Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
MRS Commun ; 7(3): 442-449, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29230350

RESUMEN

While preclinical models such as orthotopic tumors generated in mice from patient-derived specimens are widely used to predict sensitivity or therapeutic interventions for cancer, such xenografts can be slow, require extensive infrastructure, and can make in situ assessment difficult. Such concerns are heightened in highly aggressive cancers, such as glioblastoma (GBM), that display genetic diversity and short mean survival. Biomimetic biomaterial technologies offer an approach to create ex vivo models that reflect biophysical features of the tumor microenvironment (TME). We describe a microfluidic templating approach to generate spatially graded hydrogels containing patient-derived GBM cells to explore drug efficacy and resistance mechanisms.

2.
Ann Biomed Eng ; 43(11): 2618-29, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26001970

RESUMEN

Biomaterial-based tissue engineering strategies hold great promise for osteochondral tissue repair. Yet significant challenges remain in joining highly dissimilar materials to achieve a biomimetic, mechanically robust design for repairing interfaces between soft tissue and bone. This study sought to improve interfacial properties and function in a bi-layer hydrogel interpenetrated with a fibrous collagen scaffold. 'Soft' 10% (w/w) and 'stiff' 30% (w/w) PEGDM was formed into mono- or bi-layer hydrogels possessing a sharp diffusional interface. Hydrogels were evaluated as single-(hydrogel only) or multi-phase (hydrogel + fibrous scaffold penetrating throughout the stiff layer and extending >500 µm into the soft layer). Including a fibrous scaffold into both soft and stiff mono-layer hydrogels significantly increased tangent modulus and toughness and decreased lateral expansion under compressive loading. Finite element simulations predicted substantially reduced stress and strain gradients across the soft-stiff hydrogel interface in multi-phase, bilayer hydrogels. When combining two low moduli constituent materials, composites theory poorly predicts the observed, large modulus increases. These results suggest material structure associated with the fibrous scaffold penetrating within the PEG hydrogel as the major contributor to improved properties and function-the hydrogel bore compressive loads and the 3D fibrous scaffold was loaded in tension thus resisting lateral expansion.


Asunto(s)
Colágeno/química , Hidrogeles/química , Polietilenglicoles/química , Andamios del Tejido/química , Análisis de Elementos Finitos , Microscopía Confocal , Microscopía Electrónica de Rastreo
3.
J Biomed Mater Res A ; 101(12): 3404-15, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23559545

RESUMEN

Three-dimensional tissue engineered constructs provide a platform to examine how the local extracellular matrix (ECM) contributes to the malignancy of cancers such as human glioblastoma multiforme. Improved resolution of how local matrix biophysical features impact glioma proliferation, genomic and signal transduction paths, as well as phenotypic malignancy markers would complement recent improvements in our understanding of molecular mechanisms associated with enhanced malignancy. Here, we report the use of a gelatin methacrylate (GelMA) platform to create libraries of three-dimensional biomaterials to identify combinations of biophysical features that promote malignant phenotypes of human U87MG glioma cells. We noted key biophysical properties, namely matrix density, crosslinking density, and biodegradability, that significantly impact glioma cell morphology, proliferation, and motility. Gene expression profiles and secreted markers of increased malignancy, notably VEGF, MMP-2, MMP-9, HIF-1, and the ECM protein fibronectin, were also significantly impacted by the local biophysical environment as well as matrix-induced deficits in diffusion-mediated oxygen and nutrient biotransport. Overall, this biomaterial system provides a flexible platform to explore the role biophysical factors play in the etiology, growth, and subsequent invasive spreading of gliomas.


Asunto(s)
Fenómenos Biofísicos , Gelatina/farmacología , Glioblastoma/patología , Microambiente Tumoral/efectos de los fármacos , Animales , Materiales Biocompatibles/farmacología , Hipoxia de la Célula/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Difusión , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/irrigación sanguínea , Glioblastoma/genética , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Metacrilatos/farmacología , Microscopía Electrónica de Rastreo , Neovascularización Patológica/genética , Fenotipo , Polietilenglicoles/farmacología , Sus scrofa , Microambiente Tumoral/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA