Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
J Clin Invest ; 134(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557493

RESUMEN

Metabolic dysfunction-associated steatohepatitis (MASH) - previously described as nonalcoholic steatohepatitis (NASH) - is a major driver of liver fibrosis in humans, while liver fibrosis is a key determinant of all-cause mortality in liver disease independent of MASH occurrence. CCAAT/enhancer binding protein α (CEBPA), as a versatile ligand-independent transcriptional factor, has an important function in myeloid cells, and is under clinical evaluation for cancer therapy. CEBPA is also expressed in hepatocytes and regulates glucolipid homeostasis; however, the role of hepatocyte-specific CEBPA in modulating liver fibrosis progression is largely unknown. Here, hepatic CEBPA expression was found to be decreased during MASH progression both in humans and mice, and hepatic CEBPA mRNA was negatively correlated with MASH fibrosis in the human liver. CebpaΔHep mice had markedly enhanced liver fibrosis induced by a high-fat, high-cholesterol, high-fructose diet or carbon tetrachloride. Temporal and spatial hepatocyte-specific CEBPA loss at the progressive stage of MASH in CebpaΔHep,ERT2 mice functionally promoted liver fibrosis. Mechanistically, hepatocyte CEBPA directly repressed Spp1 transactivation to reduce the secretion of osteopontin, a fibrogenesis inducer of hepatic stellate cells. Forced hepatocyte-specific CEBPA expression reduced MASH-associated liver fibrosis. These results demonstrate an important role for hepatocyte-specific CEBPA in liver fibrosis progression, and may help guide the therapeutic discoveries targeting hepatocyte CEBPA for the treatment of liver fibrosis.


Asunto(s)
Proteína alfa Potenciadora de Unión a CCAAT , Enfermedad del Hígado Graso no Alcohólico , Humanos , Ratones , Animales , Hepatocitos/metabolismo , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Modelos Animales de Enfermedad
2.
Anal Chem ; 96(19): 7566-7576, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38684118

RESUMEN

Genetically encoding proximal-reactive unnatural amino acids (PrUaas), such as fluorosulfate-l-tyrosine (FSY), into natural proteins of interest (POI) confer the POI with the ability to covalently bind to its interacting proteins (IPs). The PrUaa-incorporated POIs hold promise for blocking undesirable POI-IP interactions. Selecting appropriate PrUaa anchor sites is crucial, but it remains challenging with the current methodology, which heavily relies on crystallography to identify the proximal residues between the POIs and the IPs for the PrUaa anchorage. To address the challenge, here, we propose a footprinting-directed genetically encoded covalent binder (footprinting-GECB) approach. This approach employs carbene footprinting, a structural mass spectrometry (MS) technique that quantifies the extent of labeling of the POI following the addition of its IP, and thus identifies the responsive residues. By genetically encoding PrUaa into these responsive sites, POI variants with covalent bonding ability to its IP can be produced without the need for crystallography. Using the POI-IP model, KRAS/RAF1, we showed that engineering FSY at the footprint-assigned KRAS residue resulted in a KRAS variant that can bind irreversibly to RAF1. Additionally, we inserted FSY at the responsive residue in RAF1 upon footprinting the oncogenic KRASG12D/RAF1, which lacks crystal structure, and generated a covalent binder to KRASG12D. Together, we demonstrated that by adopting carbene footprinting to direct PrUaa anchorage, we can greatly expand the opportunities for designing covalent protein binders for PPIs without relying on crystallography. This holds promise for creating effective PPI inhibitors and supports both fundamental research and biotherapeutics development.


Asunto(s)
Metano , Metano/análogos & derivados , Metano/química , Humanos , Huella de Proteína/métodos , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/química , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Unión Proteica , Espectrometría de Masas
3.
Chin J Nat Med ; 22(1): 75-88, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38278561

RESUMEN

NAD(P)H: quinone oxidoreductase 1 (NQO1) is a flavin protease highly expressed in various cancer cells. NQO1 catalyzes a futile redox cycle in substrates, leading to substantial reactive oxygen species (ROS) production. This ROS generation results in extensive DNA damage and elevated poly (ADP-ribose) polymerase 1 (PARP1)-mediated consumption of nicotinamide adenine dinucleotide (NAD+), ultimately causing cell death. Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD+ salvage synthesis pathway, emerges as a critical target in cancer therapy. The concurrent inhibition of NQO1 and NAMPT triggers hyperactivation of PARP1 and intensive NAD+ depletion. In this study, we designed, synthesized, and assessed a novel series of proqodine A derivatives targeting both NQO1 and NAMPT. Among these, compound T8 demonstrated potent antitumor properties. Specifically, T8 selectively inhibited the proliferation of MCF-7 cells and induced apoptosis through mechanisms dependent on both NQO1 and NAMPT. This discovery offers a promising new molecular entity for advancing anticancer research.


Asunto(s)
NAD , Nicotinamida Fosforribosiltransferasa , Humanos , NAD/metabolismo , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Nicotinamida Fosforribosiltransferasa/genética , Nicotinamida Fosforribosiltransferasa/metabolismo , Citocinas/metabolismo , Quinonas , Oxidorreductasas
4.
Sci China Life Sci ; 67(2): 345-359, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37906411

RESUMEN

The innate immune regulator stimulator of interferon genes (STING) mediates self-DNA sensing and leads to the induction of type I interferons and inflammatory cytokines, which promotes the progression of various inflammatory and autoimmune diseases. Innate immune system plays a critical role in regulating obesity-induced islet dysfunction, whereas the potential effect of STING signaling is not fully understood. Here, we demonstrate that STING is mainly expressed and activated in islet macrophages upon high-fat diet (HFD) feeding. Sting-/- alleviates HFD-induced islet inflammation by inhibiting the expression of pro-inflammatory cytokines and the infiltration of macrophages. Mechanically, palmitic acid incubation promotes mitochondrial DNA leakage into the cytosol and subsequently activates STING pathway in macrophages. Additionally, STING activation in macrophages impairs glucose-stimulated insulin secretion by mediating the engulfment of ß cell insulin secretory granules. Pharmacologically inhibiting STING activation enhances insulin secretion to control hyperglycemia. Together, our results reveal a regulatory mechanism in controlling the islet inflammation and insulin secretion in diet--induced obesity and suggest that selective blocking of the STING activation may be a promising strategy for treating type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Secreción de Insulina , Diabetes Mellitus Tipo 2/metabolismo , Macrófagos/metabolismo , Inflamación/metabolismo , Citocinas/metabolismo , Obesidad/genética
5.
Nat Commun ; 14(1): 6160, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37789028

RESUMEN

Chronic stress is a known risk factor for breast cancer, yet the underlying mechanisms are unclear. This study explores the potential involvement of microbial and metabolic signals in chronic stress-promoted breast cancer progression, revealing that reduced abundances of Blautia and its metabolite acetate may contribute to this process. Treatment with Blautia and acetate increases antitumor responses of CD8+ T cells and reverses stress-promoted breast cancer progression in female mice. Patients with depression exhibit lower abundances of Blautia and acetate, and breast cancer female patients with depression display lower abundances of acetate, decreased numbers of tumor-infiltrating CD8+ T cells, and an increased risk of metastasis. These results suggest that Blautia-derived acetate plays a crucial role in modulating the immune response to breast cancer, and its reduction may contribute to chronic stress-promoted cancer progression. Our findings advance the understanding of microbial and metabolic signals implicated in cancer in patients with depression and may provide therapeutic options for female patients with breast cancer and depression.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Ratones , Animales , Neoplasias de la Mama/metabolismo , Linfocitos T CD8-positivos
6.
Bioorg Chem ; 141: 106919, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37871388

RESUMEN

Endocrine therapy (ET) is a well-validated strategy for estrogen receptor α positive (ERα + ) breast cancer therapy. Despite the clinical success of current standard of care (SoC), endocrine-resistance inevitably emerges and remains a significant medical challenge. Herein, we describe the structural optimization and evaluation of a new series of selective estrogen receptor covalent antagonists (SERCAs) based on benzothiophene scaffold. Among them, compounds 15b and 39d were identified as two highly potent covalent antagonists, which exhibits superior antiproliferation activity than positive controls against MCF-7 cells and shows high selectivity over ERα negative (ERα-) cells. More importantly, their mode of covalent engagement at Cys530 residue was accurately illustrated by a cocrystal structure of 15b-bound ERαY537S (PDB ID: 7WNV) and intact mass spectrometry, respectively. Further in vivo studies demonstrated potent antitumor activity in MCF-7 xenograft mouse model and an improved safety profile. Collectively, these compounds could be promising candidates for future development of the next generation SERCAs for endocrine-resistant ERα + breast cancer.


Asunto(s)
Neoplasias de la Mama , Antagonistas del Receptor de Estrógeno , Humanos , Ratones , Animales , Femenino , Receptor alfa de Estrógeno , Receptores de Estrógenos , Cristalografía por Rayos X , Neoplasias de la Mama/tratamiento farmacológico , Células MCF-7 , Antagonistas de Estrógenos
7.
Nat Chem Biol ; 19(12): 1480-1491, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37322158

RESUMEN

Hyperactivated glycolysis is a metabolic hallmark of most cancer cells. Although sporadic information has revealed that glycolytic metabolites possess nonmetabolic functions as signaling molecules, how these metabolites interact with and functionally regulate their binding targets remains largely elusive. Here, we introduce a target-responsive accessibility profiling (TRAP) approach that measures changes in ligand binding-induced accessibility for target identification by globally labeling reactive proteinaceous lysines. With TRAP, we mapped 913 responsive target candidates and 2,487 interactions for 10 major glycolytic metabolites in a model cancer cell line. The wide targetome depicted by TRAP unveils diverse regulatory modalities of glycolytic metabolites, and these modalities involve direct perturbation of enzymes in carbohydrate metabolism, intervention of an orphan transcriptional protein's activity and modulation of targetome-level acetylation. These results further our knowledge of how glycolysis orchestrates signaling pathways in cancer cells to support their survival, and inspire exploitation of the glycolytic targetome for cancer therapy.


Asunto(s)
Fenómenos Bioquímicos , Neoplasias , Humanos , Glucólisis , Neoplasias/metabolismo , Transducción de Señal , Línea Celular
8.
Cell Rep ; 42(1): 112011, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36656708

RESUMEN

Systemic metabolites serving as danger-associated molecular patterns play crucial roles in modulating the development, differentiation, and activity of innate immune cells. Yet, it is unclear how innate immune cells detect systemic metabolites for signal transmission. Here, we show that bile acids function as endogenous mitofusin 2 (MFN2) ligands and differentially modulate innate immune response to bacterial infection under cholestatic and physiological conditions. Bile acids at high concentrations promote mitochondrial tethering to the endoplasmic reticulum (ER), leading to calcium overload in the mitochondrion, which activates NLRP3 inflammasome and pyroptosis. By contrast, at physiologically relevant low concentrations, bile acids promote mitochondrial fusion, leading to enhanced oxidative phosphorylation and thereby strengthening infiltrated macrophages mediated phagocytotic clearance of bacteria. These findings support that bile acids, as endogenous activators of MFN2, are vital for tuning innate immune responses against infections, representing a causal link that connects systemic metabolism with mitochondrial dynamics in shaping innate immunity.


Asunto(s)
Ácidos y Sales Biliares , Inmunidad Innata , Ácidos y Sales Biliares/metabolismo , Inflamasomas/metabolismo , Mitocondrias/metabolismo , Macrófagos/metabolismo , Hidrolasas/metabolismo
9.
J Med Chem ; 66(1): 473-490, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36576395

RESUMEN

PARP7, a polyadenosine diphosphate-ribose polymerase, has been identified as a negative regulator in type I interferon (IFN) signaling. An overexpression of PARP7 is typically found in a wide range of cancers and can lead to the suppression of type I IFN signaling and innate immune response. Herein, we describe the discovery of compound I-1, a novel PARP7 inhibitor with high inhibitory potency (IC50 = 7.6 nM) and selectivity for PARP7 over other PARPs. Especially, I-1 has excellent pharmacokinetic properties and low toxicity in mice and exhibits significantly stronger in vivo antitumor potency (TGI: 67%) than RBN-2397 (TGI: 30%) without the addition of 1-aminobenzotriazole (a nonselective and irreversible inhibitor of cytochrome P450) in CT26 syngeneic mouse models. Our findings reveal that I-1 mainly acts as an immune activator through PARP7 inhibition in the tumor microenvironment, which highlights the potential advantages of I-1 as a tumor immunotherapeutic agent.


Asunto(s)
Neoplasias , Ratones , Animales , Neoplasias/patología , Poli(ADP-Ribosa) Polimerasas , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Factores Inmunológicos/farmacología , Inmunoterapia , Línea Celular Tumoral , Microambiente Tumoral
10.
J Med Chem ; 65(24): 16252-16267, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36503248

RESUMEN

The two proteases, PLpro and Mpro, of SARS-CoV-2 are essential for replication of the virus. Using a structure-based co-pharmacophore screening approach, we developed a novel dual-targeted inhibitor that is equally potent in inhibiting PLpro and Mpro of SARS-CoV-2. The inhibitor contains a novel warhead, which can form a covalent bond with the catalytic cysteine residue of either enzyme. The maximum rate of the covalent inactivation is comparable to that of the most potent inhibitors reported for the viral proteases and covalent inhibitor drugs currently in clinical use. The covalent inhibition appears to be very specific for the viral proteases. The inhibitor has a potent antiviral activity against SARS-CoV-2 and is also well tolerated by mice and rats in toxicity studies. These results suggest that the inhibitor is a promising lead for development of drugs for treatment of COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Ratones , Ratas , Papaína , Cisteína Endopeptidasas/química , Proteínas no Estructurales Virales , Péptido Hidrolasas , Proteasas Virales , Antivirales/farmacología , Antivirales/química , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/uso terapéutico , Inhibidores de Proteasas/química , Simulación del Acoplamiento Molecular
11.
Anal Chem ; 94(43): 14820-14826, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36260072

RESUMEN

We report a living cell-target responsive accessibility profiling (LC-TRAP) approach to identify the targetome of silibinin (SIL), a well-established hepatoprotective natural product (NP), in HepG2 cells. Proteins showing accessibility changes, probed by covalent lysine labeling reagents and leveraged by multiplexed quantitative proteomics, following the administration of SIL to the living cells were assigned as potential targets. Among the assigned targetome, ACSL4, an enzyme essential for ferroptosis induction, might be involved in the hepatoprotective effects of SIL and hence was intensively validated. We first demonstrated that SIL protected HepG2 cells from ferroptosis dependent on ACSL4. Then, we used biophysical assays and a SIL-derivatized chemical probe to corroborate that SIL can bind to ACSL4. The ensuing enzymatic assays showed that SIL inhibited ACSL4 enzymatic activity, thereby mitigating the ACSL4-mediated ferroptosis. As such, we revealed that ACSL4 inhibition, using SIL as a model compound, represents a promising hepatoprotective strategy. Further, since TRAP probes the accessibility changes of reactive proteinaceous lysines, it can pinpoint the proximal regions where the ligand engagement may occur. Thus, the LC-TRAP analysis of SIL, the newly discovered ligand of ACSL4, and arachidonic acid (AA), the substrate, intriguingly showed that SIL and AA both affected the conformation of the K536-proximal region of ACSL4, albeit through distinct binding patterns. Collectively, we describe a straightforward LC-TRAP workflow that does not involve ligand-derived probe synthesis and is widely applicable to target discovery of NPs.


Asunto(s)
Ferroptosis , Humanos , Silibina/farmacología , Coenzima A Ligasas/metabolismo , Ligandos , Células Hep G2 , Ácido Araquidónico
12.
Acta Pharm Sin B ; 12(5): 2129-2149, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35646540

RESUMEN

Cardiometabolic disease (CMD), characterized with metabolic disorder triggered cardiovascular events, is a leading cause of death and disability. Metabolic disorders trigger chronic low-grade inflammation, and actually, a new concept of metaflammation has been proposed to define the state of metabolism connected with immunological adaptations. Amongst the continuously increased list of systemic metabolites in regulation of immune system, bile acids (BAs) represent a distinct class of metabolites implicated in the whole process of CMD development because of its multifaceted roles in shaping systemic immunometabolism. BAs can directly modulate the immune system by either boosting or inhibiting inflammatory responses via diverse mechanisms. Moreover, BAs are key determinants in maintaining the dynamic communication between the host and microbiota. Importantly, BAs via targeting Farnesoid X receptor (FXR) and diverse other nuclear receptors play key roles in regulating metabolic homeostasis of lipids, glucose, and amino acids. Moreover, BAs axis per se is susceptible to inflammatory and metabolic intervention, and thereby BAs axis may constitute a reciprocal regulatory loop in metaflammation. We thus propose that BAs axis represents a core coordinator in integrating systemic immunometabolism implicated in the process of CMD. We provide an updated summary and an intensive discussion about how BAs shape both the innate and adaptive immune system, and how BAs axis function as a core coordinator in integrating metabolic disorder to chronic inflammation in conditions of CMD.

13.
Front Pharmacol ; 13: 894099, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35707402

RESUMEN

Discovery of disease biomarker based on untargeted metabolomics is informative for pathological mechanism studies and facilitates disease early diagnosis. Numerous of metabolomic strategies emerge due to different sample properties or experimental purposes, thus, methodological evaluation before sample analysis is essential and necessary. In this study, sample preparation, data processing procedure and metabolite identification strategy were assessed aiming at the discovery of biomarker of breast cancer. First, metabolite extraction by different solvents, as well as the necessity of vacuum-dried and re-dissolution, was investigated. The extraction efficiency was assessed based on the number of eligible components (components with MS/MS data acquired), which was more reasonable for metabolite identification. In addition, a simplified data processing procedure was proposed involving the OPLS-DA, primary screening for eligible components, and secondary screening with constraints including VIP, fold change and p value. Such procedure ensured that only differential candidates were subjected to data interpretation, which greatly reduced the data volume for database search and improved analysis efficiency. Furthermore, metabolite identification and annotation confidence were enhanced by comprehensive consideration of mass and MS/MS errors, isotope similarity, fragmentation match, and biological source confirmation. On this basis, the optimized strategy was applied for the analysis of serum samples of breast cancer, according to which the discovery of differential metabolites highly encouraged the independent biomarkers/indicators used for disease diagnosis and chemotherapy evaluation clinically. Therefore, the optimized strategy simplified the process of differential metabolite exploration, which laid a foundation for biomarker discovery and studies of disease mechanism.

14.
Acta Pharm Sin B ; 12(3): 1473-1486, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35530136

RESUMEN

The development of nanomedicine has recently achieved several breakthroughs in the field of cancer treatment; however, biocompatibility and targeted penetration of these nanomaterials remain as limitations, which lead to serious side effects and significantly narrow the scope of their application. The self-assembly of intermediate filaments with arginine-glycine-aspartate (RGD) peptide (RGD-IFP) was triggered by the hydrophobic cationic molecule 7-amino actinomycin D (7-AAD) to synthesize a bifunctional nanoparticle that could serve as a fluorescent imaging probe to visualize tumor treatment. The designed RGD-IFP peptide possessed the ability to encapsulate 7-AAD molecules through the formation of hydrogen bonds and hydrophobic interactions by a one-step method. This fluorescent nanoprobe with RGD peptide could be targeted for delivery into tumor cells and released in acidic environments such as endosomes/lysosomes, ultimately inducing cytotoxicity by arresting tumor cell cycling with inserted DNA. It is noteworthy that the RGD-IFP/7-AAD nanoprobe tail-vein injection approach demonstrated not only high tumor-targeted imaging potential, but also potent antitumor therapeutic effects in vivo. The proposed strategy may be used in peptide-driven bifunctional nanoparticles for precise imaging and cancer therapy.

15.
Nat Commun ; 13(1): 2903, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35614066

RESUMEN

Prostate cancer (PCa) is one of the most prevalent cancers in men worldwide, and hormonal therapy plays a key role in the treatment of PCa. However, the drug resistance of hormonal therapy makes it urgent and necessary to identify novel targets for PCa treatment. Herein, dual-specificity tyrosine phosphorylation-regulated kinase 2 (DYRK2) is found and confirmed to be highly expressed in the PCa tissues and cells, and knock-down of DYRK2 remarkably reduces PCa burden in vitro and in vivo. On the base of DYRK2 acting as a promising target, we further discover a highly selective DYRK2 inhibitor YK-2-69, which specifically interacts with Lys-231 and Lys-234 in the co-crystal structure. Especially, YK-2-69 exhibits more potent anti-PCa efficacy than the first-line drug enzalutamide in vivo. Meanwhile, YK-2-69 displays favorable safety properties with a maximal tolerable dose of more than 10,000 mg/kg and pharmacokinetic profiles with 56% bioavailability. In summary, we identify DYRK2 as a potential drug target and verify its critical roles in PCa. Meanwhile, we discover a highly selective DYRK2 inhibitor with favorable druggability for the treatment of PCa.


Asunto(s)
Neoplasias de la Próstata , Humanos , Masculino , Fosforilación , Neoplasias de la Próstata/tratamiento farmacológico , Tirosina
16.
J Med Chem ; 65(11): 7746-7769, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35640078

RESUMEN

Targeting NAD+ metabolism has emerged as an effective anticancer strategy. Inspired by the synergistic antitumor effect between NAD(P)H:quinone oxidoreductase 1 (NQO1) substrates increasing the NAD consumption and nicotinamide phosphoribosyltransferase (NAMPT) inhibitors hampering the NAD synthesis, first-in-class small molecules simultaneously targeting NQO1 and NAMPT were identified through structure-based design. In particular, compound 10d is an excellent NQO1 substrate that is processed faster than TSA by NQO1 and exhibited a slightly decreased NAMPT inhibitory potency than that of FK866. It can selectively inhibit the proliferation of NQO1-overexpressing A549 cells and taxol-resistant A549/taxol cells and also induce cell apoptosis and inhibit cell migration in an NQO1- and NAMPT-dependent manner in A549/taxol cells. Significantly, compound 10d demonstrated excellent in vivo antitumor efficacy in the A549/taxol xenograft models with no significant toxicity. This proof-of-concept study affirms the feasibility of discovering small molecules that target NQO1 and NAMPT simultaneously, and it also provides a novel, effective, and selective anticancer strategy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , NAD/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , NADH NADPH Oxidorreductasas , Nicotinamida Fosforribosiltransferasa/metabolismo , Paclitaxel , Quinonas
17.
Brief Bioinform ; 23(3)2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35395683

RESUMEN

Drug design targeting protein-protein interactions (PPIs) associated with the development of diseases has been one of the most important therapeutic strategies. Besides interrupting the PPIs with PPI inhibitors/blockers, increasing evidence shows that stabilizing the interaction between two interacting proteins may also benefit the therapy, such as the development of various types of molecular glues/stabilizers that mostly work by stabilizing the two interacting proteins to regulate the downstream biological effects. However, characterizing the stabilization effect of a stabilizer is usually hard or too complicated for traditional experiments since it involves ternary interactions [protein-protein-stabilizer (PPS) interaction]. Thus, developing reliable computational strategies will facilitate the discovery/design of molecular glues or PPI stabilizers. Here, by fully analyzing the energetic features of the binary interactions in the PPS ternary complex, we systematically investigated the performance of molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) and molecular mechanics generalized Born surface area (MM/GBSA) methods on characterizing the stabilization effects of stabilizers in 14-3-3 systems. The results show that both MM/PBSA and MM/GBSA are powerful tools in distinguishing the stabilizers from the decoys (with area under the curves of 0.90-0.93 for all tested cases) and are reasonable for ranking protein-peptide interactions in the presence or absence of stabilizers as well (with the average Pearson correlation coefficient of ~0.6 at a relatively high dielectric constant for both methods). Moreover, to give a detailed picture of the stabilization effects, the stabilization mechanism is also analyzed from the structural and energetic points of view for individual systems containing strong or weak stabilizers. This study demonstrates a potential strategy to accelerate the discovery of PPI stabilizers.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas , Diseño de Fármacos , Entropía , Péptidos , Unión Proteica , Proteínas/química
18.
Acta Pharm Sin B ; 12(2): 558-580, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35256934

RESUMEN

Hepatocellular carcinoma (HCC) is an aggressive human cancer with increasing incidence worldwide. Multiple efforts have been made to explore pharmaceutical therapies to treat HCC, such as targeted tyrosine kinase inhibitors, immune based therapies and combination of chemotherapy. However, limitations exist in current strategies including chemoresistance for instance. Tumor initiation and progression is driven by reprogramming of metabolism, in particular during HCC development. Recently, metabolic associated fatty liver disease (MAFLD), a reappraisal of new nomenclature for non-alcoholic fatty liver disease (NAFLD), indicates growing appreciation of metabolism in the pathogenesis of liver disease, including HCC, thereby suggesting new strategies by targeting abnormal metabolism for HCC treatment. In this review, we introduce directions by highlighting the metabolic targets in glucose, fatty acid, amino acid and glutamine metabolism, which are suitable for HCC pharmaceutical intervention. We also summarize and discuss current pharmaceutical agents and studies targeting deregulated metabolism during HCC treatment. Furthermore, opportunities and challenges in the discovery and development of HCC therapy targeting metabolism are discussed.

19.
Drug Metab Dispos ; 50(5): 685-693, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34903587

RESUMEN

Withaferin A (WA) is a natural steroidal compound used in Ayurvedic medicine in India and elsewhere. Although WA was used as an anticancer reagent for decades, its role in the treatment of liver diseases has only recently been experimentally explored. Here, the effects of WA in the treatment of liver injury, systematic inflammation, and liver cancer are reviewed, and the toxicity and metabolism of WA as well as pharmacological potentials of other extracts from Withania somnifera (W. somnifera) discussed. The pharmacokinetic behaviors of WA are summarized and pharmacokinetic insights into current progress and future opportunities are highlighted. SIGNIFICANCE STATEMENT: This review outlines the current experimental progress of Withaferin A (WA) hepatoprotective activities and highlights gaps in the field. This work also discusses the pharmacokinetics of WA that can be used to guide future studies for the possible treatment of liver diseases with this compound.


Asunto(s)
Hepatopatías , Withania , Witanólidos , Humanos , Hepatopatías/tratamiento farmacológico , Medicina Ayurvédica , Witanólidos/farmacocinética , Witanólidos/uso terapéutico
20.
Anal Chim Acta ; 1190: 339233, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34857145

RESUMEN

Monoacylglycerols (MAGs) are important signaling molecules involved in various diseases. However, it is challenge for direct detection of MAGs and isomers. Additionally, difficulties in isomer annotation hinders the comprehensive profiling of MAGs and hampers revealing isomers' contributions to diseases. Herein, a boronic derivatization-based strategy was developed for unambiguous identification, isomer annotation and quantification of MAGs in biological samples. 3-Nitrophenylboronic acid was selected as the derivatization reagent owing to its rapid and selective reactivity toward cis-diol moiety. First, a prediction model was established for MAG identification by the integration of m/z, isotopic distribution of boron, and retention time attributed by the carbon chain length and number of double bonds, which solved the difficulty of obtaining MAG standards. In addition, the designed derivatization reaction enabled the capture of thermally unstable sn-2 MAG isomers to ensure the chromatographic separation and direct MS detection. What's more, distinguished fragmentation patterns were discovered for derivatized MAG isomers, which allowed a novel and unambiguous isomer annotation. Furthermore, by considering the availability of standards, the quantification of MAGs was based on the development of calibration curves or relative quantification by internal standard. On this basis, the developed strategy was utilized for MAG identification and quantification in breast cancer samples, which suggested that MAGs could be regarded as potential biomarkers in breast cancer diagnosis or as indicators to trace the process of chemotherapy. It also helped make the puzzle complete by revealing that only one single isomer associated with the onset of disease was possible, instead of regarding them as a whole. Therefore, the boronic derivatization-based strategy facilitated the unambiguous identification, annotation and quantification of MAGs and isomers in biofluids, and would be beneficial for the mechanism studies of related diseases.


Asunto(s)
Boro , Monoglicéridos , Calibración , Isomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA