Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Biol Psychiatry ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37924924

RESUMEN

BACKGROUND: Schizophrenia is associated with increased risk of developing multiple aging-related diseases, including metabolic, respiratory, and cardiovascular diseases, and Alzheimer's and related dementias, leading to the hypothesis that schizophrenia is accompanied by accelerated biological aging. This has been difficult to test because there is no widely accepted measure of biological aging. Epigenetic clocks are promising algorithms that are used to calculate biological age on the basis of information from combined cytosine-phosphate-guanine sites (CpGs) across the genome, but they have yielded inconsistent and often negative results about the association between schizophrenia and accelerated aging. Here, we tested the schizophrenia-aging hypothesis using a DNA methylation measure that is uniquely designed to predict an individual's rate of aging. METHODS: We brought together 5 case-control datasets to calculate DunedinPACE (Pace of Aging Calculated from the Epigenome), a new measure trained on longitudinal data to detect differences between people in their pace of aging over time. Data were available from 1812 psychosis cases (schizophrenia or first-episode psychosis) and 1753 controls. Mean chronological age was 38.9 (SD = 13.6) years. RESULTS: We observed consistent associations across datasets between schizophrenia and accelerated aging as measured by DunedinPACE. These associations were not attributable to tobacco smoking or clozapine medication. CONCLUSIONS: Schizophrenia is accompanied by accelerated biological aging by midlife. This may explain the wide-ranging risk among people with schizophrenia for developing multiple different age-related physical diseases, including metabolic, respiratory, and cardiovascular diseases, and dementia. Measures of biological aging could prove valuable for assessing patients' risk for physical and cognitive decline and for evaluating intervention effectiveness.

2.
J Crohns Colitis ; 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37551994

RESUMEN

BACKGROUND AND AIMS: Anti-TNF treatment failure in patients with inflammatory bowel disease (IBD) is common and frequently related to low drug concentrations. In order to identify patients who may benefit from dose optimisation at the outset of anti-TNF therapy, we sought to define epigenetic biomarkers in whole blood at baseline associated with anti-TNF drug concentrations at week 14. METHODS: DNA methylation from 1,104 whole blood samples from 385 patients in the Personalised Anti-TNF Therapy in Crohn's disease (PANTS) study were assessed using the Illumina EPIC Beadchip (v1.0) at baseline, weeks 14, 30 and 54. We compared DNA methylation profiles in anti-TNF-treated patients who experienced primary non-response at week 14 and if they were assessed at subsequent time points, were not in remission at week 30 or 54 (infliximab n = 99, adalimumab n = 94), with patients who responded at week 14 and when assessed at subsequent time points, were in remission at week 30 or 54 (infliximab n = 99, adalimumab n = 93). RESULTS: Overall, between baseline and week 14, we observed 4,999 differentially methylated probes (DMPs) annotated to 2376 genes following anti-TNF treatment. Pathway analysis identified 108 significant gene ontology terms enriched in biological processes related to immune system processes and responses.Epigenome-wide association (EWAS) analysis identified 323 DMPs annotated to 210 genes at baseline associated with higher anti-TNF drug concentrations at week 14. Of these, 125 DMPs demonstrated shared associations with other common traits (proportion of shared CpGs compared to DMPs) including body mass index (23.2%), followed by CRP (11.5%), smoking (7.4%), alcohol consumption per day (7.1%) and IBD type (6.8%). EWAS of primary non-response to anti-TNF identified 20 DMPs that were associated with both anti-TNF drug concentration and primary non-response to anti-TNF with a strong correlation of the coefficients (Spearman's rho = -0.94, p < 0.001). CONCLUSION: Baseline DNA methylation profiles may be used as a predictor for anti-TNF drug concentration at week 14 to identify patients who may benefit from dose optimisation at the outset of anti-TNF therapy.

3.
J Gerontol B Psychol Sci Soc Sci ; 78(8): 1375-1385, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37058531

RESUMEN

OBJECTIVES: Individuals with more education are at lower risk of developing multiple, different age-related diseases than their less-educated peers. A reason for this might be that individuals with more education age slower. There are 2 complications in testing this hypothesis. First, there exists no definitive measure of biological aging. Second, shared genetic factors contribute toward both lower educational attainment and the development of age-related diseases. Here, we tested whether the protective effect of educational attainment was associated with the pace of aging after accounting for genetic factors. METHODS: We examined data from 5 studies together totaling almost 17,000 individuals with European ancestry born in different countries during different historical periods, ranging in age from 16 to 98 years old. To assess the pace of aging, we used DunedinPACE, a DNA methylation algorithm that reflects an individual's rate of aging and predicts age-related decline and Alzheimer's disease and related disorders. To assess genetic factors related to education, we created a polygenic score based on the results of a genome-wide association study of educational attainment. RESULTS: Across the 5 studies, and across the life span, higher educational attainment was associated with a slower pace of aging even after accounting for genetic factors (meta-analysis effect size = -0.20; 95% confidence interval [CI]: -0.30 to -0.10; p = .006). Further, this effect persisted after taking into account tobacco smoking (meta-analysis effect size = -0.13; 95% CI: -0.21 to -0.05; p = .01). DISCUSSION: These results indicate that higher levels of education have positive effects on the pace of aging, and that the benefits can be realized irrespective of individuals' genetics.


Asunto(s)
Éxito Académico , Estudio de Asociación del Genoma Completo , Humanos , Anciano , Anciano de 80 o más Años , Escolaridad , Envejecimiento/genética
4.
Am J Med Genet B Neuropsychiatr Genet ; 189(5): 151-162, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35719055

RESUMEN

Genome-wide association studies (GWAS) have identified multiple genomic regions associated with schizophrenia, although many variants reside in noncoding regions characterized by high linkage disequilibrium (LD) making the elucidation of molecular mechanisms challenging. A genomic region on chromosome 10q24 has been consistently associated with schizophrenia with risk attributed to the AS3MT gene. Although AS3MT is hypothesized to play a role in neuronal development and differentiation, work to fully understand the function of this gene has been limited. In this study we explored the function of AS3MT using a neuronal cell line (SH-SY5Y). We confirm previous findings of isoform specific expression of AS3MT during SH-SY5Y differentiation toward neuronal fates. Using CRISPR-Cas9 gene editing we generated AS3MT knockout SH-SY5Y cell lines and used RNA-seq to identify significant changes in gene expression in pathways associated with neuronal development, inflammation, extracellular matrix formation, and RNA processing, including dysregulation of other genes strongly implicated in schizophrenia. We did not observe any morphological changes in cell size and neurite length following neuronal differentiation and MAP2 immunocytochemistry. These results provide novel insights into the potential role of AS3MT in brain development and identify pathways through which genetic variation in this region may confer risk for schizophrenia.


Asunto(s)
Neuroblastoma , Esquizofrenia , Estudio de Asociación del Genoma Completo , Humanos , Desequilibrio de Ligamiento/genética , Metiltransferasas/genética , Neurogénesis/genética , Esquizofrenia/genética
5.
Neurobiol Aging ; 116: 16-24, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35537341

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal motoneuron disease with a monogenic cause in approximately 10% of cases. However, familial clustering of disease without inheritance in a Mendelian manner and the broad range of phenotypes suggest the presence of epigenetic mechanisms. Hence, we performed an epigenome-wide association study on sporadic, symptomatic and presymptomatic familial ALS cases with mutations in C9ORF72 and FUS and healthy controls studying DNA methylation in blood cells. We found differentially methylated DNA positions (DMPs) and regions embedding DMPs associated with either disease status, C9ORF72 or FUS mutation status. One DMP reached methylome-wide significance and is attributed to a region encoding a long non-coding RNA (LOC389247). Furthermore, we could demonstrate co-localization of DMPs with an ALS-associated GWAS region near the SCN7A/SCN9A and XIRP2 genes. Finally, a classifier model that predicts disease status (ALS, healthy) classified all but one presymptomatic mutation carrier as healthy, suggesting that the presence of ALS symptoms rather than the presence of ALS-associated genetic mutations is associated with blood cell DNA methylation.


Asunto(s)
Esclerosis Amiotrófica Lateral , Esclerosis Amiotrófica Lateral/genética , Células Sanguíneas , Proteína C9orf72/genética , Epigenoma , Humanos , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.7/genética , Proteína FUS de Unión a ARN/genética
6.
Hum Mol Genet ; 31(18): 3181-3190, 2022 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-35567415

RESUMEN

Most epigenetic epidemiology to date has utilized microarrays to identify positions in the genome where variation in DNA methylation is associated with environmental exposures or disease. However, these profile less than 3% of DNA methylation sites in the human genome, potentially missing affected loci and preventing the discovery of disrupted biological pathways. Third generation sequencing technologies, including Nanopore sequencing, have the potential to revolutionize the generation of epigenetic data, not only by providing genuine genome-wide coverage but profiling epigenetic modifications direct from native DNA. Here we assess the viability of using Nanopore sequencing for epidemiology by performing a comparison with DNA methylation quantified using the most comprehensive microarray available, the Illumina EPIC array. We implemented a CRISPR-Cas9 targeted sequencing approach in concert with Nanopore sequencing to profile DNA methylation in three genomic regions to attempt to rediscover genomic positions that existing technologies have shown are differentially methylated in tobacco smokers. Using Nanopore sequencing reads, DNA methylation was quantified at 1779 CpGs across three regions, providing a finer resolution of DNA methylation patterns compared to the EPIC array. The correlation of estimated levels of DNA methylation between platforms was high. Furthermore, we identified 12 CpGs where hypomethylation was significantly associated with smoking status, including 10 within the AHRR gene. In summary, Nanopore sequencing is a valid option for identifying genomic loci where large differences in DNAm are associated with a phenotype and has the potential to advance our understanding of the role differential methylation plays in the etiology of complex disease.


Asunto(s)
Metilación de ADN , Secuenciación de Nanoporos , Islas de CpG/genética , Metilación de ADN/genética , Epigénesis Genética/genética , Epigenómica , Humanos
7.
Sci Rep ; 11(1): 12953, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34155245

RESUMEN

We evaluated whether the association between cigarette smoking and dementia risk is modified by genetic predisposition including apolipoprotein E (APOE) genotype and polygenic risk (excluding the APOE region). We included 193,198 UK Biobank participants aged 60-73 years without dementia at baseline. Of non-APOE-ε4 carriers, 0.89% (95% CI 0.73-1.08%) current smokers developed dementia compared with 0.49% (95% CI 0.44-0.55%) of never smokers (adjusted HR 1.78; 95% CI 1.39-2.29). In contrast, of one APOE-ε4 allele carriers, 1.69% (95% CI 1.31-2.12%) current smokers developed dementia compared with 1.40% (95% CI 1.25-1.55%) of never smokers (adjusted HR 1.06; 95% CI 0.77-1.45); of two APOE-ε4 alleles carriers, 4.90% (95% CI 2.92-7.61%) current smokers developed dementia compared with 3.87% (95% CI 3.11-4.74%) of never smokers (adjusted HR 0.94; 95% CI 0.49-1.79). Of participants with high polygenic risk, 1.77% (95% CI 1.35-2.27%) current smokers developed dementia compared with 1.05% (95% CI 0.91-1.21%) of never smokers (adjusted HR 1.63; 95% CI 1.16-2.28). A significant interaction was found between APOE genotype and smoking status (P = 0.002) while no significant interaction was identified between polygenic risk and smoking status (P = 0.25). APOE genotype but not polygenic risk modified the effect of smoking on dementia risk.


Asunto(s)
Demencia/epidemiología , Demencia/etiología , Susceptibilidad a Enfermedades , Predisposición Genética a la Enfermedad , Fumar/efectos adversos , Adulto , Anciano , Alelos , Demencia/diagnóstico , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Vigilancia de la Población , Medición de Riesgo , Factores de Riesgo , Fumar Tabaco/efectos adversos
8.
PLoS Genet ; 17(3): e1009443, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33739972

RESUMEN

Most epigenome-wide association studies (EWAS) quantify DNA methylation (DNAm) in peripheral tissues such as whole blood to identify positions in the genome where variation is statistically associated with a trait or exposure. As whole blood comprises a mix of cell types, it is unclear whether trait-associated DNAm variation is specific to an individual cellular population. We collected three peripheral tissues (whole blood, buccal epithelial and nasal epithelial cells) from thirty individuals. Whole blood samples were subsequently processed using fluorescence-activated cell sorting (FACS) to purify five constituent cell-types (monocytes, granulocytes, CD4+ T cells, CD8+ T cells, and B cells). DNAm was profiled in all eight sample-types from each individual using the Illumina EPIC array. We identified significant differences in both the level and variability of DNAm between different sample types, and DNAm data-derived estimates of age and smoking were found to differ dramatically across sample types from the same individual. We found that for the majority of loci variation in DNAm in individual blood cell types was only weakly predictive of variance in DNAm measured in whole blood, although the proportion of variance explained was greater than that explained by either buccal or nasal epithelial samples. Covariation across sample types was much higher for DNAm sites influenced by genetic factors. Overall, we observe that DNAm variation in whole blood is additively influenced by a combination of the major blood cell types. For a subset of sites, however, variable DNAm detected in whole blood can be attributed to variation in a single blood cell type providing potential mechanistic insight about EWAS findings. Our results suggest that associations between whole blood DNAm and traits or exposures reflect differences in multiple cell types and our data will facilitate the interpretation of findings in epigenetic epidemiology.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Epigenómica , Epidemiología Molecular , Células Sanguíneas , Epigenómica/métodos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Especificidad de Órganos/genética , Transcriptoma
9.
Elife ; 102021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33646943

RESUMEN

We performed a systematic analysis of blood DNA methylation profiles from 4483 participants from seven independent cohorts identifying differentially methylated positions (DMPs) associated with psychosis, schizophrenia, and treatment-resistant schizophrenia. Psychosis cases were characterized by significant differences in measures of blood cell proportions and elevated smoking exposure derived from the DNA methylation data, with the largest differences seen in treatment-resistant schizophrenia patients. We implemented a stringent pipeline to meta-analyze epigenome-wide association study (EWAS) results across datasets, identifying 95 DMPs associated with psychosis and 1048 DMPs associated with schizophrenia, with evidence of colocalization to regions nominated by genetic association studies of disease. Many schizophrenia-associated DNA methylation differences were only present in patients with treatment-resistant schizophrenia, potentially reflecting exposure to the atypical antipsychotic clozapine. Our results highlight how DNA methylation data can be leveraged to identify physiological (e.g., differential cell counts) and environmental (e.g., smoking) factors associated with psychosis and molecular biomarkers of treatment-resistant schizophrenia.


Asunto(s)
Metilación de ADN , Epigenoma , Trastornos Psicóticos/fisiopatología , Esquizofrenia Resistente al Tratamiento/fisiopatología , Adulto , Anciano , Inglaterra , Femenino , Humanos , Irlanda , Masculino , Persona de Mediana Edad , Trastornos Psicóticos/genética , Esquizofrenia Resistente al Tratamiento/genética , Escocia , Suecia , Adulto Joven
10.
Mol Psychiatry ; 26(6): 2148-2162, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33420481

RESUMEN

DNA methylation profiles of aggressive behavior may capture lifetime cumulative effects of genetic, stochastic, and environmental influences associated with aggression. Here, we report the first large meta-analysis of epigenome-wide association studies (EWAS) of aggressive behavior (N = 15,324 participants). In peripheral blood samples of 14,434 participants from 18 cohorts with mean ages ranging from 7 to 68 years, 13 methylation sites were significantly associated with aggression (alpha = 1.2 × 10-7; Bonferroni correction). In cord blood samples of 2425 children from five cohorts with aggression assessed at mean ages ranging from 4 to 7 years, 83% of these sites showed the same direction of association with childhood aggression (r = 0.74, p = 0.006) but no epigenome-wide significant sites were found. Top-sites (48 at a false discovery rate of 5% in the peripheral blood meta-analysis or in a combined meta-analysis of peripheral blood and cord blood) have been associated with chemical exposures, smoking, cognition, metabolic traits, and genetic variation (mQTLs). Three genes whose expression levels were associated with top-sites were previously linked to schizophrenia and general risk tolerance. At six CpGs, DNA methylation variation in blood mirrors variation in the brain. On average 44% (range = 3-82%) of the aggression-methylation association was explained by current and former smoking and BMI. These findings point at loci that are sensitive to chemical exposures with potential implications for neuronal functions. We hope these results to be a starting point for studies leading to applications as peripheral biomarkers and to reveal causal relationships with aggression and related traits.


Asunto(s)
Metilación de ADN , Epigenoma , Adolescente , Adulto , Anciano , Agresión , Niño , Preescolar , Islas de CpG/genética , Metilación de ADN/genética , Epigénesis Genética/genética , Estudio de Asociación del Genoma Completo , Humanos , Longevidad , Persona de Mediana Edad , Adulto Joven
11.
Brain Commun ; 2(2): fcaa167, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33376986

RESUMEN

Alzheimer's disease is a highly heritable, common neurodegenerative disease characterized neuropathologically by the accumulation of ß-amyloid plaques and tau-containing neurofibrillary tangles. In addition to the well-established risk associated with the APOE locus, there has been considerable success in identifying additional genetic variants associated with Alzheimer's disease. Major challenges in understanding how genetic risk influences the development of Alzheimer's disease are clinical and neuropathological heterogeneity, and the high level of accompanying comorbidities. We report a multimodal analysis integrating longitudinal clinical and cognitive assessment with neuropathological data collected as part of the Brains for Dementia Research study to understand how genetic risk factors for Alzheimer's disease influence the development of neuropathology and clinical performance. Six hundred and ninety-three donors in the Brains for Dementia Research cohort with genetic data, semi-quantitative neuropathology measurements, cognitive assessments and established diagnostic criteria were included in this study. We tested the association of APOE genotype and Alzheimer's disease polygenic risk score-a quantitative measure of genetic burden-with survival, four common neuropathological features in Alzheimer's disease brains (neurofibrillary tangles, ß-amyloid plaques, Lewy bodies and transactive response DNA-binding protein 43 proteinopathy), clinical status (clinical dementia rating) and cognitive performance (Mini-Mental State Exam, Montreal Cognitive Assessment). The APOE ε4 allele was significantly associated with younger age of death in the Brains for Dementia Research cohort. Our analyses of neuropathology highlighted two independent pathways from APOE ε4, one where ß-amyloid accumulation co-occurs with the development of tauopathy, and a second characterized by direct effects on tauopathy independent of ß-amyloidosis. Although we also detected association between APOE ε4 and dementia status and cognitive performance, these were all mediated by tauopathy, highlighting that they are a consequence of the neuropathological changes. Analyses of polygenic risk score identified associations with tauopathy and ß-amyloidosis, which appeared to have both shared and unique contributions, suggesting that different genetic variants associated with Alzheimer's disease affect different features of neuropathology to different degrees. Taken together, our results provide insight into how genetic risk for Alzheimer's disease influences both the clinical and pathological features of dementia, increasing our understanding about the interplay between APOE genotype and other genetic risk factors.

12.
Transl Psychiatry ; 10(1): 199, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32561708

RESUMEN

Attention-deficit/hyperactivity disorder (ADHD) is a highly heritable neurodevelopmental disorder that often persists into adulthood. There is growing evidence that epigenetic dysregulation participates in ADHD. Given that only a limited number of epigenome-wide association studies (EWASs) of ADHD have been conducted so far and they have mainly focused on pediatric and population-based samples, we performed an EWAS in a clinical sample of adults with ADHD. We report one CpG site and four regions differentially methylated between patients and controls, which are located in or near genes previously involved in autoimmune diseases, cancer or neuroticism. Our sensitivity analyses indicate that smoking status is not responsible for these results and that polygenic risk burden for ADHD does not greatly impact the signatures identified. Additionally, we show an overlap of our EWAS findings with genetic signatures previously described for ADHD and with epigenetic signatures for smoking behavior and maternal smoking. These findings support a role of DNA methylation in ADHD and emphasize the need for additional efforts in larger samples to clarify the role of epigenetic mechanisms on ADHD across the lifespan.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Adulto , Trastorno por Déficit de Atención con Hiperactividad/genética , Niño , Metilación de ADN , Epigenoma , Epigenómica , Estudio de Asociación del Genoma Completo , Humanos , Herencia Multifactorial
13.
Sci Rep ; 10(1): 5743, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32238836

RESUMEN

Surgery is an invasive procedure evoking acute inflammatory and immune responses that can influence risk for postoperative complications including cognitive dysfunction and delirium. Although the specific mechanisms driving these responses have not been well-characterized, they are hypothesized to involve the epigenetic regulation of gene expression. We quantified genome-wide levels of DNA methylation in peripheral blood mononuclear cells (PBMCs) longitudinally collected from a cohort of elderly patients undergoing major surgery, comparing samples collected at baseline to those collected immediately post-operatively and at discharge from hospital. We identified acute changes in measured DNA methylation at sites annotated to immune system genes, paralleling changes in serum-levels of markers including C-reactive protein (CRP) and Interleukin 6 (IL-6) measured in the same individuals. Many of the observed changes in measured DNA methylation were consistent across different types of major surgery, although there was notable heterogeneity between surgery types at certain loci. The acute changes in measured DNA methylation induced by surgery are relatively stable in the post-operative period, generally persisting until discharge from hospital. Our results highlight the dramatic alterations in gene regulation induced by invasive surgery, primarily reflecting upregulation of the immune system in response to trauma, wound healing and anaesthesia.


Asunto(s)
Metilación de ADN , Leucocitos Mononucleares , Anciano , Anciano de 80 o más Años , Epigénesis Genética , Femenino , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Fenómenos del Sistema Inmunológico , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Estudios Longitudinales , Masculino , Periodo Posoperatorio
14.
Front Genet ; 11: 16, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32082368

RESUMEN

Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder that often persists into adulthood. ADHD and related personality traits, such as impulsivity and callousness, are caused by genetic and environmental factors and their interplay. Epigenetic modifications of DNA, including methylation, are thought to mediate between such factors and behavior and may behave as biomarkers for disorders. Here, we set out to study DNA methylation in persistent ADHD and related traits. We performed epigenome-wide association studies (EWASs) on peripheral whole blood from participants in the NeuroIMAGE study (age range 12-23 years). We compared participants with persistent ADHD (n = 35) with healthy controls (n = 19) and with participants with remittent ADHD (n = 19). Additionally, we performed EWASs of impulsive and callous traits derived from the Conners Parent Rating Scale and the Callous-Unemotional Inventory, respectively, across all participants. For every EWAS, the linear regression model analyzed included covariates for age, sex, smoking scores, and surrogate variables reflecting blood cell type composition and genetic background. We observed no epigenome-wide significant differences in single CpG site methylation between participants with persistent ADHD and healthy controls or participants with remittent ADHD. However, epigenome-wide analysis of differentially methylated regions provided significant findings showing that hypermethylated regions in the APOB and LPAR5 genes were associated with ADHD persistence compared to ADHD remittance (p = 1.68 * 10-24 and p = 9.06 * 10-7, respectively); both genes are involved in cholesterol signaling. Both findings appeared to be linked to genetic variation in cis. We found neither significant epigenome-wide single CpG sites nor regions associated with impulsive and callous traits; the top-hits from these analyses were annotated to genes involved in neurotransmitter release and the regulation of the biological clock. No link to genetic variation was observed for these findings, which thus might reflect environmental influences. In conclusion, in this pilot study with a small sample size, we observed several DNA-methylation-disorder/trait associations of potential significance for ADHD and the related behavioral traits. Although we do not wish to draw conclusions before replication in larger, independent samples, cholesterol signaling and metabolism may be of relevance for the onset and/or persistence of ADHD.

15.
JAMA ; 322(5): 430-437, 2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-31302669

RESUMEN

IMPORTANCE: Genetic factors increase risk of dementia, but the extent to which this can be offset by lifestyle factors is unknown. OBJECTIVE: To investigate whether a healthy lifestyle is associated with lower risk of dementia regardless of genetic risk. DESIGN, SETTING, AND PARTICIPANTS: A retrospective cohort study that included adults of European ancestry aged at least 60 years without cognitive impairment or dementia at baseline. Participants joined the UK Biobank study from 2006 to 2010 and were followed up until 2016 or 2017. EXPOSURES: A polygenic risk score for dementia with low (lowest quintile), intermediate (quintiles 2 to 4), and high (highest quintile) risk categories and a weighted healthy lifestyle score, including no current smoking, regular physical activity, healthy diet, and moderate alcohol consumption, categorized into favorable, intermediate, and unfavorable lifestyles. MAIN OUTCOMES AND MEASURES: Incident all-cause dementia, ascertained through hospital inpatient and death records. RESULTS: A total of 196 383 individuals (mean [SD] age, 64.1 [2.9] years; 52.7% were women) were followed up for 1 545 433 person-years (median [interquartile range] follow-up, 8.0 [7.4-8.6] years). Overall, 68.1% of participants followed a favorable lifestyle, 23.6% followed an intermediate lifestyle, and 8.2% followed an unfavorable lifestyle. Twenty percent had high polygenic risk scores, 60% had intermediate risk scores, and 20% had low risk scores. Of the participants with high genetic risk, 1.23% (95% CI, 1.13%-1.35%) developed dementia compared with 0.63% (95% CI, 0.56%-0.71%) of the participants with low genetic risk (adjusted hazard ratio, 1.91 [95% CI, 1.64-2.23]). Of the participants with a high genetic risk and unfavorable lifestyle, 1.78% (95% CI, 1.38%-2.28%) developed dementia compared with 0.56% (95% CI, 0.48%-0.66%) of participants with low genetic risk and favorable lifestyle (hazard ratio, 2.83 [95% CI, 2.09-3.83]). There was no significant interaction between genetic risk and lifestyle factors (P = .99). Among participants with high genetic risk, 1.13% (95% CI, 1.01%-1.26%) of those with a favorable lifestyle developed dementia compared with 1.78% (95% CI, 1.38%-2.28%) with an unfavorable lifestyle (hazard ratio, 0.68 [95% CI, 0.51-0.90]). CONCLUSIONS AND RELEVANCE: Among older adults without cognitive impairment or dementia, both an unfavorable lifestyle and high genetic risk were significantly associated with higher dementia risk. A favorable lifestyle was associated with a lower dementia risk among participants with high genetic risk.

16.
Transl Psychiatry ; 9(1): 157, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31164630

RESUMEN

Schizophrenia (SCZ) is associated with high mortality. DNA methylation levels vary over the life course, and pre-selected combinations of methylation array probes can be used to estimate "methylation age" (mAge). mAge correlates highly with chronological age but when it differs, termed mAge acceleration, it has been previously associated with all-cause mortality. We tested the association between mAge acceleration and mortality in SCZ and controls. We selected 190 SCZ cases and 190 controls from the Sweden Schizophrenia Study. Cases were identified from the Swedish Hospital Discharge Register with ≥5 specialist treatment contacts and ≥5 antipsychotic prescriptions. Controls had no psychotic disorder or antipsychotics. Subjects were selected if they had died or survived during follow-up (2:1 oversampling). Extracted DNA was assayed on the Illumina MethylationEPIC array. mAge was regressed on age at sampling to obtain mAge acceleration. Using Cox proportional hazards regression, the association between mAge acceleration and mortality was tested. After quality control, the following were available: n = 126 SCZ died, 63 SCZ alive, 127 controls died, 62 controls alive. In the primary analyses, we did not find a significant association between mAge acceleration and SCZ mortality (adjusted p > 0.005). Sensitivity analyses excluding SCZ cases with pre-existing cancer demonstrated a significant association between the Hannum mAge acceleration and mortality (hazard ratio = 1.13, 95% confidence interval = 1.04-1.22, p = 0.005). Per our pre-specified criteria, we did not confirm our primary hypothesis that mAge acceleration would predict subsequent mortality in people with SCZ, but we cannot rule out smaller effects or effects in patient subsets.


Asunto(s)
Envejecimiento Prematuro/metabolismo , Metilación de ADN , Epigénesis Genética , Sistema de Registros , Esquizofrenia/metabolismo , Esquizofrenia/mortalidad , Anciano , Anciano de 80 o más Años , Biomarcadores , Estudios de Casos y Controles , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Suecia
17.
Philos Trans R Soc Lond B Biol Sci ; 374(1770): 20180120, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30966880

RESUMEN

There is great interest in the role epigenetic variation induced by non-genetic exposures may play in the context of health and disease. In particular, DNA methylation has previously been shown to be highly dynamic during the earliest stages of development and is influenced by in utero exposures such as maternal smoking and medication. In this study we sought to identify the specific DNA methylation differences in blood associated with prenatal and birth factors, including birth weight, gestational age and maternal smoking. We quantified neonatal methylomic variation in 1263 infants using DNA isolated from a unique collection of archived blood spots taken shortly after birth (mean = 6.08 days; s.d. = 3.24 days). An epigenome-wide association study (EWAS) of gestational age and birth weight identified 4299 and 18 differentially methylated positions (DMPs) respectively, at an experiment-wide significance threshold of p < 1 × 10-7. Our EWAS of maternal smoking during pregnancy identified 110 DMPs in neonatal blood, replicating previously reported genomic loci, including AHRR. Finally, we tested the hypothesis that DNA methylation mediates the relationship between maternal smoking and lower birth weight, finding evidence that methylomic variation at three DMPs may link exposure to outcome. These findings complement an expanding literature on the epigenomic consequences of prenatal exposures and obstetric factors, confirming a link between the maternal environment and gene regulation in neonates. This article is part of the theme issue 'Developing differences: early-life effects and evolutionary medicine'.


Asunto(s)
Peso al Nacer/efectos de los fármacos , Metilación de ADN , Epigenoma/genética , Genoma Humano/genética , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Fumar/efectos adversos , Femenino , Estudio de Asociación del Genoma Completo , Edad Gestacional , Humanos , Recién Nacido , Embarazo
18.
Transl Psychiatry ; 9(1): 92, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30770782

RESUMEN

Large-scale epigenome-wide association meta-analyses have identified multiple 'signatures'' of smoking. Drawing on these findings, we describe the construction of a polyepigenetic DNA methylation score that indexes smoking behavior and that can be utilized for multiple purposes in population health research. To validate the score, we use data from two birth cohort studies: The Dunedin Longitudinal Study, followed to age-38 years, and the Environmental Risk Study, followed to age-18 years. Longitudinal data show that changes in DNA methylation accumulate with increased exposure to tobacco smoking and attenuate with quitting. Data from twins discordant for smoking behavior show that smoking influences DNA methylation independently of genetic and environmental risk factors. Physiological data show that changes in DNA methylation track smoking-related changes in lung function and gum health over time. Moreover, DNA methylation changes predict corresponding changes in gene expression in pathways related to inflammation, immune response, and cellular trafficking. Finally, we present prospective data about the link between adverse childhood experiences (ACEs) and epigenetic modifications; these findings document the importance of controlling for smoking-related DNA methylation changes when studying biological embedding of stress in life-course research. We introduce the polyepigenetic DNA methylation score as a tool both for discovery and theory-guided research in epigenetic epidemiology.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Fumar Tabaco/genética , Adolescente , Adulto , Biomarcadores/análisis , Niño , Preescolar , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Estudios Longitudinales , Masculino , Nueva Zelanda , Gemelos Dicigóticos/genética , Gemelos Monocigóticos/genética , Adulto Joven
19.
PLoS Genet ; 14(8): e1007544, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30091980

RESUMEN

Variation in DNA methylation is being increasingly associated with health and disease outcomes. Although DNA methylation is hypothesized to be a mechanism by which both genetic and non-genetic factors can influence the regulation of gene expression, little is known about the extent to which DNA methylation at specific sites is influenced by heritable as well as environmental factors. We quantified DNA methylation in whole blood at age 18 in a birth cohort of 1,464 individuals comprising 426 monozygotic (MZ) and 306 same-sex dizygotic (DZ) twin pairs. Site-specific levels of DNA methylation were more strongly correlated across the genome between MZ than DZ twins. Structural equation models revealed that although the average contribution of additive genetic influences on DNA methylation across the genome was relatively low, it was notably elevated at the highly variable sites characterized by intermediate levels of DNAm that are most relevant for epigenetic epidemiology. Sites at which variable DNA methylation was most influenced by genetic factors were significantly enriched for DNA methylation quantitative trait loci (mQTL) effects, and overlapped with sites where inter-individual variation correlates across tissues. Finally, we show that DNA methylation at sites robustly associated with environmental exposures such as tobacco smoking and obesity is also influenced by additive genetic effects, highlighting the need to control for genetic background in analyses of exposure-associated DNA methylation differences. Estimates of the contribution of genetic and environmental influences to DNA methylation at all sites profiled in this study are available as a resource for the research community (http://www.epigenomicslab.com/online-data-resources).


Asunto(s)
Metilación de ADN , Interacción Gen-Ambiente , Gemelos Dicigóticos/genética , Gemelos Monocigóticos/genética , Adolescente , Índice de Masa Corporal , Niño , Preescolar , Estudios de Cohortes , Epigenómica , Femenino , Estudios de Asociación Genética , Genoma Humano , Humanos , Modelos Lineales , Estudios Longitudinales , Masculino , Sitios de Carácter Cuantitativo , Fumar Tabaco/efectos adversos
20.
J Alzheimers Dis ; 64(1): 181-193, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29865062

RESUMEN

BACKGROUND: Numerous risk factors for dementia are well established, though the causal nature of these associations remains unclear. OBJECTIVE: To systematically review Mendelian randomization (MR) studies investigating causal relationships between risk factors and global cognitive function or dementia. METHODS: We searched five databases from inception to February 2017 and conducted citation searches including MR studies investigating the association between any risk factor and global cognitive function, all-cause dementia or dementia subtypes. Two reviewers independently assessed titles and abstracts, full-texts, and study quality. RESULTS: We included 18 MR studies investigating education, lifestyle factors, cardiovascular factors and related biomarkers, diabetes related and other endocrine factors, and telomere length. Studies were of predominantly good quality, however eight received low ratings for sample size and statistical power. The most convincing causal evidence was found for an association of shorter telomeres with increased risk of Alzheimer's disease (AD). Causal evidence was weaker for smoking quantity, vitamin D, homocysteine, systolic blood pressure, fasting glucose, insulin sensitivity, and high-density lipoprotein cholesterol. Well-replicated associations were not present for most exposures and we cannot fully discount survival and diagnostic bias, or the potential for pleiotropic effects. CONCLUSIONS: Genetic evidence supported a causal association between telomere length and AD, whereas limited evidence for other risk factors was largely inconclusive with tentative evidence for smoking quantity, vitamin D, homocysteine, and selected metabolic markers. The lack of stronger evidence for other risk factors may reflect insufficient statistical power. Larger well-designed MR studies would therefore help establish the causal status of these dementia risk factors.


Asunto(s)
Demencia/epidemiología , Demencia/genética , Humanos , Análisis de la Aleatorización Mendeliana , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA