Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Biol Chem ; 300(3): 105725, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38325743

RESUMEN

The cAMP/PKA and mitogen-activated protein kinase (MAPK) signaling cascade control many cellular processes and are highly regulated for optimal cellular responses upon external stimuli. Phosphodiesterase 8A (PDE8A) is an important regulator that inhibits signaling via cAMP-dependent PKA by hydrolyzing intracellular cAMP pool. Conversely, PDE8A activates the MAPK pathway by protecting CRAF/Raf1 kinase from PKA-mediated inhibitory phosphorylation at Ser259 residue, a binding site of scaffold protein 14-3-3. It still remains enigmatic as to how the cross-talk involving PDE8A regulation influences cAMP/PKA and MAPK signaling pathways. Here, we report that PDE8A interacts with 14-3-3ζ in both yeast and mammalian system, and this interaction is enhanced upon the activation of PKA, which phosphorylates PDE8A's Ser359 residue. Biophysical characterization of phospho-Ser359 peptide with 14-3-3ζ protein further supports their interaction. Strikingly, 14-3-3ζ reduces the catalytic activity of PDE8A, which upregulates the cAMP/PKA pathway while the MAPK pathway is downregulated. Moreover, 14-3-3ζ in complex with PDE8A and cAMP-bound regulatory subunit of PKA, RIα, delays the deactivation of PKA signaling. Our results define 14-3-3ζ as a molecular switch that operates signaling between cAMP/PKA and MAPK by associating with PDE8A.


Asunto(s)
Proteínas 14-3-3 , 3',5'-AMP Cíclico Fosfodiesterasas , Proteínas Quinasas Dependientes de AMP Cíclico , Sistema de Señalización de MAP Quinasas , Humanos , Proteínas 14-3-3/metabolismo , 3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Fosfoserina/metabolismo , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/metabolismo
2.
Microbiol Spectr ; 11(6): e0228223, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37982630

RESUMEN

IMPORTANCE: New drugs are needed to combat multidrug-resistant tuberculosis. The electron transport chain (ETC) maintains the electrochemical potential across the cytoplasmic membrane and allows the production of ATP, the energy currency of any living cell. The mycobacterial engine F-ATP synthase catalyzes the formation of ATP and has come into focus as an attractive and rich drug target. Recent deep insights into these mycobacterial F1FO-ATP synthase elements opened the door for a renaissance of structure-based target identification and inhibitor design. In this study, we present the GaMF1.39 antimycobacterial compound, targeting the rotary subunit γ of the biological engine. The compound is bactericidal, inhibits infection ex vivo, and displays enhanced anti-tuberculosis activity in combination with ETC inhibitors, which promises new strategies to shorten tuberculosis chemotherapy.


Asunto(s)
Clofazimina , Mycobacterium tuberculosis , Clofazimina/farmacología , Clofazimina/uso terapéutico , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Adenosina Trifosfato
3.
FEBS J ; 289(20): 6308-6323, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35612822

RESUMEN

Mycobacterium abscessus (Mab) is a nontuberculous mycobacterium of increasing clinical relevance. The rapidly growing opportunistic pathogen is intrinsically multi-drug-resistant and causes difficult-to-cure lung disease. Adenosine triphosphate, generated by the essential F1 FO ATP synthase, is the major energy currency of the pathogen, bringing this enzyme complex into focus for the discovery of novel antimycobacterial compounds. Coupling of proton translocation through the membrane-embedded FO sector and ATP formation in the F1 headpiece of the bipartite F1 FO ATP synthase occurs via the central stalk subunits γ and ε. Here, we used solution NMR spectroscopy to resolve the first atomic structure of the Mab subunit ε (Mabε), showing that it consists of an N-terminal ß-barrel domain (NTD) and a helix-loop-helix motif in its C-terminal domain (CTD). NMR relaxation measurements of Mabε shed light on dynamic epitopes and amino acids relevant for coupling processes within the protein. We describe structural differences between other mycobacterial ε subunits and Mabε's lack of ATP binding. Based on the structural insights, we conducted an in silico inhibitor screen. One hit, Ep1MabF1, was shown to inhibit the growth of Mab and bacterial ATP synthesis. NMR titration experiments and docking studies described the binding epitopes of Ep1MabF1 on Mabε. Together, our data demonstrate the potential to develop inhibitors targeting the ε subunit of Mab F1 FO ATP synthase to interrupt the coupling process.


Asunto(s)
Mycobacterium abscessus , ATPasas de Translocación de Protón , Adenosina Trifosfato/metabolismo , Aminoácidos , Proteínas Bacterianas/metabolismo , Epítopos , Conformación Proteica , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón/metabolismo , Protones
4.
ACS Chem Biol ; 17(3): 529-535, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35148057

RESUMEN

While many bacteria are able to bypass the requirement for oxidative phosphorylation when grown on carbohydrates, Mycobacterium tuberculosis is unable to do so. Differences of amino acid composition and structural features of the mycobacterial F-ATP synthase (α3:ß3:γ:δ:ε:a:b:b':c9) compared to its prokaryotic or human counterparts were recently elucidated and paved avenues for the discovery of molecules interfering with various regulative mechanisms of this essential energy converter. In this context, the mycobacterial peripheral stalk subunit δ came into focus, which displays a unique N-terminal 111-amino acid extension. Here, mutants of recombinant mycobacterial subunit δ were characterized, revealing significant reduction in ATP synthesis and demonstrating essentiality of this subunit for effective catalysis. These results provided the basis for the generation of a four-feature model forming a δ receptor-based pharmacophore and to identify a potent subunit δ inhibitor DeMF1 via in silico screening. The successful targeting of the δ subunit demonstrates the potential to advance δ's flexible coupling as a new area for the development of F-ATP synthase inhibitors.


Asunto(s)
Mycobacterium tuberculosis , ATPasas de Translocación de Protón , Adenosina Trifosfato/metabolismo , Aminoácidos/farmacología , Proteínas Bacterianas/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón/genética
5.
Int J Biol Macromol ; 175: 131-139, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33548321

RESUMEN

One of the most crucial characteristic traits of Envelope (E) proteins in the severe acute respiratory syndrome SARS-CoV-1 and NCOVID19 viruses is their membrane-associated oligomerization led ion channel activity, virion assembly, and replication. NMR spectroscopic structural studies of envelope proteins from both the SARS CoV-1/2 reveal that this protein assembles into a homopentamer. Proof of concept studies via truncation mutants on either transmembrane (VFLLV), glycosylation motif (CACCN), hydrophobic helical bundle (PVYVY) as well as replacing C-terminal "DLLV" segments or point mutants such as S68, E69 residues with cysteine have significantly reduced viral titers of SARS-CoV-1. In this present study, we have first developed SARS-2 E protein homology model based on the pentamer coordinates of SARS-CoV-1 E protein (86.4% structural identity) with good stereochemical quality. Next, we focused on the glycosylation motif and hydrophobic helical bundle regions of E protein shown to be important for viral replication. A four feature (4F) model comprising of an acceptor targeting S60 hydroxyl group, a donor feature anchoring the C40 residue, and two hydrophobic features anchoring the V47 L28, L31, Y55, and P51 residues formed the protein based pharmacophore model targeting the glycosylation motif and helical bundle of E protein. Database screening with this 4F protein pharmacophore, ADMET property filtering on enamine small molecule discovery collection yielded a focused library of ~7000 hits. Further molecular docking and visual inspection of docked pose interactions at the above mention V47 L28, L31, Y55, P51, S60, C40 residues led to the identification of 10 best hits. Our STD NMR binding assay results demonstrate that the ligand 3, 2-(2-amino-2-oxo-ethoxy)-N-benzyl-benzamide, binds to NCOVID19 E protein with a binding affinity (KD) of 141.7 ± 13.6 µM. Furthermore, the ligand 3 also showed binding to C-terminal peptide (NR25) as evidenced with the STD spectrums of wild type E protein would serve to confirm the involvement of C-terminal helical bundle as envisaged in this study.


Asunto(s)
SARS-CoV-2/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Secuencia de Aminoácidos , Ligandos , Péptidos/metabolismo , Unión Proteica/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología
6.
FEBS J ; 288(3): 818-836, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32525613

RESUMEN

In contrast to most bacteria, the mycobacterial F1 FO -ATP synthase (α3 :ß3 :γ:δ:ε:a:b:b':c9 ) does not perform ATP hydrolysis-driven proton translocation. Although subunits α, γ and ε of the catalytic F1 -ATPase component α3 :ß3 :γ:ε have all been implicated in the suppression of the enzyme's ATPase activity, the mechanism remains poorly defined. Here, we brought the central stalk subunit ε into focus by generating the recombinant Mycobacterium smegmatis F1 -ATPase (MsF1 -ATPase), whose 3D low-resolution structure is presented, and its ε-free form MsF1 αßγ, which showed an eightfold ATP hydrolysis increase and provided a defined system to systematically study the segments of mycobacterial ε's suppression of ATPase activity. Deletion of four amino acids at ε's N terminus, mutant MsF1 αßγεΔ2-5 , revealed similar ATP hydrolysis as MsF1 αßγ. Together with biochemical and NMR solution studies of a single, double, triple and quadruple N-terminal ε-mutants, the importance of the first N-terminal residues of mycobacterial ε in structure stability and latency is described. Engineering ε's C-terminal mutant MsF1 αßγεΔ121 and MsF1 αßγεΔ103-121 with deletion of the C-terminal residue D121 and the two C-terminal ɑ-helices, respectively, revealed the requirement of the very C terminus for communication with the catalytic α3 ß3 -headpiece and its function in ATP hydrolysis inhibition. Finally, we applied the tools developed during the study for an in silico screen to identify a novel subunit ε-targeting F-ATP synthase inhibitor.


Asunto(s)
Proteínas Bacterianas/metabolismo , Mycobacterium smegmatis/enzimología , ATPasas de Translocación de Protón/metabolismo , Proteínas Recombinantes/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biocatálisis/efectos de los fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Hidrólisis/efectos de los fármacos , Modelos Moleculares , Estructura Molecular , Mutación , Mycobacterium , Mycobacterium smegmatis/genética , Unión Proteica/efectos de los fármacos , Dominios Proteicos , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
7.
Mol Divers ; 25(1): 517-524, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31939065

RESUMEN

Mycobacteria have shown enormous resilience to survive and persist by remodeling and altering metabolic requirements. Under stringent conditions or exposure to drugs, mycobacteria have adapted to rescue themselves by shutting down their major metabolic activity and elevate certain survival factor levels and efflux pathways to survive and evade the effects of drug treatments. A fundamental feature in this adaptation is the ability of mycobacteria to vary the enzyme composition of the electron transport chain (ETC), which generates the proton motive force for the synthesis of adenosine triphosphate via oxidative phosphorylation. Mycobacteria harbor dehydrogenases to fuel the ETC, and two terminal respiratory oxidases, an aa3-type cytochrome c oxidase (cyt-bcc-aa3) and a bacterial specific cytochrome bd-type menaquinol oxidase (cyt-bd). In this study, we employed homology modeling and structure-based virtual screening studies to target mycobacteria-specific residues anchoring the b558 menaquinol binding region of Mycobacterium tuberculosis cyt-bd oxidase to obtain a focused library. Furthermore, ATP synthesis inhibition assays were carried out. One of the ligands MQL-H2 inhibited both NADH2- and succinate-driven ATP synthesis inhibition of Mycobacterium smegmatis inside-out vesicles in micromolar potency. Similarly, MQL-H2 also inhibited NADH2-driven ATP synthesis in inside-out vesicles of the cytochrome-bcc oxidase deficient M. smegmatis strain. Since neither varying the electron donor substrates nor deletion of the cyt-bcc oxidase, a major source of protons, hindered the inhibitory effects of the MQL-H2, reflecting that MQL-H2 targets the terminal oxidase cytochrome bd oxidase, which was consistent with molecular docking studies. Characterization of novel cytochrome bd oxidase Menaquinol binding domain inhibitor (MQL-H2) using virtual screening and ATP synthesis inhibition assays.


Asunto(s)
Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/metabolismo , Mycobacterium tuberculosis/enzimología , Naftoles/metabolismo , Adenosina Trifosfato/biosíntesis , Secuencia de Aminoácidos , Sitios de Unión , Evaluación Preclínica de Medicamentos , Epítopos , Ligandos , Modelos Moleculares , Oxidación-Reducción , Homología Estructural de Proteína
8.
Antiviral Res ; 185: 104996, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33309540

RESUMEN

Middle East Respiratory Syndrome (MERS) is a respiratory disease caused by a coronavirus (MERS-CoV). Since its emergence in 2012, nosocomial amplifications have led to its high epidemic potential and mortality rate of 34.5%. To date, there is an unmet need for vaccines and specific therapeutics for this disease. Available treatments are either supportive medications in use for other diseases or those lacking specificity requiring higher doses. The viral infection mode is initiated by the attachment of the viral spike glycoprotein to the human Dipeptidyl Peptidase IV (DPP4). Our attempts to screen antivirals against MERS led us to identify montelukast sodium hydrate (MSH), an FDA-approved anti-asthma drug, as an agent attenuating MERS-CoV infection. We showed that MSH directly binds to MERS-CoV-Receptor-Binding Domain (RBD) and inhibits its molecular interaction with DPP4 in a dose-dependent manner. Our cell-based inhibition assays using MERS pseudovirions demonstrated that viral infection was significantly inhibited by MSH and was further validated using infectious MERS-CoV culture. Thus, we propose MSH as a potential candidate for therapeutic developments against MERS-CoV infections.


Asunto(s)
Acetatos/farmacología , Antivirales/farmacología , Ciclopropanos/farmacología , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Quinolinas/farmacología , Sulfuros/farmacología , Animales , Antiasmáticos/farmacología , Proteínas Portadoras/efectos de los fármacos , Chlorocebus aethiops , Infecciones por Coronavirus/tratamiento farmacológico , Inductores del Citocromo P-450 CYP1A2/farmacología , Dipeptidil Peptidasa 4/genética , Dipeptidil Peptidasa 4/metabolismo , Reposicionamiento de Medicamentos , Células HEK293 , Humanos , Antagonistas de Leucotrieno/farmacología , Receptores Virales/genética , Receptores Virales/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero , Internalización del Virus/efectos de los fármacos
9.
Sci Rep ; 9(1): 16759, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31727946

RESUMEN

The dynamic interaction of the N- and C-terminal domains of mycobacterial F-ATP synthase subunit ε is proposed to contribute to efficient coupling of H+-translocation and ATP synthesis. Here, we investigate crosstalk between both subunit ε domains by introducing chromosomal atpC missense mutations in the C-terminal helix 2 of ε predicted to disrupt inter domain and subunit ε-α crosstalk and therefore coupling. The ε mutant εR105A,R111A,R113A,R115A (ε4A) showed decreased intracellular ATP, slower growth rates and lower molar growth yields on non-fermentable carbon sources. Cellular respiration and metabolism were all accelerated in the mutant strain indicative of dysregulated oxidative phosphorylation. The ε4A mutant exhibited an altered colony morphology and was hypersusceptible to cell wall-acting antimicrobials suggesting defective cell wall biosynthesis. In silico screening identified a novel mycobacterial F-ATP synthase inhibitor disrupting ε's coupling activity demonstrating the potential to advance this regulation as a new area for mycobacterial F-ATP synthase inhibitor development.


Asunto(s)
Adenosina Trifosfato/metabolismo , Mutación , Mycobacterium/crecimiento & desarrollo , ATPasas de Translocación de Protón/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pared Celular , Simulación por Computador , Metabolismo Energético , Modelos Moleculares , Mycobacterium/enzimología , Mycobacterium/genética , Conformación Proteica , Estructura Secundaria de Proteína , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/genética
12.
Sci Rep ; 5: 14570, 2015 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-26412148

RESUMEN

Many mitotic kinases have been targeted for the development of anti-cancer drugs, and inhibitors of these kinases have been expected to perform well for cancer therapy. Efforts focused on selecting good targets and finding specific drugs to target are especially needed, largely due to the increased frequency of anti-cancer drugs used in the treatment of lung cancer. Vaccinia-related kinase 1 (VRK1) is a master regulator in lung adenocarcinoma and is considered a key molecule in the adaptive pathway, which mainly controls cell survival. We found that ursolic acid (UA) inhibits the catalytic activity of VRK1 via direct binding to the catalytic domain of VRK1. UA weakens surveillance mechanisms by blocking 53BP1 foci formation induced by VRK1 in lung cancer cells, and possesses synergistic anti-cancer effects with DNA damaging drugs. Taken together, UA can be a good anti-cancer agent for targeted therapy or combination therapy with DNA damaging drugs for lung cancer patients.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Triterpenos/farmacología , Animales , Antineoplásicos Fitogénicos/química , Sitios de Unión , Dominio Catalítico , Línea Celular Tumoral , Daño del ADN/efectos de los fármacos , Modelos Animales de Enfermedad , Doxorrubicina/farmacología , Sinergismo Farmacológico , Activación Enzimática/efectos de los fármacos , Humanos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/química , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Modelos Moleculares , Conformación Molecular , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/química , Triterpenos/química , Ensayos Antitumor por Modelo de Xenoinjerto , Ácido Ursólico
13.
Curr Mol Pharmacol ; 9(1): 37-47, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25986569

RESUMEN

Immunophilins consist of a family of highly conserved proteins which possess binding abilities to immunosuppressive drugs. Cyclophilins (Cyps) and FK506-binding proteins (FKBP) are family proteins collectively referred as immunophilins. Most Cyps and FKBP family members catalyse peptidyl-prolyl cis/trans isomerase (PPIase) mediated reactions and form binary complexes with their ligands cyclosporine A and FK506. Immunophilins are also involved in key biochemical processes including protein folding, receptor signalling, protein trafficking, and transcription and exhibit versatile biological functions, when complexed with their ligands. Therapeutic implications of immunophilins and effects of their ligands in neurodegenerative disorders, cancer, and infectious diseases have been accumulating in recent years. This review focuses on molecular characteristics of the canonical and non-canonical immunophilin family members from human and Plasmodium falciparum and P. vivax, recent progress on immunophilin inhibitor development, and future perspectives of structure-based design of non-immunosuppressive immunophilin ligands with potential pharmacological activities against infectious diseases.


Asunto(s)
Descubrimiento de Drogas , Inmunofilinas/química , Inmunofilinas/metabolismo , Descubrimiento de Drogas/métodos , Humanos , Inmunofilinas/antagonistas & inhibidores , Ligandos , Malaria/tratamiento farmacológico , Malaria/parasitología , Modelos Moleculares , Plasmodium/química , Plasmodium/efectos de los fármacos , Plasmodium/metabolismo , Conformación Proteica , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo
14.
Mol Divers ; 19(3): 529-39, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25862642

RESUMEN

Hepatitis C virus (HCV) infection or HCV-related liver diseases are now shown to cause more than 350,000 deaths every year. Adaptability of HCV genome to vary its composition and the existence of multiple strains makes it more difficult to combat the emergence of drug-resistant HCV infections. Among the HCV polyprotein which has both the structural and non-structural regions, the non-structural protein NS5B RNA-dependent RNA polymerase (RdRP) mainly mediates the catalytic role of RNA replication in conjunction with its viral protein machinery as well as host chaperone proteins. Lack of such RNA-dependent RNA polymerase enzyme in host had made it an attractive and hotly pursued target for drug discovery efforts. Recent drug discovery efforts targeting HCV RdRP have seen success with FDA approval for sofosbuvir as a direct-acting antiviral against HCV infection. However, variations in drug-binding sites induce drug resistance, and therefore targeting allosteric sites could delay the emergence of drug resistance. In this study, we focussed on allosteric thumb site II of the non-structural protein NS5B RNA-dependent RNA polymerase and developed a five-feature pharmacophore hypothesis/model which estimated the experimental activity with a strong correlation of 0.971 & 0.944 for training and test sets, respectively. Further, the Güner-Henry score of 0.6 suggests that the model was able to discern the active and inactive compounds and enrich the true positives during a database search. In this study, database search and molecular docking results supported by experimental HCV viral replication inhibition assays suggested ligands with best fitness to the pharmacophore model dock to the key residues involved in thumbs site II, which inhibited the HCV 1b viral replication in sub-micro-molar range.


Asunto(s)
Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Hepacivirus/enzimología , Simulación del Acoplamiento Molecular , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/metabolismo , Línea Celular , Bases de Datos Farmacéuticas , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , Hepacivirus/efectos de los fármacos , Hepacivirus/fisiología , Humanos , Conformación Proteica , Relación Estructura-Actividad Cuantitativa , Proteínas no Estructurales Virales/química , Replicación Viral/efectos de los fármacos
15.
PLoS One ; 9(10): e109655, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25310002

RESUMEN

Uncontrolled proliferation, a major feature of cancer cells, is often triggered by the malfunction of cell cycle regulators such as protein kinases. Recently, cell cycle-related protein kinases have become attractive targets for anti-cancer therapy, because they play fundamental roles in cellular proliferation. However, the protein kinase-targeted drugs that have been developed so far do not show impressive clinical results and also display severe side effects; therefore, there is undoubtedly a need to investigate new drugs targeting other protein kinases that are critical in cell cycle progression. Vaccinia-related kinase 1 (VRK1) is a mitotic kinase that functions in cell cycle regulation by phosphorylating cell cycle-related substrates such as barrier-to-autointegration factor (BAF), histone H3, and the cAMP response element (CRE)-binding protein (CREB). In our study, we identified luteolin as the inhibitor of VRK1 by screening a small-molecule natural compound library. Here, we evaluated the efficacy of luteolin as a VRK1-targeted inhibitor for developing an effective anti-cancer strategy. We confirmed that luteolin significantly reduces VRK1-mediated phosphorylation of the cell cycle-related substrates BAF and histone H3, and directly interacts with the catalytic domain of VRK1. In addition, luteolin regulates cell cycle progression by modulating VRK1 activity, leading to the suppression of cancer cell proliferation and the induction of apoptosis. Therefore, our study suggests that luteolin-induced VRK1 inhibition may contribute to establish a novel cell cycle-targeted strategy for anti-cancer therapy.


Asunto(s)
Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Luteolina/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Antineoplásicos/química , Dominio Catalítico/efectos de los fármacos , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Luteolina/química , Proteínas Nucleares/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/química
16.
PLoS One ; 9(10): e110955, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25354194

RESUMEN

Microtubules are a highly validated target in cancer therapy. However, the clinical development of tubulin binding agents (TBA) has been hampered by toxicity and chemoresistance issues and has necessitated the search for new TBAs. Here, we report the identification of a novel cell permeable, tubulin-destabilizing molecule--4,5,6,7-tetrahydro-1H-indazole-3-carboxylic acid [1p-tolyl-meth-(E)-ylidene]-hydrazide (termed as Suprafenacine, SRF). SRF, identified by in silico screening of annotated chemical libraries, was shown to bind microtubules at the colchicine-binding site and inhibit polymerization. This led to G2/M cell cycle arrest and cell death via a mitochondria-mediated apoptotic pathway. Cell death was preceded by loss of mitochondrial membrane potential, JNK-mediated phosphorylation of Bcl-2 and Bad, and activation of caspase-3. Intriguingly, SRF was found to selectively inhibit cancer cell proliferation and was effective against drug-resistant cancer cells by virtue of its ability to bypass the multidrug resistance transporter P-glycoprotein. Taken together, our results suggest that SRF has potential as a chemotherapeutic agent for cancer treatment and provides an alternate scaffold for the development of improved anti-cancer agents.


Asunto(s)
Antineoplásicos/farmacología , Hidrazinas/farmacología , Indazoles/farmacología , Microtúbulos/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Apoptosis , Sitios de Unión , Colchicina/farmacología , Puntos de Control de la Fase G2 del Ciclo Celular , Células HeLa , Humanos , Hidrazinas/química , Hidrazinas/aislamiento & purificación , Indazoles/química , Indazoles/aislamiento & purificación , Potencial de la Membrana Mitocondrial , Ratones , Microtúbulos/química , Microtúbulos/metabolismo , Datos de Secuencia Molecular , Células PC12 , Unión Proteica , Ratas , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
17.
Protein Sci ; 18(10): 2115-24, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19691130

RESUMEN

Plasmodium falciparum FK506-binding protein 35 (PfFKBP35) that binds to FK506 contains a conserved tetratricopeptide repeat (TPR) domain. Several known TPR domains such as Hop, PPP5, CHIP, and FKBP52 are structurally conserved and are able to interact with molecular chaperones such as Hsp70/Hsp90. Here, we present the crystal structure of PfFKBP35-TPR and demonstrate its interaction with Hsp90 C-terminal pentapeptide (MEEVD) by surface plasmon resonance and nuclear magnetic resonance spectroscopy-based binding studies. Our sequence and structural analyses reveal that PfFKBP35 is similar to Hop and PPP5 in possessing all the conserved residues which are important for carboxylate clamping with Hsp90. Mutational studies were carried out on positively charged clamp residues that are crucial for binding to carboxylate groups of aspartate, showing that all the mutated residues are important for Hsp90 binding. Molecular docking and electrostatic calculations demonstrated that the MEEVD peptide of Hsp90 can form aspartate clamp unlike FKBP52. Our results provide insightful information and structural basis about the molecular interaction between PfFKBP35-TPR and Hsp90.


Asunto(s)
Proteínas HSP90 de Choque Térmico/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Unión a Tacrolimus/química , Proteínas de Unión a Tacrolimus/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Proteínas HSP90 de Choque Térmico/química , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación/genética , Péptidos/química , Péptidos/metabolismo , Alineación de Secuencia , Tacrolimus/metabolismo , Proteínas de Unión a Tacrolimus/genética , Proteínas de Unión a Tacrolimus/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA