Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nature ; 618(7963): 169-179, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37225982

RESUMEN

Target occupancy is often insufficient to elicit biological activity, particularly for RNA, compounded by the longstanding challenges surrounding the molecular recognition of RNA structures by small molecules. Here we studied molecular recognition patterns between a natural-product-inspired small-molecule collection and three-dimensionally folded RNA structures. Mapping these interaction landscapes across the human transcriptome defined structure-activity relationships. Although RNA-binding compounds that bind to functional sites were expected to elicit a biological response, most identified interactions were predicted to be biologically inert as they bind elsewhere. We reasoned that, for such cases, an alternative strategy to modulate RNA biology is to cleave the target through a ribonuclease-targeting chimera, where an RNA-binding molecule is appended to a heterocycle that binds to and locally activates RNase L1. Overlay of the substrate specificity for RNase L with the binding landscape of small molecules revealed many favourable candidate binders that might be bioactive when converted into degraders. We provide a proof of concept, designing selective degraders for the precursor to the disease-associated microRNA-155 (pre-miR-155), JUN mRNA and MYC mRNA. Thus, small-molecule RNA-targeted degradation can be leveraged to convert strong, yet inactive, binding interactions into potent and specific modulators of RNA function.


Asunto(s)
Endorribonucleasas , MicroARNs , ARN Mensajero , Humanos , Genes jun/genética , Genes myc/genética , MicroARNs/antagonistas & inhibidores , MicroARNs/química , MicroARNs/genética , MicroARNs/metabolismo , Conformación de Ácido Nucleico , ARN Mensajero/antagonistas & inhibidores , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato , Endorribonucleasas/química , Endorribonucleasas/metabolismo , Transcriptoma
2.
ACS Chem Biol ; 17(2): 474-482, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35044149

RESUMEN

The discovery of biofunctional natural products (NPs) has relied on the phenotypic screening of extracts and subsequent laborious work to dereplicate active NPs and define cellular targets. Herein, NPs present as crude extracts, partially purified fractions, and pure compounds were screened directly against molecular target libraries of RNA structural motifs in a library-versus-library fashion. We identified 21 hits with affinity for RNA, including one pure NP, nocathiacin I (NOC-I). The resultant data set of NOC-I-RNA fold interactions was mapped to the human transcriptome to define potential bioactive interactions. Interestingly, one of NOC-I's most preferred RNA folds is present in the nuclease processing site in the oncogenic, noncoding microRNA-18a, which NOC-I binds with low micromolar affinity. This affinity for the RNA translates into the selective inhibition of its nuclease processing in vitro and in prostate cancer cells, in which NOC-I also triggers apoptosis. In principle, adaptation of this combination of experimental and predictive approaches to dereplicate NPs from the other hits (extracts and partially purified fractions) could fundamentally transform the current paradigm and accelerate the discovery of NPs that bind RNA and their simultaneous correlation to biological targets.


Asunto(s)
Productos Biológicos , MicroARNs , Productos Biológicos/química , Humanos , ARN , Bibliotecas de Moléculas Pequeñas/farmacología
3.
ACS Chem Biol ; 16(7): 1111-1127, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34166593

RESUMEN

The interrogation and manipulation of biological systems by small molecules is a powerful approach in chemical biology. Ideal compounds selectively engage a target and mediate a downstream phenotypic response. Although historically small molecule drug discovery has focused on proteins and enzymes, targeting RNA is an attractive therapeutic alternative, as many disease-causing or -associated RNAs have been identified through genome-wide association studies. As the field of RNA chemical biology emerges, the systematic evaluation of target validation and modulation of target-associated pathways is of paramount importance. In this Review, through an examination of case studies, we outline the experimental characterization, including methods and tools, to evaluate comprehensively the impact of small molecules that target RNA on cellular phenotype.


Asunto(s)
Compuestos Orgánicos/farmacología , ARN/metabolismo , Animales , Línea Celular Tumoral , Descubrimiento de Drogas , Humanos , Empalme del ARN/efectos de los fármacos , Riboswitch/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología
4.
Nat Chem ; 12(10): 952-961, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32839603

RESUMEN

Vascular endothelial growth factor A (VEGFA) stimulates angiogenesis in human endothelial cells, and increasing its expression is a potential treatment for heart failure. Here, we report the design of a small molecule (TGP-377) that specifically and potently enhances VEGFA expression by the targeting of a non-coding microRNA that regulates its expression. A selection-based screen, named two-dimensional combinatorial screening, revealed preferences in small-molecule chemotypes that bind RNA and preferences in the RNA motifs that bind small molecules. The screening program increased the dataset of known RNA motif-small molecule binding partners by 20-fold. Analysis of this dataset against the RNA-mediated pathways that regulate VEGFA defined that the microRNA-377 precursor, which represses Vegfa messenger RNA translation, is druggable in a selective manner. We designed TGP-377 to potently and specifically upregulate VEGFA in human umbilical vein endothelial cells. These studies illustrate the power of two-dimensional combinatorial screening to define molecular recognition events between 'undruggable' biomolecules and small molecules, and the ability of sequence-based design to deliver efficacious structure-specific compounds.


Asunto(s)
Diseño de Fármacos , Evaluación Preclínica de Medicamentos , MicroARNs/química , MicroARNs/metabolismo , Pliegue del ARN , Bibliotecas de Moléculas Pequeñas/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , MicroARNs/genética , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Factor A de Crecimiento Endotelial Vascular/genética
5.
J Am Chem Soc ; 142(15): 6970-6982, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32233464

RESUMEN

Many RNAs are processed into biologically active transcripts, the aberrant expression of which can contribute to disease phenotypes. For example, the primary microRNA-17-92 (pri-miR-17-92) cluster contains six microRNAs (miRNAs) that collectively act in several disease settings. Herein, we used sequence-based design of structure-specific ligands to target a common structure in the Dicer processing sites of three miRNAs in the cluster, miR-17, miR-18a, and miR-20a, thereby inhibiting their biogenesis. The compound was optimized to afford a dimeric molecule that binds the Dicer processing site and an adjacent bulge, affording a 100-fold increase in potency. The dimer's mode of action was then extended from simple binding to direct cleavage by conjugation to bleomycin A5 in a manner that imparts RNA-selective cleavage or to indirect cleavage by recruiting an endogenous nuclease, or a ribonuclease targeting chimera (RIBOTAC). Interestingly, the dimer-bleomycin conjugate cleaves the entire pri-miR-17-92 cluster and hence functionally inhibits all six miRNAs emanating from it. The compound selectively reduced levels of the cluster in three disease models: polycystic kidney disease, prostate cancer, and breast cancer, rescuing disease-associated phenotypes in the latter two. Further, the bleomycin conjugate exerted selective effects on the miRNome and proteome in prostate cancer cells. In contrast, the RIBOTAC only depleted levels of pre- and mature miR-17, -18a, and 20a, with no effect on the primary transcript, in accordance with the cocellular localization of RNase L, the pre-miRNA targets, and the compound. These studies demonstrate a strategy to tune RNA structure-targeting compounds to the cellular localization of the target.


Asunto(s)
Carcinogénesis/metabolismo , Ligandos , MicroARNs/metabolismo , Humanos , Estructura Molecular
6.
Cell Chem Biol ; 25(9): 1086-1094.e7, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30251629

RESUMEN

Potential RNA drug targets for small molecules are found throughout the human transcriptome, yet small molecules known to elicit a pharmacological response by directly targeting RNA are limited to antibacterials. Herein, we describe AbsorbArray, a small molecule microarray-based approach that allows for unmodified compounds, including FDA-approved drugs, to be probed for binding to RNA motif libraries in a massively parallel format. Several drug classes bind RNA including kinase and topoisomerase inhibitors. The latter avidly bound the motif found in the Dicer site of oncogenic microRNA (miR)-21 and inhibited its processing both in vitro and in cells. The most potent compound de-repressed a downstream protein target and inhibited a miR-21-mediated invasive phenotype. The compound's activity was ablated upon overexpression of pre-miR-21. Target validation via chemical crosslinking and isolation by pull-down showed direct engagement of pre-miR-21 by the small molecule in cells, demonstrating that RNAs should indeed be considered druggable.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Diseño de Fármacos , MicroARNs/metabolismo , Neoplasias/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Línea Celular Tumoral , Aprobación de Drogas , Descubrimiento de Drogas/métodos , Humanos , MicroARNs/genética , Terapia Molecular Dirigida , Neoplasias/genética , Neoplasias/metabolismo
7.
ACS Cent Sci ; 3(3): 205-216, 2017 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-28386598

RESUMEN

RNA drug targets are pervasive in cells, but methods to design small molecules that target them are sparse. Herein, we report a general approach to score the affinity and selectivity of RNA motif-small molecule interactions identified via selection. Named High Throughput Structure-Activity Relationships Through Sequencing (HiT-StARTS), HiT-StARTS is statistical in nature and compares input nucleic acid sequences to selected library members that bind a ligand via high throughput sequencing. The approach allowed facile definition of the fitness landscape of hundreds of thousands of RNA motif-small molecule binding partners. These results were mined against folded RNAs in the human transcriptome and identified an avid interaction between a small molecule and the Dicer nuclease-processing site in the oncogenic microRNA (miR)-18a hairpin precursor, which is a member of the miR-17-92 cluster. Application of the small molecule, Targapremir-18a, to prostate cancer cells inhibited production of miR-18a from the cluster, de-repressed serine/threonine protein kinase 4 protein (STK4), and triggered apoptosis. Profiling the cellular targets of Targapremir-18a via Chemical Cross-Linking and Isolation by Pull Down (Chem-CLIP), a covalent small molecule-RNA cellular profiling approach, and other studies showed specific binding of the compound to the miR-18a precursor, revealing broadly applicable factors that govern small molecule drugging of noncoding RNAs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA