immunodeficiency virus (SHIV) infection of macaques. Single TFV HOsm high-dose douches achieved peak plasma TFV levels similar to daily oral PrEP, while other formulations yielded lower concentrations. Rectal tissue TFV-diphosphate (TFV-DP) concentrations at the portal of virus entry, however, were markedly higher after HOsm douching than daily oral PrEP. Repeated douches led to significantly higher plasma TFV and higher TFV-DP concentrations in rectal tissue at 24 hours compared with single douches, without detectable mucosal or systemic toxicity. Using stringent repeated intrarectal SHIV exposures, single HOsm high-dose douches delivered greater protection from virus acquisition for more than 24 hours compared with oral PrEP. Our results demonstrate a rapid delivery of protective TFV doses to the rectal portal of virus entry as a potential low-cost and safe PrEP alternative.


Asunto(s)
Infecciones por VIH , Minorías Sexuales y de Género , Humanos , Animales , Masculino , Tenofovir , Macaca , Infecciones por VIH/prevención & control , Homosexualidad Masculina , VIH
7.
Thorax ; 77(8): 812-820, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34697091

RESUMEN

INTRODUCTION: Inhaled gene therapy of muco-obstructive lung diseases requires a strategy to achieve therapeutically relevant gene transfer to airway epithelium covered by particularly dehydrated and condensed mucus gel layer. Here, we introduce a synthetic DNA-loaded mucus-penetrating particle (DNA-MPP) capable of providing safe, widespread and robust transgene expression in in vivo and in vitro models of muco-obstructive lung diseases. METHODS: We investigated the ability of DNA-MPP to mediate reporter and/or therapeutic transgene expression in lung airways of a transgenic mouse model of muco-obstructive lung diseases (ie, Scnn1b-Tg) and in air-liquid interface cultures of primary human bronchial epithelial cells harvested from an individual with cystic fibrosis. A plasmid designed to silence epithelial sodium channel (ENaC) hyperactivity, which causes airway surface dehydration and mucus stasis, was intratracheally administered via DNA-MPP to evaluate therapeutic effects in vivo with or without pretreatment with hypertonic saline, a clinically used mucus-rehydrating agent. RESULTS: DNA-MPP exhibited marked greater reporter transgene expression compared with a mucus-impermeable formulation in in vivo and in vitro models of muco-obstructive lung diseases. DNA-MPP carrying ENaC-silencing plasmids provided efficient downregulation of ENaC and reduction of mucus burden in the lungs of Scnn1b-Tg mice, and synergistic impacts on both gene transfer efficacy and therapeutic effects were achieved when DNA-MPP was adjuvanted with hypertonic saline. DISCUSSION: DNA-MPP constitutes one of the rare gene delivery systems providing therapeutically meaningful gene transfer efficacy in highly relevant in vivo and in vitro models of muco-obstructive lung diseases due to its unique ability to efficiently penetrate airway mucus.


Asunto(s)
Enfermedades Pulmonares Obstructivas , Nanopartículas , Animales , ADN , Terapia Genética , Humanos , Pulmón/metabolismo , Enfermedades Pulmonares Obstructivas/terapia , Ratones , Moco/metabolismo
8.
Bioeng Transl Med ; 6(2): e10204, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34027091

RESUMEN

Sutures are applied almost universally at the site of trauma or surgery, making them an ideal platform to modulate the local, postoperative biological response, and improve surgical outcomes. To date, the only globally marketed drug-eluting sutures are coated with triclosan for antibacterial application in general surgery. Loading drug directly into the suture rather than coating the surface offers the potential to provide drug delivery functionality to microsurgical sutures and achieve sustained drug delivery without increasing suture thickness. However, conventional methods for drug incorporation directly into the suture adversely affect breaking strength. Thus, there are no market offerings for drug-eluting sutures, drug-coated, or otherwise, in ophthalmology, where very thin sutures are required. Sutures themselves help facilitate bacterial infection, and antibiotic eye drops are commonly prescribed to prevent infection after ocular surgeries. An antibiotic-eluting suture may prevent bacterial colonization of sutures and preclude patient compliance issues with eye drops. We report twisting of hundreds of individual drug-loaded, electrospun nanofibers into a single, ultra-thin, multifilament suture capable of meeting both size and strength requirements for microsurgical ocular procedures. Nanofiber-based polycaprolactone sutures demonstrated no loss in strength with loading of 8% levofloxacin, unlike monofilament sutures which lost more than 50% strength. Moreover, nanofiber-based sutures retained strength with loading of a broad range of drugs, provided antibiotic delivery for 30 days in rat eyes, and prevented ocular infection in a rat model of bacterial keratitis.

9.
Adv Ther (Weinh) ; 4(2)2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33709020

RESUMEN

We here introduce a new paradigm to promote pulmonary DNA vaccination. Specifically, we demonstrate that nanoparticles designed to rapidly penetrate airway mucus (mucus-penetrating particle or MPP) enhance the delivery of inhaled model DNA vaccine (i.e. ovalbumin-expressing plasmids) to pulmonary dendritic cells (DC), leading to robust and durable local and trans-mucosal immunity. In contrast, mucus-impermeable particles were poorly taken up by pulmonary DC following inhalation, despite their superior ability to mediate DC uptake in vitro compared to MPP. In addition to the enhanced immunity achieved in mucosal surfaces, inhaled MPP unexpectedly provided significantly greater systemic immune responses compared to gold-standard approaches applied in the clinic for systemic vaccination, including intradermal injection and intramuscular electroporation. We also showed here that inhaled MPP significantly enhanced the survival of an orthotopic mouse model of aggressive lung cancer compared to the gold-standard approaches. Importantly, we discovered that MPP-mediated pulmonary DNA vaccination induced memory T-cell immunity, particularly the ready-to-act effector memory-biased phenotype, both locally and systemically. The findings here underscore the importance of breaching the airway mucus barrier to facilitate DNA vaccine uptake by pulmonary DC and thus to initiate full-blown immune responses.

10.
Sci Transl Med ; 13(576)2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441428

RESUMEN

Inflammation contributes to nearly 4 million global premature births annually. Here, we used a mouse model of intrauterine inflammation to test clinically used formulations, as well as engineered nanoformulations, for the prevention of preterm birth (PTB). We observed that neither systemic 17a-hydroxyprogesterone caproate (Makena) nor vaginal progesterone gel (Crinone) was sufficient to prevent inflammation-induced PTB, consistent with recent clinical trial failures. However, we found that vaginal delivery of mucoinert nanosuspensions of histone deacetylase (HDAC) inhibitors, in some cases with the addition of progesterone, prevented PTB and resulted in delivery of live pups exhibiting neurotypical development. In human myometrial cells in vitro, the P4/HDAC inhibitor combination both inhibited cell contractility and promoted the anti-inflammatory action of P4 by increasing progesterone receptor B stability. Here, we demonstrate the use of vaginally delivered drugs to prevent intrauterine inflammation-induced PTB resulting in the birth of live offspring in a preclinical animal model.


Asunto(s)
Preparaciones Farmacéuticas , Nacimiento Prematuro , Caproato de 17 alfa-Hidroxiprogesterona , Animales , Femenino , Nanomedicina , Embarazo , Nacimiento Prematuro/tratamiento farmacológico , Nacimiento Prematuro/prevención & control , Progesterona , Progestinas
11.
Trends Mol Med ; 27(5): 436-450, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33414070

RESUMEN

The efficacy of drugs administered by traditional routes is limited by numerous biological barriers that preclude reaching the intended site of action. Further, full body systemic exposure leads to dose-limiting, off-target side effects. Topical formulations may provide more efficacious drug and nucleic acid delivery for diseases and conditions affecting mucosal tissues, but the mucus protecting our epithelial surfaces is a formidable barrier. Here, we describe recent advances in mucus-penetrating approaches for drug and nucleic acid delivery to the ocular surface, the female reproductive tract, the gastrointestinal tract, and the airways.


Asunto(s)
Administración Tópica , Sistemas de Liberación de Medicamentos/tendencias , Moco , Nanopartículas , Administración Intravaginal , Administración Oftálmica , Animales , Vías de Administración de Medicamentos , Células Epiteliales , Femenino , Tracto Gastrointestinal , Humanos , Membrana Mucosa , Nanomedicina/métodos , Nanopartículas/química , Nanopartículas/uso terapéutico
12.
Drug Deliv Transl Res ; 11(5): 2085-2095, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33164163

RESUMEN

Intravesical chemotherapy is a key approach for treating refractory non-muscle-invasive bladder cancer (NMIBC). However, the effectiveness of intravesical chemotherapy is limited by bladder tissue penetration and retention. Here, we describe the development of a docetaxel nanosuspension that, when paired with a low osmolality (hypotonic) vehicle, demonstrates increased uptake by the bladder urothelium with minimal systemic exposure. We compare the bladder residence time and efficacy in an immune-competent rat model of NMIBC to the clinical comparator, solubilized docetaxel (generic Taxotere) diluted for intravesical administration. We found that only the intravesical docetaxel nanosuspension significantly decreased cell proliferation compared to untreated tumor tissues. The results presented here suggest that the combination of nanoparticle-based chemotherapy and a hypotonic vehicle can provide more efficacious local drug delivery to bladder tissue for improved treatment of refractory NMIBC.


Asunto(s)
Nanopartículas , Neoplasias de la Vejiga Urinaria , Administración Intravesical , Animales , Docetaxel , Inmunoterapia , Ratas , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/patología
13.
Sci Adv ; 6(18): eaay1344, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32494662

RESUMEN

The delivery of systemically administered gene therapies to brain tumors is exceptionally difficult because of the blood-brain barrier (BBB) and blood-tumor barrier (BTB). In addition, the adhesive and nanoporous tumor extracellular matrix hinders therapeutic dispersion. We first developed the use of magnetic resonance image (MRI)-guided focused ultrasound (FUS) and microbubbles as a platform approach for transfecting brain tumors by targeting the delivery of systemically administered "brain-penetrating" nanoparticle (BPN) gene vectors across the BTB/BBB. Next, using an MRI-based transport analysis, we determined that after FUS-mediated BTB/BBB opening, mean interstitial flow velocity magnitude doubled, with "per voxel" flow directions changing by an average of ~70° to 80°. Last, we observed that FUS-mediated BTB/BBB opening increased the dispersion of directly injected BPNs through tumor tissue by >100%. We conclude that FUS-mediated BTB/BBB opening yields markedly augmented interstitial tumor flow that, in turn, plays a critical role in enhancing BPN transport through tumor tissue.


Asunto(s)
Neoplasias Encefálicas , Nanopartículas , Barrera Hematoencefálica , Encéfalo/diagnóstico por imagen , Neoplasias Encefálicas/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Microburbujas , Transfección
14.
Drug Deliv Transl Res ; 10(3): 572-581, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32323162

RESUMEN

Several generations of poly(ß-amino ester) (PBAE) polymers have been developed for efficient cellular transfection. However, PBAE-based gene vectors, similar to other cationic materials, cannot readily provide widespread gene transfer in the brain due to adhesive interactions with the extracellular matrix (ECM). We thus engineered eight vector candidates using previously identified lead PBAE polymer variants but endowed them with non-adhesive surface coatings to facilitate their spread through brain ECM. Specifically, we screened for the ability to provide widespread gene transfer in tumor spheroids and healthy mouse brains. We then confirmed that a lead formulation provided widespread transgene expression in orthotopically established brain tumor models with an excellent in vivo safety profile. Lastly, we developed a method to store it long-term while fully retaining its brain-penetrating property. This new platform provides a broad utility in evaluating novel genetic targets for gene therapy of brain tumors and neurological disorders in preclinical and clinical settings. Graphical abstract We engineered biodegradable DNA-loaded brain-penetrating nanoparticles (DNA-BPN) possessing small particle diameters (< 70 nm) and non-adhesive surface coatings to facilitate their spread through brain tumor extracellular matrix (ECM). These DNA-BPN provide widespread gene transfer in models recapitulating the ECM barrier, including three-dimensional multicellular tumor spheroids and mice with orthotopically established brain tumor.


Asunto(s)
Neoplasias Encefálicas/genética , ADN/administración & dosificación , Terapia Genética/métodos , Polímeros/química , Animales , Línea Celular Tumoral , Materiales Biocompatibles Revestidos/administración & dosificación , Materiales Biocompatibles Revestidos/química , ADN/química , Matriz Extracelular/química , Femenino , Expresión Génica , Humanos , Ratones , Nanopartículas , Tamaño de la Partícula , Transfección , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Nat Commun ; 11(1): 694, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-32019921

RESUMEN

Neovascular age-related macular degeneration and diabetic retinopathy are prevalent causes of vision loss requiring frequent intravitreous injections of VEGF-neutralizing proteins, and under-treatment is common and problematic. Here we report incorporation of sunitinib, a tyrosine kinase inhibitor that blocks VEGF receptors, into a non-inflammatory biodegradable polymer to generate sunitinib microparticles specially formulated to self-aggregate into a depot. A single intravitreous injection of sunitinib microparticles potently suppresses choroidal neovascularization in mice for six months and in another model, blocks VEGF-induced leukostasis and retinal nonperfusion, which are associated with diabetic retinopathy progression. After intravitreous injection in rabbits, sunitinib microparticles self-aggregate into a depot that remains localized and maintains therapeutic levels of sunitinib in retinal pigmented epithelium/choroid and retina for more than six months. There is no intraocular inflammation or retinal toxicity. Intravitreous injection of sunitinib microparticles provides a promising approach to achieve sustained suppression of VEGF signaling and improve outcomes in patients with retinal vascular diseases.


Asunto(s)
Enfermedades de la Retina/tratamiento farmacológico , Sunitinib/administración & dosificación , Animales , Neovascularización Coroidal/tratamiento farmacológico , Neovascularización Coroidal/genética , Neovascularización Coroidal/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Conejos , Receptores de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptores de Factores de Crecimiento Endotelial Vascular/genética , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Enfermedades de la Retina/genética , Enfermedades de la Retina/metabolismo , Sunitinib/química , Sunitinib/farmacocinética , Porcinos , Porcinos Enanos , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
16.
Eur Respir J ; 55(1)2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31672759

RESUMEN

The mechanisms by which cigarette smoking impairs airway mucus clearance are not well understood. We recently established a ferret model of cigarette smoke-induced chronic obstructive pulmonary disease (COPD) exhibiting chronic bronchitis. We investigated the effects of cigarette smoke on mucociliary transport (MCT).Adult ferrets were exposed to cigarette smoke for 6 months, with in vivo mucociliary clearance measured by technetium-labelled DTPA retention. Excised tracheae were imaged with micro-optical coherence tomography. Mucus changes in primary human airway epithelial cells and ex vivo ferret airways were assessed by histology and particle tracking microrheology. Linear mixed models for repeated measures identified key determinants of MCT.Compared to air controls, cigarette smoke-exposed ferrets exhibited mucus hypersecretion, delayed mucociliary clearance (-89.0%, p<0.01) and impaired tracheal MCT (-29.4%, p<0.05). Cholinergic stimulus augmented airway surface liquid (ASL) depth (5.8±0.3 to 7.3±0.6 µm, p<0.0001) and restored MCT (6.8±0.8 to 12.9±1.2 mm·min-1, p<0.0001). Mixed model analysis controlling for covariates indicated smoking exposure, mucus hydration (ASL) and ciliary beat frequency were important predictors of MCT. Ferret mucus was hyperviscous following smoke exposure in vivo or in vitro, and contributed to diminished MCT. Primary cells from smokers with and without COPD recapitulated these findings, which persisted despite the absence of continued smoke exposure.Cigarette smoke impairs MCT by inducing airway dehydration and increased mucus viscosity, and can be partially abrogated by cholinergic secretion of fluid secretion. These data elucidate the detrimental effects of cigarette smoke exposure on mucus clearance and suggest additional avenues for therapeutic intervention.


Asunto(s)
Deshidratación , Enfermedad Pulmonar Obstructiva Crónica , Adulto , Humanos , Depuración Mucociliar , Moco , Fumar/efectos adversos , Viscosidad
17.
Proteomics ; 19(21-22): e1800451, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31231915

RESUMEN

The targeting of glutamine metabolism specifically via pharmacological inhibition of glutaminase 1 (GLS1) has been translated into clinical trials as a novel therapy for several cancers. The results, though encouraging, show room for improvement in terms of tumor reduction. In this study, the glutaminase II pathway is found to be upregulated for glutamate production upon GLS1 inhibition in pancreatic tumors. Moreover, genetic suppression of glutamine transaminase K (GTK), a key enzyme of the glutaminase II pathway, leads to the complete inhibition of pancreatic tumorigenesis in vivo unveiling GTK as a new metabolic target for cancer therapy. These results suggest that current trials using GLS1 inhibition as a therapeutic approach targeting glutamine metabolism in cancer should take into account the upregulation of other metabolic pathways that can lead to glutamate production; one such pathway is the glutaminase II pathway via GTK.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Glutaminasa/genética , Liasas/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Transaminasas/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ácido Glutámico/metabolismo , Glutaminasa/antagonistas & inhibidores , Glutamina/genética , Glutamina/metabolismo , Humanos , Liasas/antagonistas & inhibidores , Redes y Vías Metabólicas/efectos de los fármacos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Transaminasas/antagonistas & inhibidores
18.
Eur Respir J ; 54(2)2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31164433

RESUMEN

Perturbations in airway mucus properties contribute to lung function decline in patients with chronic obstructive pulmonary disease (COPD). While alterations in bulk mucus rheology have been widely explored, microscopic mucus properties that directly impact on the dynamics of microorganisms and immune cells in the COPD lungs are yet to be investigated.We hypothesised that a tightened mesh structure of spontaneously expectorated mucus (i.e. sputum) would contribute to increased COPD disease severity. Here, we investigated whether the mesh size of COPD sputum, quantified by muco-inert nanoparticle (MIP) diffusion, correlated with sputum composition and lung function measurements.The microstructure of COPD sputum was assessed based on the mean squared displacement (MSD) of variously sized MIPs measured by multiple particle tracking. MSD values were correlated with sputum composition and spirometry. In total, 33 samples collected from COPD or non-COPD individuals were analysed.We found that 100 nm MIPs differentiated microstructural features of COPD sputum. The mobility of MIPs was more hindered in sputum samples from patients with severe COPD, suggesting a tighter mucus mesh size. Specifically, MSD values inversely correlated with lung function.These findings suggest that sputum microstructure may serve as a novel risk factor for COPD progression and severity.


Asunto(s)
Nanopartículas/química , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Fumar/efectos adversos , Esputo , Difusión , Femenino , Volumen Espiratorio Forzado , Humanos , Masculino , Persona de Mediana Edad , Pruebas de Función Respiratoria , Reología , Factores de Riesgo , Espirometría
19.
J Control Release ; 303: 1-11, 2019 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-30978431

RESUMEN

Gene therapy of malignant gliomas has shown a lack of clinical success to date due in part to inability of conventional gene vectors to achieve widespread gene transfer throughout highly disseminated tumor areas within the brain. Here, we demonstrate that newly engineered polymer-based DNA-loaded nanoparticles (DNA-NP) possessing small particle diameters (~50 nm) and non-adhesive surface polyethylene glycol (PEG) coatings efficiently penetrate brain tumor tissue as well as healthy brain parenchyma. Specifically, this brain-penetrating nanoparticle (BPN), following intracranial administration via convection enhanced delivery (CED), provides widespread transgene expression in heathy rodent striatum and an aggressive brain tumor tissue established orthotopically in rats. The ability of BPN to efficiently traverse both tissues is of great importance as the highly invasive glioma cells infiltrated into normal brain tissue are responsible for tumor recurrence. Of note, the transgene expression within the orthotopic tumor tissue occurred preferentially in glioma cells over microglial cells. We also show that three-dimensional (3D) multicellular spheroids established with malignant glioma cells, unlike conventional two-dimensional (2D) cell cultures, serve as an excellent in vitro model reliably predicting gene vector behaviors in vivo. Briefly, DNA-NP possessing greater surface PEG coverage exhibited more uniform and higher-level transgene expression both in the 3D model and in vivo, whereas the trend was opposite in 2D culture. The finding here alerts that gene transfer studies based primarily on 2D cultures should be interpreted with caution and underscores the relevance of 3D models for screening newly engineered gene vectors prior to their in vivo evaluation.


Asunto(s)
Neoplasias Encefálicas/terapia , Terapia Genética , Glioma/terapia , Animales , Encéfalo/metabolismo , Neoplasias Encefálicas/genética , Línea Celular Tumoral , ADN/administración & dosificación , Femenino , Expresión Génica , Glioma/genética , Nanopartículas/administración & dosificación , Polietilenglicoles/administración & dosificación , Polietileneimina/administración & dosificación , Ratas Endogámicas F344 , Esferoides Celulares/metabolismo , Transgenes
20.
JCI Insight ; 4(8)2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30996141

RESUMEN

Cystic fibrosis (CF) is characterized by increased mucus viscosity and delayed mucociliary clearance that contributes to progressive decline of lung function. Mucus in the respiratory and GI tract is excessively adhesive in the presence of airway dehydration and excess extracellular Ca2+ upon mucin release, promoting hyperviscous, densely packed mucins characteristic of CF. Therapies that target mucins directly through ionic interactions remain unexploited. Here we show that poly (acetyl, arginyl) glucosamine (PAAG), a polycationic biopolymer suitable for human use, interacts directly with mucins in a Ca2+-sensitive manner to reduce CF mucus viscoelasticity and improve its transport. Notably, PAAG induced a linear structure of purified MUC5B and altered its sedimentation profile and viscosity, indicative of proper mucin expansion. In vivo, PAAG nebulization improved mucociliary transport in CF rats with delayed mucus clearance, and cleared mucus plugging in CF ferrets. This study demonstrates the potential use of a synthetic glycopolymer PAAG as a molecular agent that could benefit patients with a broad array of mucus diseases.


Asunto(s)
Fibrosis Quística/tratamiento farmacológico , Glucosamina/análogos & derivados , Mucina 5B/metabolismo , Depuración Mucociliar/efectos de los fármacos , Moco/efectos de los fármacos , Polímeros/farmacología , Animales , Fibrosis Quística/genética , Fibrosis Quística/patología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Modelos Animales de Enfermedad , Hurones , Glucosamina/farmacología , Glucosamina/uso terapéutico , Humanos , Ratones , Ratones Endogámicos CFTR , Mucina 5B/química , Moco/metabolismo , Polímeros/uso terapéutico , Estructura Cuaternaria de Proteína/efectos de los fármacos , Ratas , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/patología , Viscosidad/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA